Amidation of Unfunctionalized Hydrocarbons Catalyzed by **Ruthenium Cyclic Amine or Bipyridine Complexes**

Sze-Man Au, Jie-Sheng Huang, Chi-Ming Che,* and Wing-Yiu Yu

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

cmche@hku.hk

Received June 8. 2000

Selective amidation of simple hydrocarbons with pre-isolated and in-situ formed iminoiodanes catalyzed by ruthenium complexes [Ru^{III}(Me₃tacn)(CF₃CO₂)₃·H₂O] (**2b**, Me₃tacn = N, N, N'-trimethyl-1,4,7-triazacyclononane) and cis-[Ru^{II}(6,6'-Cl₂bpy)₂Cl₂] (**3**, 6,6'-Cl₂bpy) = 6,6'-dichloro-2,2'-bipyridine) was investigated. With PhI=NTs as nitrogen source, both catalysts efficiently promote the amidation of adamantane, cyclohexene, ethylbenzene, cumene, indan, tetralin, and diphenylmethane to afford N-substituted sulfonamides in 80-93% yields with high selectivity. Competitive amidations of parasubstituted ethylbenzenes and kinetic isotope effect for the amidation of cyclohexene/cyclohexene d_{10} suggest that the amidation processes probably proceed via the hydrogen abstraction by a reactive Ru=NTs species to form a carboradical intermediate. The amidation with PhI(OAc)₂/TsNH₂ gave results comparable to those obtained with PhI=NTs. Extension of the "PhI(OAc)₂/TsNH₂ + catalyst **2b** or **3**" protocol to MeSO₂NH₂ and PhCONH₂ with ethylbenzene as substrate produced the corresponding N-substituted amides in up to 89% yield.

Introduction

The selective amination of unfunctionalized hydrocarbons in the presence of metal catalysts constitutes an appealing route for the synthesis of amines.¹ However, so far only a few such aminations are known, including the allylic amination of alkenes with "ArNHOH + iron or molybdenum catalysts"² and "ArNO₂/CO + ruthenium or iron catalysts",3 which are proposed to proceed via an ene-like reaction featuring alkene double bond transposition^{2,3b} or involve a metal-alkene complex as active species.^{3a} The metal-mediated direct amination of hydrocarbons via alkyl- or arylimido insertion into saturated C-H bonds, a nitrogen analogue of hydroxylation via oxo group transfer process, would serve as another attractive methodology but as yet remains unrealized.⁴ Notably, direct amidations of hydrocarbons with "PhI=NTs + manganese porphyrin catalysts"⁵ or "PhI=NNs + dirhodium catalysts"⁶ have been achieved.^{7,8} These putative sulfonvlimido group transfer processes provide a unique approach to N-substituted sulfonamides that could be desulfonylated by hydrolytic⁹ or reductive¹⁰ methods to amines or used directly as well-protected amines for further functionalizations.

Our quest for ruthenium amination or amidation catalysts was based on the well-documented oxidation chemistry of high-valent ruthenium-oxo complexes.¹¹ We envisaged that the ruthenium-imido analogues should also exhibit rich oxidation chemistry that has potential application in the C-H bond functionalization. Upon isolation of several imido ruthenium(VI) porphyrins,¹² we found that the bis(tosylimido) complexes 1a,b can undergo stoichiometric amidation with a variety of hydrocarbons.^{12b,d} In particular, the amidation of 2-ethylnaphthalene by complex 1b with a chiral porphyrinato ligand

(8) For related amidation with alkyl peroxycarbamate (ButOO-CONHTS) catalyzed by copper complexes, see: Kohmura, Y.; Kawasaki, K.-i.; Katsuki, T. *Synlett* **1997**, 1456.

^{(1) (}a) Roundhill, D. M. Chem. Rev. 1992, 92, 1. (b) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675. (c) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98, 1689.

^{(2) (}a) Srivastava, A.; Ma, Y.-A.; Pankayatselvan, R.; Dinges, W.; Nicholas, K. M. J. Chem. Soc., Chem. Commun. **1992**, 853. (b) Johannsen, M.; J ϕ rgensen, K. A. J. Org. Chem. **1994**, 59, 214. (c) Srivastava, R. S.; Nicholas, K. M. Tetrahedron Lett. **1994**, 35, 8739. (d) Srivastava, R. S.; Nicholas, K. M. Chem. Commun. 1996, 2335.

^{(3) (}a) Cenini, S.; Ragaini, F.; Tollari, S.; Paone, D. J. Am. Chem. Soc. 1996, 118, 11964. (b) Srivastava, R. S.; Nicholas, K. M. Chem. Commun. 1998, 2705.

⁽⁴⁾ Some zirconium bisamides, Cp₂Zr(NHR)₂, are known to catalyze the hydroamination of alkynes and allene to form enamines and imines via zirconium alkyl- or arylimido intermediates, see for example: (a) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. *J. Am. Chem. Soc.* **1992**, *114*, 1708. (b) Baranger, A. M.; Walsh, P. J.; Bergman, R. G. *J. Am. Chem. Soc.* **1993**, *115*, 2753. These processes are characteristic of the [2 + 2] cycloaddition of Zr=NR multiple bonds with C=C or C=C bonds, and result in a reduction of the alkynes or allene, unlike the direct insertion of imido groups into saturated C–H bonds. Stoichio-metric C–H bond activation of an alkane or arene can be effected by transient Ti=NSiBu^t₃ species via the 1,2-addition of the C-H bond across the Ti=N multiple bond (Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. *J. Am. Chem. Soc.* **1988**, *110*, 8731) but such a reaction does not result in imido group transfer to the hydrocarbon.

^{(5) (}a) Breslow, R.; Gellman, S. H. *J. Chem. Soc., Chem. Commun.* **1982**, 1400. (b) Breslow, R.; Gellman, S. H. *J. Am. Chem. Soc.* **1983**, 105, 6728. (c) Mahy, J. P.; Bedi, G.; Battioni, P.; Mansuy, D. Tetrahedron Lett. **1988**, 29, 1927. (d) Mahy, J. P.; Bedi, G.; Battioni, P.; Mansuy, D. New J. Chem. **1989**, 13, 651. (e) Yang, J.; Weinberg, R.; Breslow, R. Chem. Commun. 2000, 531.

^{(6) (}a) Müller, P.; Baud, C.; Jacquier, Y.; Moran, M.; Nägeli, I. J. *Phys. Org. Chem.* **1996**, *9*, 341. (b) Nägeli, I.; Baud, C.; Bernardinelli, G.; Jacquier, Y.; Moran, M.; Müller, P. Hel. Chim. Acta 1997, 80, 1087.

⁽⁷⁾ For related amidation with chloramine-T trihydrate (TsNClNa· 3H₂O) catalyzed by copper complex, see: Albone, D. P.; Aujla, P. S.; Taylor, P. C.; Challenger, S.; Derrick, A. M. J. Org. Chem. 1998, 63, 9569

^{1 1938, 1229,} and many reterences therein.
(11) For reviews, see: (a) Griffith, W. P. Chem. Soc. Rev. 1992, 21,
(179. (b) Che, C.-M.; Yam, V. W. W. Adv. Inorg. Chem. 1992, 39, 233.
(12) (a) Huang, J. S.; Che, C.-M.; Poon, C.-K. J. Chem. Soc., Chem.
Commun. 1992, 161. (b) Au, S.-M.; Huang, J.-S.; Yu, W.-Y.; Fung, W.-H.; Che, C.-M. J. Am. Chem. Soc. 1999, 121, 9120. (c) Huang, J.-S.;
Sun, X.-R.; Leung, S. K.-Y.; Cheung, K.-K.; Che, C.-M. Chem. Eur. J.
2000, 6, 334. (d) Zhou, X.-G.; Yu, X.-Q.; Huang, J.-S.; Che, C.-M. Chem.
Commun. 1999, 2377.

results in the highest enantiocontrol yet obtained for a metal-mediated asymmetric amidation of saturated C–H bonds.^{12d} On the basis of these findings, catalytic amidations with "PhI=NTs + ruthenium porphyrin **1c** or **1d**" were eventually developed.^{12d,13} However, isolated high-valent ruthenium–imido complexes without porphyrin auxiliaries are extremely rare,¹⁴ and none of them have been reported to undergo amidation reactions with a hydrocarbon.

The present work deals with the PhI=NTs amidation of hydrocarbons catalyzed by ruthenium non-porphyrin complexes 2 and 3,15 which proceeds probably via sulfonvlimido insertion into saturated C-H bonds. Moreover, like electron-deficient manganese porphyrin [Mn(TPF-PP)Cl],¹³ complexes **2b** and **3** can catalyze the amidation directly with commercially available PhI(OAc)₂/TsNH₂ without the necessity to pre-isolate PhI=NTs.16 The "PhI- $(OAc)_2/TsNH_2 + 2b$ or 3" protocol can be extended to $MeSO_2NH_2$ and $PhCONH_2$, in which cases the corresponding iminoiodanes are either explosive (PhI=NSO₂-Me) or unknown (PhI=NCOPh).¹⁶ This significantly increases the types of amides that can be prepared via ruthenium-catalyzed amidations. Especially, the amidation of ethylbenzene with "PhI(OAc)₂/PhCONH₂ + 2b or **3**" provides the first access to an N-substituted amide of carboxylic acid via metal-catalyzed amidation of saturated C-H bonds.

Results and Discussion

Catalyst Development. We previously demonstrated that the ligands N,N,N'-trimethyl-1,4,7-triazacyclononane (Me₃tacn) and 6,6'-dichloro-2,2'-bipyridine (6,6'-Cl₂bpy) are well suited for accessing highly oxidizing and sterically bulky ruthenium-oxo complexes.¹⁷ Both ligands exhibit a remarkable capability of stabilizing *cis*-dioxo functional groups, contrary to the *trans*-dioxo groups

constrained by the porphyrin ligands.¹⁸ In addition, by employing the Ru–Me₃tacn complex **2b** as a catalyst, the *tert*-butyl hydroperoxide epoxidation of alkenes¹⁹ and oxidation of alcohols²⁰ were found to be highly chemose-lective.

To uncover efficient non-porphyrin ruthenium amidation catalysts, we screened a variety of ruthenium complexes with tetra-, tri-, and bidentate ligands, of which those containing Me₃tacn (complexes 2a,b) and 6.6'-Cl₂bpy (complex **3**) gave the best results.²¹ Catalysts 2 and 3 have several features in common. One is that they are more easily accessible than the porphyrin catalysts 1c,d. Further, they bear neutral chelating ligands that are robust toward oxidation,¹⁷ with the coordination atoms arranged in a facial or helical geometry, in contrast to the planar coordination mode of the porphyrinato dianions in 1c,d. Finally, they might be converted preferentially to cis-bis(imido) species, as in the case of the cis-dioxo analogues mentioned above, which contrasts with the *trans*-bis(imido) active species in 1c- or 1d-catalyzed amidations.^{12d,13} These features may cause the catalytic activity or selectivity of the nonporphyrin complexes 2 and 3 to be different from that of the porphyrin complexes. With regard to catalysts **2a**¹⁵ and **2b**, the former was found to be rather moisture sensitive. Consequently, catalyst 2b, which is stabler to moisture yet effects the amidation more rapidly, was used throughout this work.

Complex 2b- or 3-Catalyzed Amidation with PhI= NTs. (i) Substrate Scope. Both complexes 2b and 3 are efficient catalysts for the PhI=NTs amidation of various hydrocarbons from adamantane to allylic or benzylic alkenes. The amidations were generally conducted at room temperature for 3 h by employing 2 mol % catalysts (relative to the starting PhI=NTs) and a slight excess of hydrocarbon substrates. This contrasts with catalyst 2a¹⁵ and other non-porphyrin amidation catalysts,⁶⁻⁸ which require much longer time (12 h for 2a and 15-72 h for the others) to reach completion and often employ larger excess of substrates. The results obtained for 2b or 3-catalyzed amidations of adamantane, cyclohexene, ethylbenzene, cumene, indan, tetralin, and diphenylmethane in acetonitrile (2b) or dichloromethane (3) are summarized in Table 1. In all cases the unsubstituted sulfonamide (TsNH₂) was observed to be a major byproduct, with the total moles of TsNH_2 and the desired N-substituted amide close to those of starting PhI=NTs. Since excess substrates were used in the amidation

⁽¹³⁾ Yu, X.-Q.; Huang, J.-S.; Zhou, X.-G.; Che, C.-M. Org. Lett. 2000, 2, 2233.

^{(14) (}a) Redshaw, C.; Clegg, W.; Wilkinson, G. *J. Chem. Soc., Dalton Trans.* **1992**, 2059. (b) Danopoulos, A. A.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. *Polyhedron* **1992**, *11*, 2961.

⁽¹⁵⁾ The stoichiometric amidation by complex **2a**/AgClO₄ and the PhI=NTs amidation catalyzed by complex **2a** were preliminarily reported elsewhere: Au, S.-M.; Zhang, S.-B.; Fung, W.-H.; Yu, W.-Y.; Che, C.-M.; Cheung, K.-K. *Chem. Commun.* **1998**, 2677.

⁽¹⁶⁾ The known iminoiodanes, such as PhI=NTs and PhI=NNs, were all prepared from the reactions between PhI(OAc)₂ and the corresponding amides under basic conditions, see: Stang, P. J.; Zhdankin, V. V. *Chem. Rev.* **1996**, *96*, 1123 and the references therein.

^{(17) (}a) Che, C.-M.; Leung, W.-H. J. Chem. Soc., Chem. Commun. **1987**, 1376. (b) Wong, K.-Y.; Lee, W.-O.; Che, C.-M.; Anson, F. C. J. *Electroanal. Chem.* **1991**, *319*, 207. (c) Cheng, W.-C.; Yu, W.-Y.; Cheung, K.-K.; Che, C.-M. J. Chem. Soc., Dalton Trans. **1994**, 57. (d) Cheng, W.-C.; Yu, W.-Y.; Cheung, K.-K.; Che, C.-M. J. Chem. Soc., Chem. Commun. **1994**, 1063.

⁽¹⁸⁾ Selected examples: (a) Groves, J. T.; Quinn, R. *Inorg. Chem.* **1984**, *23*, 3844. (b) Leung, W.-H.; Che, C.-M. *J. Am. Chem. Soc.* **1989**, *111*, 8812. (c) Ho, C.; Leung, W.-H.; Che, C.-M. *J. Chem. Soc., Dalton Trans.* **1991**, 2933.

⁽¹⁹⁾ Cheng, W.-C.; Fung, W.-H.; Che, C.-M. J. Mol. Catal. A 1996, 113, 311.

⁽²⁰⁾ Fung, W.-H.; Yu, W.-Y.; Che, C.-M. J. Org. Chem. 1998, 63, 2873.

⁽²¹⁾ Other ruthenium complexes screened include [Ru^{II}(salen)-(PPh₃)₂] (prepared as in: Bhowon, M. G.; Wah, H. L. K.; Narain, R. *Polyhedron* **1999**, *18*, 341, salen = 1,2-bis(3,5-dichlorosalicylideneamino)ethane dianion), [Ru^{II}(Tp)(PPh₃)₂Cl] (prepared as in: Alcock, N. W.; Burns, I. D.; Claire, K. S.; Hill, A. F. *Inorg. Chem.* **1992**, *31*, 2906, Tp = hydrotris(pyrazol-1-yl)borate), [Ru^{II}(COD)Cl₂]_n (95%, Aldrich, COD = η^4 -1,5-cyclooctadiene), and RuCl₃·xH₂O (Aldrich). These complexes were found to be poor catalysts for the amidation reactions.

Table 1. Amidation of Saturated C–H Bonds with PhI=NTs Catalyzed by Complex 2b or 3^a

			catalyst 2b or 3		
	1 - 1		(2 mol%)	- NHIS	
Entry	Substrate	Product	Catalyst	Conversion (%)	Yield (%) ^b
	<u>^</u>	NHTs			
1	P	Ð	2b 3	57 52	87 86
2			5	52	00
3	~	NHTs	26	E 7	00
4	\bigcirc	\bigcirc	3	58	90
5	\sim		s 2b	79	93
6			3	70	90
	1	Ι.			
7	\bigwedge		NHTs 2b	38	80
0		\sim	3	40	90
a	~ ~		s 2h	52	95
10	$\langle \rangle$	(Σ)	3	49	81
11		NHIS	2b	57	86
12			3	50	84
		NHTs			
13	\square		2b	61	90
14	\checkmark	V V	3	58	89

^a Reaction conditions: 25 °C, 3 h, catalyst:(PhI=NTs):substrate mole ratio = 1:50:60, MeCN (2b) or CH₂Cl₂ (3). ^b GC yield based on the amount of substrate consumed.

processes, the substrate conversions obtained are rather good, the best (79%, entry 5) of which is close to the quantitative value of \sim 83%.

The amidation of adamantane (entries 1 and 2) selectively occurred at the tertiary C-H bonds, with the corresponding amide formed in \sim 87% yields (based on the amount of adamantane consumed). Such tertiary C-H bond selectivity has been observed in the amidations of the same substrate involving complexes **1a**,^{12b} 1d,¹³ and 2a.¹⁵ However, the PhI=NNs amidation of adamantane catalyzed by previously reported dirhodium catalyst took place at both tertiary and secondary C-H bonds, affording a mixture of the corresponding amides in a 71:5 ratio.6b

With cyclohexene as substrate, both catalysts 2b and 3 resulted in allylic amidations to form N-(cyclohex-2en-1-yl)tosylamide in excellent yields (entries 3 and 4). Interestingly, no aziridine was detected in the reaction although many metal-catalyzed aziridinations of unfunctionalized alkenes with PhI=NTs have been known.²² In contrast, the amidation of cyclohexene in other non-

porphyrin amidation systems including "PhI=NNs + Rh₂-(OAc)₄"⁶ and "TsNClNa + copper catalyst"⁷ did afford a mixture of the corresponding amide and aziridine. The "Bu^tOOCONHTs + $Cu(OTf)_2$ " system was not reported to produce the aziridine but the yield of the desired amide was rather low (27%).8

Of the amidation results in Table 1, the best were achieved for the benzylic substrate ethylbenzene (entries 5 and 6), whose amidation was directed toward the saturated C-H bonds of the benzyl moiety to form the corresponding amide in 93 (2b) and 90% (3) yields with good to excellent substrate conversions. Extension of such a benzylic amidation to other substrates, including cumene (entries 7 and 8), indan (entries 9 and 10), tetralin (entries 11 and 12), and diphenylmethane (entries 13 and 14) gave comparable results but the substrate conversions were considerably lower. It is astonishing that diphenylmethane is a good substrate for complex **2** or **3**-catalyzed amidation,²³ which is superior to other benzylic hydrocarbons examined in this work except ethylbenzene. Previously, only dirhodium acetate was reported to effect the iminoiodane amidation of diphenylmethane;^{6b} however, in that case the yield of the corresponding amide was much lower than those obtained for other benzylic hydrocarbons such as indan and tetralin.

⁽²²⁾ Representative examples: (a) Mansuy, D.; Mahy, J.-P.; Dureault, A.; Bedi, G.; Battioni, P. J. Chem. Soc., Chem. Commun. 1984, 1161. (b) O'Connor, K. J.; Wey, S.-J.; Burrows, C. J. Tetrahedron Lett. **1992**, *33*, 1001. (c) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. **1993**, *115*, 5326. (d) Noda, K.; Hosoya, N.; Irie, R.; Ito, Y.; Katsuki, T. Synlett 1993, 469. (e) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742.

⁽²³⁾ For related complex 2a-catalyzed amidations, see ref 15.

 Table 2. Effects of Solvent, Temperature, Nitrogen Source, and Catalyst Loading in Amidation of Ethylbenzene and Cyclohexene Catalyzed by Complex 2b or 3

^{*a*} GC yield based on the amount of substrate consumed.

(ii) Effect of Solvent, Temperature, and Catalyst Loading. While we preliminarily reported the complex 2a-catalyzed amidations,¹⁵ the reactions were all conducted in acetonitrile at room temperature with 2 mol % catalyst. To ascertain how solvent, temperature and catalyst loading affect the amidation efficiency of this class of ruthenium catalyst, we carried out the amidation reactions of ethylbenzene in various solvents, including toluene, dichloromethane and acetonitrile at different temperatures by employing the more reactive catalyst 2b. The results are shown in entries 1-4 in Table 2. Evidently, acetonitrile is the solvent of choice, which results in a considerably higher yield of the amide than either toluene or dichloromethane at room temperature. With acetonitrile as solvent, increasing temperature to 82 °C led to a significant decrease of both the substrate conversion and amide selectivity (cf. entries 3 and 4 in Table 2). This might be ascribed to the thermal decomposition of PhI=NTs in this solvent. Not surprisingly, reducing the loading of 2b from 2 to 1 mol % caused a considerable decrease of the substrate conversion but with a slight decerease in the amide selectivity (cf. entries 3 and 5).

The effects of solvent and temperature were also inspected in the case of complex **3**-catalyzed amidation of ethylbenzene and cyclohexene (entries 7-12 in Table 2). Unlike the case of catalyst **2b**, of the solvents (dichloromethane, acetone, and acetonitrile) investigated in the **3**-catalyzed amidation at room temperature, dichloromethane, rather than acetonitrile, is clearly the superior one (cf. entries 9-11). Moreover, in contrast with the deleterious effect of higher temperature on the **2b**catalyzed amidation of ethylbenzene in acetonitrile, elevation of temperature in the **3**-catalyzed amidation of either ethylbenzene or cyclohexene in dichloromethane resulted in slightly higher substrate conversion with little or no loss of amide selectivity (cf. entries 7 and 8; 11 and 12).

(ii) **Mechanistic Aspects.** Metal-catalyzed amidations of hydrocarbons with iminoiodanes such as PhI= NTs are generally proposed to involve metal-imido active species.^{5,6,12d} However, only in the case of ruthenium porphyrin catalyst was an imido intermediate isolated.^{12d} By analogy with iron- or manganese porphyrin-catalyzed

Table 3. Relative Rates (*k*_{rel}) for the PhI=NTs Amidation of Ethylbenzenes (*p*-X-C₆H₄CH₂CH₃) Catalyzed by Complex 2b or 3

		kre	el
entry	Х	catalyst 2b	catalyst 3
1	MeO	4.65	5.66
2	Me	2.09	1.88
3	Cl	1.39	1.29
4	F	1.09	1.12
5	Н	1	1

alkene hydroxylations with PhIO, the PhI=NTs allylic amidations catalyzed by manganese porphyrins are postulated to proceed via hydrogen atom abstraction by a high-valent Mn=NTs intermediate.^{5c} Mechanistic studies on the dirhodium-catalyzed amidations^{6b} reveal that either a direct insertion or hydrogen abstraction/radical recombination mechanism must be operative.

To help elucidate the mechanism of complex 2b or 3-catalyzed amidations, we performed competition experiments for the catalytic PhI=NTs amidation of parasubstituted ethylbenzenes. The measured relative amidation rates, k_{rel} , of p-X-C₆H₄CH₂CH₃ (X = MeO, Me, Cl, F) against that of ethylbenzene for both catalysts are summarized in Table 3. It is evident from the table that either electron-donating or -withdrawing para-substituents promote the amidation processes. This contrasts with the dirhodium-catalyzed PhI=NNs amidations of ethylbenzenes which are retarded by electron-withdrawing, although promoted by electron-donating parasubstituents.^{6b} However, the results in Table 3 are parallel to those obtained for the stoichiometric amidation of the same substituted ethylbenzenes by bis-(tosylimido) ruthenium(VI) porphyrin 1a^{12b} or the nonporphyrin complex 2a/AgClO₄.¹⁵

In the case of either catalyst **2b** or **3**, plotting the log-(k_{rel}) against the Hammett constant σ of the parasubstituent resulted in a concave instead of a straight line, suggesting the intervention of a radical intermediate in the amidation processes.²⁴ Consequently, the log(k_{rel}) was plotted against a carboradical parameter, TE,²⁵ as

⁽²⁴⁾ Groves, J. T.; Gross, Z.; Stern, M. K. *Inorg. Chem.* **1994**, *33*, 5065.

Figure 1. $Log(k_{rel})$ vs TE plot for the **2b**-catalyzed amidation of para-substituted ethylbenzenes *p*-X-C₆H₄CH₂CH₃ with PhI=NTs.

Figure 2. Log(k_{rel}) vs TE plot for the **3**-catalyzed amidation of para-substituted ethylbenzenes *p*-X-C₆H₄CH₂CH₃ with PhI= NTs.

previously done for the stoichiometric amidation by complex 1a.^{12b} Interestingly, the log(k_{rel}) vs TE plots for catalysts 2b and 3 both exhibit a good linearity, as shown in Figures 1 and 2. The slopes of the plots (ρ_{TE}) were determined to be 0.63 (catalyst 2b) and 0.68 (catalyst 3), which are similar to the ρ_{TE} (0.62) obtained for the stoichiometric amidation by complex 1a.^{12b} We previously reported¹⁵ that plotting $log(k_{rel})$ against another radical parameter, σ_{JJ} ,²⁶ for the stoichiometric amidation by complex 2a/AgClO₄ gave rise to a good linearity. To compare this stoichiometric amidation with the closely related catalytic amidation of 2b, we also plotted the log- $(k_{\rm rel})$ of **2a**/AgClO₄ against TE and obtained an excellent linearity with ρ_{TE} of 0.72, a value comparable to that obtained for the 2b-catalyzed amidation. These observations indicate that the active species in these rutheniummediated amidations should be similar. Therefore, the PhI=NTs amidations of ethylbenzenes catalyzed by complex **2b** or **3** most probably involve a benzylic radical intermediate generated via the hydrogen atom abstraction by a high-valent Ru=NTs species. To provide further evidence for this mechanism, we inspected the kinetic isotope effect for either 2b or 3-catalyzed amidation of cyclohexene and cyclohexene- d_{10} . These systems were found to exhibit a primary kinetic isotope effect, with $k_{\rm H}$ $k_{\rm D}$ of 6.5 (catalyst **2b**) and 6.1 (catalyst **3**). The $k_{\rm H}/k_{\rm D}$ values are similar to that determined for the stoichiometric amidation of the same substrates by complex 1a

(6.1), ^{12b} and are not inconsistent with a hydrogen abstraction process.

Although the amidations catalyzed by complex 2b and 3 likely involve high-valent Ru=NTs intermediates, attempts to isolate these species in the catalytic reactions were unsuccessful. In fact, isolable high-valent ruthenium imido complexes without porphyrin ligands are extremely rare,¹⁴ as mentioned earlier. The possibility of generating Ru=NTs species bearing a Me₃tacn ligand has been discussed before.¹⁵ In this work, we examined the behavior of complex 3 toward the attack by PhI= NTs and observed that treating a solution of 3 in dichloromethane with PhI=NTs (~2 equiv) resulted in a color change to brown accompanied by the disappearance of the MLCT band of 3 in the UV-visible spectrum. Investigation of the reaction by electrospray mass spectrometry gave an intense peak at m/z 756 which can be ascribed to the [Ru(6,6'-Cl₂bpy)₂(NTs)Cl]⁺ species. Efforts are underway to isolate and fully characterize the intriguing new ruthenium complex.

Complex 2b- or 3-Catalyzed Amidation with PhI-(OAc)₂/RNH₂ ($\mathbf{R} = \mathbf{Ts}$, MeSO₂, and PhCO). A major drawback of the amidation with PhI=NR lies in the rather limited types of the iminoiodanes currently attainable.^{16,27} It would be interesting if the precursors to PhI=NR, namely PhI(OAc)₂ and RNH₂, can be directly used in the amidation reactions to allow the iminoiodanes formed in-situ immediately amidate hydrocarbons in the presence of a metal catalyst. In this manner, the preparation of N-substituted amides through amidation of hydrocarbons for the R groups whose corresponding PhI= NR's are unstable or unknown could be realized.

We initially explored the possibility of directly using commercially available PhI(OAc)₂/TsNH₂ instead of PhI= NTs as the nitrogen source. The results achieved for 2bcatalyzed amidation of ethylbenzene and 3-catalyzed amidation of cyclohexene are shown in Table 2 (entries 6 and 13), which are fairly similar to those obtained for the corresponding amidations with PhI=NTs (cf. entries 6 and 3; entries 13 and 11). This encouraged us to attempt extension of the "PhI(OAc)₂/TsNH₂ + **2b** or **3**" protocol to MeSO₂NH₂, the corresponding iminoiodane of which has never been used as the nitrogen source in the amidations probably owing to its unstable and explosive nature.¹⁶ Table 4 (entries 2 and 11) shows the results obtained for the amidation of ethylbenzene with "PhI(OAc)₂/MeSO₂NH₂ + 2b or 3". Notably, by employing either of the catalysts, the N-substituted methanesulfonamide was obtained in 85% yield with ${\sim}50\%$ substrate conversion.

Remarkably, the "PhI(OAc)₂/RNH₂ + **2b** or **3**" protocol is applicable to PhCONH₂. The results achieved for the amidation of ethylbenzene to form *N*-(1-phenylethyl)benzamide are also shown in Table 4.²⁸ When the **2b**catalyzed amidation of ethylbenzene was carried out in dichloromethane at room temperature for 12 h with **2b**/ ethylbenzene/PhI(OAc)₂/PhCONH₂ mole ratio of 1:60:50:

 ^{(27) (}a) Södergren, M. J.; Alonso, D. A.; Bedekar, A. V.; Andersson,
 P. G. *Tetrahedron Lett.* **1997**, *38*, 6897. (b) Dauban, P.; Dodd, R. H. *J. Org. Chem.* **1999**, *64*, 5304.

⁽²⁸⁾ We noted that N-(1-phenylethyl)benzamide could also be prepared, *in two steps*, via mercury-mediated addition of benzamide to styrene, see: (a) Barluenga, J.; Jiménez, C.; Nájera, C.; Yus, M. J. *Chem. Soc., Chem. Commun.* **1981**, 670. (b) Barluenga, J.; Jiménez, C.; Nájera, C.; Yus, M. J. *Chem. Soc., Perkin Trans.* **11983**, 591. These processes result in a reduction of the hydrocarbon and require the use of a stoichiometric amount of highly toxic mercury compounds.

⁽²⁵⁾ Wu, Y.-D.; Wong, C.-L.; Chan, K. W. K.; Ji, G.-Z.; Jiang, X.-K. J. Org. Chem. **1996**, *61*, 746.

⁽²⁶⁾ Jiang, X.-K. Acc. Chem. Res. 1997, 30, 283.

NHP

Table 4. Amidation of Ethylbenzene with PhI(OAc)₂/RNH₂ Catalyzed by Complex 2b or 3^a

....

	$ + PhI(OAc)_2 + RNH_2 \xrightarrow{2 \text{ mol}\%} $						
entry	catalyst	RNH ₂	solvent	additive	conversion (%)	yield ^b (%)	
1	2b	PhCONH ₂	CH ₂ Cl ₂		63	89	
2	2b	MeSO ₂ NH ₂	CH ₂ Cl ₂		51	85	
3	2b	PhCONH ₂	$\tilde{CH_2Cl_2}$	Im or py	36	83	
4	2b	PhCONH ₂	CH ₂ Cl ₂	Lut	31	82	
5	2b	PhCONH ₂	CH ₂ Cl ₂	$2.6-Cl_2py$	34	82	
6	2b	PhCONH ₂	CH_2Cl_2	K_2CO_3	47	85	
7 ^c	2b	PhCONH ₂	CH_2Cl_2		19	80	
8	3	PhCONH ₂	CH ₂ Cl ₂		59	87	
9	3	PhCONH ₂	MeČN		49	85	
10	3	PhCONH ₂	acetone		29	82	
11	3	MeSO ₂ NH ₂	CH_2Cl_2		46	85	

^{*a*} Reaction conditions: 25 °C, 12 h, catalyst/ethylbenzene/PhI(OAc)₂/RNH₂ mole ratio = 1:60:50:50. ^{*b*} GC yield based on the amount of substrate consumed. ^{*c*} NBS was used instead of PhI(OAc)₂.

50, the corresponding N-substituted benzamide was formed in 89% yield with 63% substrate conversion (entry 1). Similar results were achieved under the same conditions by employing catalyst **3** (entry 8). We found that the amidation of ethylbenzene with "PhI(OAc)₂/PhCONH₂ + **2b**" led to virtually indistinguishable results in dichloromethane and acetonitrile; however, a considerable solvent effect was observed for the "PhI(OAc)₂/PhCONH₂ + **3**" system, with the substrate conversion and the amide yield follow the order dichloromethane > acetonitrile > acetone (cf. entries 8–10).

It can be expected that the amidations with PhI(OAc)₂/ RNH₂ would involve the formation of acetic acid. Accordingly, addition of bases to the amidation reactions may be beneficial to improving the catalyst efficiency. To our surprise, when organic bases such as imidazole (Im), pyridine (py), 2,6-dichloropyridine (2,6- Cl_2py), and 2,6lutidine (Lut) were introduced in either catalytic or stoichiometric amounts to the amidation of ethylbenzene with "PhI(OAc)₂/PhCONH₂ + 2b", the substrate conversions were approximately halved, accompanied by a slight decrease in the amide selectivity (cf. entry 1 and entries 3–5 in Table 4). Adding inorganic bases such as K₂CO₃ to the system also considerably reduced the substrate conversion, with the amide selectivity decreased slightly (cf. entries 1 and 6). On the other hand, although additives such as pyridine N-oxide or "pyridine N-oxide + pyridine" are reported to promote sulfonylimido group transfer to styrene in the "Ts₂O + nitrido manganese-salen" system,²⁹ introducing such additives to the reaction of ethylbenzene with PhI(OAc)₂/PhCONH₂ in the presence of catalyst 2b or 3 made the catalyst completely loss their activity toward the amidation.

Note that in the case of PhI(OAc)₂/TsNH₂ amidations, the in-situ formed PhI=NTs is most probably responsible for the generation of active amidating species; however, it is not clear whether the unknown PhI=NCOPh is really involved in the PhI(OAc)₂/PhCONH₂ counterparts. Recognizing the oxidative nature of PhI(OAc)₂, we tried to replace PhI(OAc)₂ with other oxidants such as *N*bromosuccinimide (NBS) and found that the "NBS/ PhCONH₂ + catalyst **2b**" system could also amidate ethylbenzene to form *N*-(1-phenylethyl)benzamide in 80% yield but with a low substrate conversion (19%, entry 7 in Table 4).

Conclusion

Ruthenium complexes 2b and 3 are efficient catalysts for the amidation of a series of unfunctionalized hydrocarbons with PhI=NTs. These catalytic amidation reactions exhibit high selectivity for adamantane (only the tertiary C-H bonds are amidated), cyclohexene (no aziridination was observed), ethylbenzene, cumene, indan, tetralin, and diphenylmethane (all result in the amidation of the benzylic C-H bond). Competition experiments on para-substituted ethylbenzenes reveal that both electron-donating and -withdrawing substituents promote the amidation processes, with $log(k_{rel})$ vs TE (a carboradical parameter) plots exhibiting good linearity and having small ρ_{TE} values of 0.63 (catalyst 2b) and 0.68 (catalyst 3), which can accommodate a hydrogen abstraction mechanism involving a carboradical intermediate. Kinetic isotope effect measurements on the amidation of cyclohexene/cyclohexene- d_{10} give $k_{\rm H}/k_{\rm D}$ values of 6.5 (catalyst 2b) and 6.1 (catalyst 3), consistent with the hydrogen abstraction mechanism. Both complexes **2b** and **3** can also efficiently catalyze the amidation of ethylbenzene or cyclohexene directly with commercially available PhI(OAc)₂/TsNH₂, demonstrating the feasibility of an amidation protocol "PhI(OAc)₂/RNH₂ + ruthenium catalyst". The amidation of ethylbenzene with "PhI(OAc)₂/RNH₂ + catalyst **2b** or **3**" affords the corresponding N-substituted amides in 85% yield with R = $MeSO_2$ and up to 89% yield with R = PhCO. The present work contributes the first metal-catalyzed amidation of saturated C-H bonds that forms an N-substituted amide of carboxylic acid.

Experimental Section

General Methods. Acetonitrile (predistilled from potassium permanganate), toluene, and cyclohexene were distilled from calcium hydride under nitrogen. Dichloromethane was purified as described previously.^{12b} Adamantane was recrystallized from ethanol. Ethylbenzene and its para-substituted derivatives, cumene, tetralin, indan, and diphenylmethane, were purified by passing through a column of activated alumina. Complexes [Ru^{III}(Me₃tacn)(CF₃CO₂)₃·H₂O] (**2b**)²⁰ and

⁽²⁹⁾ Minakata, S.; Ando, T.; Nishimura, M.; Ryu, I.; Komatsu, M. Angew. Chem., Int. Ed. Engl. **1998**, *37*, 3392.

cis-[RuII(6,6'-Cl_2bpy)_2Cl_2] $(3)^{17a,b}$ were prepared by the literature methods.

General Procedure for Complex 2b- or 3-Catalyzed Amidation with PhI=NTs. To a mixture of substrate (0.72 mmol), catalyst (0.012 mmol), and solvent (10 mL) was added PhI=NTs (0.6 mmol). The reaction mixture was stirred at room temperature for 3 h and then evaporated to dryness. The organic products were extracted with diethyl ether. Aliquots of the extract were then analyzed by GC. The reaction products were identified by comparing their retention times with those of authentic samples.³⁰ The quantities of the products and the consumed substrate were determined in the presence of an internal standard.

General Procedure for Complex 2b- or 3-Catalyzed Amidation with PhI(OAc)₂/RNH₂. This procedure is identical with that described above except that PhI(OAc)₂ and RNH₂ (0.6 mmol each) were used instead of PhI=NTs and that the reaction mixture was stirred for 12 h rather than 3 h.³¹ **Competitive PhI=NTs Amidation of Para-Substituted Ethylbenzenes or Cyclohexene/Cyclohexene**- d_{10} . Complex **2b** or **3** (0.02 mmol) was added to a mixture of PhI=NTs (0.5 mmol) and ethylbenzene/p-X-C₆H₄CH₂CH₃ or cyclohexene/ cyclohexene- d_{10} (1 mmol each) in acetonitrile or dichloromethane (10 mL) containing 1,4-dichlorobenzene (1 mmol) as the internal standard. The mixture was stirred at room temperature for 3 h. The remaining quantities of ethylbenzene (H_f) and p-X-C₆H₄CH₂CH₃ (X_f) or cyclohexene (H_f') and cyclohexene- d_{10} (D_f) were determined by GC. The relative amidation rates k_{rel} of the ethylbenzenes and the kinetic isotope effects k_{H}/k_D of cyclohexene were calculated from the following equations:²⁰

$$k_{\rm rel} = \log(X_{\rm f}X_{\rm i})/\log(H_{\rm f}H_{\rm i})$$
$$k_{\rm H}/k_{\rm D} = \log(H_{\rm f}'/H_{\rm i}')/\log(D_{\rm f}D_{\rm i})$$

where X_i , H_i , H_i' , and D_i are the initial quantities of *p*-X-C₆H₄-CH₂CH₃, ethylbenzene, cyclohexene, and cyclohexene- d_{10} , respectively.

Acknowledgment. This work was supported by The University of Hong Kong and the Hong Kong Research Grants Council.

JO000881S

⁽³⁰⁾ For preparation of authentic samples of the hydrocarbon amidation products, see: (a) Reference 12b (adamantane, cyclohexene, ethylbenzene, and cumene). (b) Reference 7 (indan). (c) Reference 8 (tetralin). (d) McFarland, J. W.; Schut, D.; Zwanenburg, B. *Tetrahedron* **1981**, *37*, 389 (diphenylmethane).

⁽³¹⁾ For preparation of authentic samples of *N*-(1-phenylethyl)methanesulfonamide and *N*-(1-phenylethyl)benzamide, see, respectively: (a) Kim, S. Y.; Sung, N.-D.; Choi, J.-K.; Kim, S. S. *Tetrahedron Lett.* **1999**, *40*, 117. (b) Reference 28.