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Abstract—An expedient intramolecular olefin–nitrone cycloaddition (INC) route is reported for the synthesis of a series of novel
oxa-bridged isoxazolidines and 1,3-aminoalcohols starting from DD-(+)-mannose-derived nitrones.
� 2005 Elsevier Ltd. All rights reserved.
Optically pure 1,2- and 1,3-aminoalcohols have found
wide applications as chiral ligands in asymmetric synthe-
sis.1 These ligands have primarily been used in enantio-
selective additions of dialkylzinc to a,b-unsaturated
ketones2 and for the enantioselective reduction of prochiral
ketones.1a,3 Though 1,2-aminoalcohols can be readily
obtained by the reduction of commercially available
naturally occurring amino acids, 1,3-aminoalcohols usu-
ally need to be generated from isoxazolidines by N–O
bond cleavage. There are many reports of the synthesis
of isoxazolidines from various olefinic aldehydes. These
isoxazolidines (obtained from 1,3-dipolar cycloaddition
reactions)4 have long been regarded as important key
intermediates for the synthesis of a wide variety of natural
and unnatural products, particularly alkaloids,5 amino
acids6 and amino sugars.7 The more demanding non-
racemic isoxazolidines can be prepared using chiral pool
derived precursors for intramolecular olefin–nitrone
cycloaddition.8 Sugar templates have also been used ele-
gantly in INC9 to generate enantiomerically pure hetero-
cycles such as tetrahydropyrans, pyrans and oxepanes.

In view of the importance of 1,3-aminoalcohols in asym-
metric synthesis and in continuation of our interest in
utilizing carbohydrates in natural product synthesis,
we became interested in designing and synthesizing
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new types of oxa-bridged bicyclic chiral 1,3-aminoalco-
hols and isoxazolidines. We chose DD-(+)-mannose as a
suitable starting material as it has the appropriate
stereochemistry to provide the desired tricyclic isoxazol-
idines by INC (Scheme 1). In addition, the acetonide
group directs the formation of one of the possible diaste-
reomers and also offers an opportunity for temporarily
appending a range of noncarbohydrate ligands. To
the best of our knowledge, this is the first successful
approach to oxa-bridged tricyclic isoxazolidines via
intramolecular nitrone cycloaddition (INC) and to
their corresponding optically active chiral 1,3-
aminoalcohols.

According to our retrosynthetic analysis, as shown in
Scheme 2, the isoxazolidine 2, the key intermediate for
the 1,3-aminoalcohol, can be prepared from naturally
occurring, easily available and optically pure
DD-(+)-mannose in a few steps.

Our synthesis (Scheme 3) starts with the addition of an
excess of vinylmagnesium bromide in THF to DD-(+)-
mannose diacetonide 4 to afford a mixture of two diaste-
reomers 510 in 90% yield. Selective oxidation of this dia-
stereomeric allylic alcohol was carried out with MnO2 in
CH2Cl2 to provide an allylic ketone, which spontane-
ously underwent cyclization to give the lactol 6 in 92%
yield. Under mild acidic condition (PPTS in methanol),
O-methylation of the alcohol as well as deprotection of
more exposed 5,6-O-isopropylidene group was accom-
plished to afford the diol 7 in 88% yield. Though the lac-
tol 6 was obtained as a mixture of diastereomers, we
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Scheme 3. Reagents and conditions: (a) CH2@CHMgBr, THF, 0 �C–rt, 12 h, 90%; (b) MnO2, CH2Cl2, rt, 12 h, 92%; (c) PPTS, MeOH, rt, 10 h, 88%;

(d) silica gel supported NaIO4, CH2Cl2, rt, 2 h, 87%.
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were gratified to find that the methanolysis of 6 to 7 was
highly stereoselective as anticipated. The stereochemis-
try of the quaternary carbon was tentatively assigned
as shown in Scheme 3 since the OMe group is expected
to approach the substrate from the least hindered b-face.
The requisite aldehyde 3 for the key INC, was subse-
quently obtained by cleaving the diol 7 with silica gel
supported NaIO4

11 in 87% yield. The aldehyde 3, thus
obtained, was sufficiently pure to proceed to the next
step.

With abundant quantities of aldehyde 3, we were suit-
ably placed for the execution of the key intramolecular
nitrone olefin cycloaddition reaction. To check the feasi-
bility of this key INC, initially an equimolar mixture of
aldehyde 3 and N-phenylhydroxylamine in toluene was
refluxed in the presence of a catalytic amount of dibutyl-
tin oxide (2 mol %) for several hours using a Dean–
Stark apparatus. The successful formation of the desired
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Scheme 4. Reagents and conditions: (a) PhNHOH, Bu2SnO, toluene, reflux
isoxazolidine 8a12 in 70% yield13 prompted us to proceed
to cleave the N–O bond and extend this route to a range
of novel isoxazolidines and 1,3-aminoalcohols. Though
there are several methods (reductive and oxidative cleav-
age)14 reported for the cleavage of N–O bonds, in our
hands, our acid sensitive isoxazolidines were reductively
cleaved by reacting with Mo(CO)6

15 and water to afford
1,3-aminoalcohols with complete retention of configur-
ation of the stereocentres (Scheme 4).

After successfully synthesizing chiral 1,3-aminoalcohol16

9a in diastereomerically pure form, we extended this
methodology to the synthesis of a series of N-substituted
isoxazolidines by using different N-arylhydroxylamines
followed by reductive cleavage to afford a range of
N-substituted chiral 1,3-aminoalcohols. In all cases,
the N-monosubstituted hydroxylamines were prepared17

by reduction of the corresponding substituted nitrobenz-
ene with zinc and ammonium chloride (Table 1).
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, 4 h, 70%; (b) Mo(CO)6, CH3CN–H2O, reflux, 2–3 h, 85%.



Table 1.

O

O O
OMe

O RNHOH
Bu2SnO

O O
O

O
N O

R

Mo(CO)6

CH3CN : H2O

O O
O

O
NH
R

Toluene
reflux, 4 h

8b-e 9b-e3

OH

Entry R Yield (%)

8 9

a 70 85
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In conclusion, this paper illustrates the potential of com-
mercially available sugars as starting materials for the
synthesis of a wide range of tricyclic oxa-bridged chiral
isoxazolidines and bicyclic oxa-bridged chiral 1,3-
aminoalcohols via intramolecular nitrone cycloaddition
reactions. The utility of these aminoalcohols and isoxaz-
olidines in various asymmetric reactions is currently
being studied in our laboratory and the results will be re-
ported elsewhere.
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