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An enantiopure tert-butyl-substituted derivative of cyclo-
pentanone, which is a vital member of the chiral docking/
protecting group series, is employed, for the first time, to ster-
eoselectively (90% de) introduce an (S)-configured hydroxyl
group onto an unactivated carbon atom present in the cyclo-

Introduction

The stereoselective introduction of hydroxyl groups onto
unactivated carbon atoms present in organic compounds is,
generally, still a very daunting task in modern synthetic
chemistry.[1,2] For this reason, we have been investigating
the docking/protecting (d/p) group concept as a means to
easily employ biohydroxylation in preparative chemistry.[3,4]

We have found that a range of organic compounds, such as
carboxylic acids, alcohols, aldehydes and ketones, can be
easily hydroxylated following this concept.

Chiral d/p groups have also been investigated[5,6] and em-
ployed for the hydroxylation of ketones. In this manner, the
stereoselective functionalisation of these compounds was
achieved. Indeed, depending on the nature of the chiral d/
p group used, the configuration of the introduced hydroxyl
moiety could be readily determined.

The d/p concept is a three-step process (Scheme 1). Using
parent ketone 1 and a chiral d/p group as an example, deriv-
atisation gives the enantiopure biohydroxylation substrate 2
in the first step. Subsequent exposure of this spirooxazolid-
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pentane ring using the fungus Beauveria bassiana ATCC
7159.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
Germany, 2005)

Scheme 1. The d/p concept as exemplified by a chiral d/p group and
model ketone 1: step 1: (2R)-2-amino-1-propanol, K2CO3, CH2Cl2,
20 °C, 24 h, followed by BzCl, 20 °C, 24 h; step 2: Beauveria bassi-
ana ATCC 7159; step 3: BnBr, NaH, THF/DMF, 20 °C followed
by IR 120 (H+, cat), CH3CN, 20 °C

ine derivative to a suitable microorganism, for example
Beauveria bassiana ATCC 7159, yields hydroxylated pro-
duct 3. The third and final step of this approach is to re-
move the d/p group to furnish the desired hydroxylated pro-
duct 4. In this particular example, an atypical protection
step (benzylation) was also needed to prevent elimination
of the introduced group.
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Despite the fact that a wide range of chiral d/p groups

has been investigated, while the (R)-configured product (3)
could be prepared in 90% de − recrystallisation increased
this value to over 99% − the (S)-configured counterpart
could not be obtained with more than 20% de from other
substrates.

In this account we wish to disclose results obtained from
the last member of this chiral d/p group series, namely com-
pounds containing tert-butyl substituents. In this manner,
the synthesis of the (S)-configured biohydroxylation pro-
duct could be accomplished with 90% de.

Results and Discussion

The commercially available, but relatively expensive, tert-
butyl amino alcohols 5 and 6 required for substrate synthe-
sis could be easily prepared from the corresponding cheaper
amino acids in high yield (over 80%) by the reduction
method reported by Drauz and coworkers.[7] Subsequent re-
action with cyclopentanone afforded the desired, enantiop-
ure substrates 7 and 8, respectively (Scheme 2). In contrast
to previous observations, these compounds were obtained
in only modest yields under standard, unoptimized condi-
tions[5,8] (22% and 17%, respectively).

Scheme 2. Preparation of enantiopure tert-butyl biohydroxylation
substrates 7 and 8: step 1: NaBH4, I2, THF; step 2: cyclopentanone,
K2CO3, CH2Cl2, 20 °C, 24 h followed by BzCl, 20 °C, 24 h

For the biohydroxylation step, the fungus Beauveria bas-
siana ATCC 7159 was then employed in the usual manner
to afford crystalline products 9 and 10 in modest yields
(50% and 22%, respectively; Scheme 3). We believe that this
outcome could be improved by optimising the fermentation
parameters if required.[9] More importantly, however, the de
and configuration of the introduced alcohol were deemed
to be very interesting. While the de of product 10 was found
to be rather modest (18%) by HPLC, compound 9 exhib-
ited a high de of 90%. After subsequent benzylation and d/
p group removal, the configuration of the newly introduced
chiral center could be determined by GC comparison of the
resulting ketones 4 and 11 with model compounds.
Satisfyingly, although ketone 4 was found to be (R)-config-
ured (19% ee), ketone 11 was found to be (S)-configured
and with a high ee (89%). It should be mentioned at this
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point that, based on published experiments[5] with product
3, this ee value should increase after simple recrystallisation
of compound 9. This result nicely complements those ob-
tained from the (R)-methyl d/p used in previous studies
(Scheme 1) where product 3 could be obtained in 90% de
in a single biohydroxylation step.

Scheme 3. Biohydroxylation of tert-butyl substrates 7 and 8, subse-
quent benzylation and d/p removal: step 1: Beauveria bassiana
ATCC 7159; step 2: BnBr, NaH, THF/DMF, 20 °C followed by IR
120 (H+, cat), CH3CN, 20 °C

Conclusions

In conclusion, it has been shown that, for the biohydrox-
ylation step, the appropriate choice of chiral d/p group can
be exploited to obtain either configuration of the newly in-
troduced alcohol in 90% de. Simple recrystallisation of this
biohydroxylation product could improve this value to over
99% de if desired. Simple removal of the chiral d/p group
yields the corresponding ketone derivative.

Experimental Section
General Remarks: Please refer to ref.[3] for all general methods un-
less stated otherwise. NMR: signals from the minor isomer are
given in italics. The 13C NMR spectra for spirooxazolidine deriva-
tives 7 to 13 suggested that a number of different conformations
were present in the NMR sample (see Figure 1 for numbering
scheme).

Figure 1. Numbering scheme for the spirooxazolidine derivatives

Amino Alcohols 5 and 6:1H and 13C NMR spectroscopic data, op-
tical rotations and melting points were in agreement with published
values.[10]

Spirooxazolidine Derivative 7: Employing the standard procedure
for preparing spirooxazolidine derivatives,[5] compound 7 was pre-
pared in 22% yield as a pale-yellow, crystalline solid. M.p. 97.0–
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97.5 °C. [α]D20 = +65.3 (c = 1.11 in CH2Cl2). 1H NMR (CDCl3): δ
= 0.72 (br. s, 9 H, 11-H, 12-H, 13-H), 1.40–2.10 (br. m, 6 H, 6a-H,
7-H, 8-H, 9a-H), 2.28, 2.73 (2×br. m, 2×1 H, 6b-H, 9b-H), 3.95
(m, 3 H, 2-H, 3-H), 7.38 (s, 5 H, COPh) ppm. 13C NMR (CDCl3):
δ = 24.7, 25.2 (2×br. s, C-7, C-8), 27.4 (C-11, C-12, C-13), 35.2,
37.5 (2×br. s, C-6, C-9), 35.7 (C-10), 65.5, 66.2 (2×br. s, C-2, C-
3), 105.7 (C-5), 127.7, 128.4, 129.9, 138.8 (COPh), 170.2 (COPh)
ppm. MS (70 eV): m/z (%) = 287 (15) [M]+, 258 (13) [M – C2H5]+,
230 (43) [M – C4H9]+, 105 (100) [Bz]+, 77 (16) [Ph]+. HRMS: calcd.
287.1885; found 287.1887.

Spirooxazolidine Derivative 8: Employing the standard procedure
for preparing spirooxazolidine derivatives,[5] compound 8 was pre-
pared in 17% yield as a pale-yellow, crystalline solid. M.p. 92.0–
95.0 °C. [α]D20 = –57.8 (c = 1.51 in CH2Cl2). 1H NMR (CDCl3): δ
= 0.72 (br. s, 9 H, 11-H, 12-H, 13-H), 1.40–2.10 (br. m, 6 H, 6a-H,
7-H, 8-H, 9a-H), 2.28, 2.73 (2×br. m, 2×1 H, 6b-H, 9b-H), 3.95
(m, 3 H, 2-H, 3-H), 7.38 (s, 5 H, COPh) ppm. 13C NMR (CDCl3):
δ = 24.7, 25.2 (2×br. s, C-7, C-8), 27.4 (C-11, C-12, C-13), 35.2,
37.5 (2×br. s, C-6, C-9), 35.7 (C-10), 65.5, 66.2 (2×br. s, C-2, C-
3), 127.7, 128.4, 129.9, 138.8 (COPh) ppm. MS (70 eV): m/z (%) =
287 (15) [M]+, 258 (12) [M – C2H5]+, 230 (43) [M – C4H9]+, 105
(100) [Bz]+, 77 (17) [Ph]+. HRMS: calcd. 287.1885; found 287.1875.

Biohydroxylation Product 9: Employing published methods,[5] treat-
ment of compound 7 (1.277 g) with Beauveria bassiana ATCC 7159
gave the title compound (586.6 mg), together with unreacted start-
ing material (97.1 mg), as a white solid (50% yield, taking into
account unreacted starting material). M.p. 89.0–104.0 °C. [α]D20 =
+79.4 (c = 1.06 in CH2Cl2); 90% de (HPLC: CHIRALCEL AD, T
= 10 °C, 0.5 mL min–1, n-heptane/IPA = 4:1, measured at 238 nm),
retention time of (3S,5Ξ,7R)-9 = 17.6 min, retention time of
(3S,5Ξ,7S)-9 = 20.8 min. 1H NMR (CDCl3): δ = 0.72 (br. s, 9 H,
11-H, 12-H, 13-H), 1.65–2.90 (3×br. m, 7 H, 6-H, 8-H, 9-H, OH),
4.00 (br. m, 3 H, 2-H, 3-H), 4.39 (br. s, 1 H, 7-H), 7.39 (s, 5 H,
COPh) ppm. 13C NMR (CDCl3): δ = 27.4 (C-11, C-12, C-13), 34.3,
35.3 (2×br. s, C-6, C-9), 35.6 (C-10), 42.7 (br. s, C-8), 65.8 (br. s,
C-2, C-3), 73.4 (br. s, C-7), 105.0 (br. s, C-5), 127.6, 128.4, 130.0,
138.4 (COPh) ppm. MS (70 eV): m/z (%) = 303 (12) [M]+, 286 (2)
[M – OH]+, 274 (10) [M – C2H5]+, 258 (16), 246 (28) [M – C4H9]+,
124 (42), 105 (100) [Bz]+, 77 (27) [Ph]+. HRMS: calcd. 303.1834;
found 303.1831.

Biohydroxylation Product 10: Employing published methods,[5]

treatment of compound 8 (759.6 mg) with Beauveria bassiana
ATCC 7159 gave the title compound (160.6 mg), together with un-
reacted starting material (65.8 mg), as a white solid (22% yield,
taking into account unreacted starting material). M.p. 85.0–
105.0 °C; 18% de (HPLC, CHIRALCEL OD-H, T = 10 °C,
0.5 mL/min, n-heptane/IPA = 7:2, measured at 238 nm), retention
time of (3R,5Ξ,7S)-9 = 16.0 min, retention time of (3R,5Ξ,7R)-9 =
22.1 min. 1H NMR (CDCl3): δ = 0.72 (br. s, 9 H, 11-H, 12-H, 13-
H), 1.65–2.90, 3.12 (4×m, 7 H, 6-H, 8-H, 9-H, OH), 4.00 (m, 3 H,
2-H, 3-H), 4.39 (br. m, 1 H, 7-H), 7.39 (s, 5 H, COPh) ppm. 13C
NMR (CDCl3): δ = 27.4 (C-11, C-12, C-13), 34.4, 34.8, 35.3 (3×br.
s, C-6, C-9), 35.7 (C-10), 42.7, 46.0 (2×br. s, C-8), 66.0 (br. s, C-2,
C-3), 73.5 (br. s, C-7), 127.6, 128.5, 130.1, 138.4 (COPh) ppm. MS
(70 eV): m/z (%) = 303 (11) [M]+, 286 (2) [M – OH]+, 274 (10) [M –
C2H5]+, 258 (13), 246 (27) [M – C4H9]+, 124 (40), 105 (100) [Bz]+,
77 (26) [Ph]+. HRMS: calcd. 303.1834; found 303.1841.

Compound 12: Standard benzylation[5] of 9 (135.0 mg) furnished
derivative 12 (146.2 mg; Figure 2) in 83% yield as a pale-yellow
syrup. [α]D20 = +65.5 (c = 1.90 in CH2Cl2). 1H NMR (CDCl3): δ =
0.65 (br. s, 9 H, 11-H, 12-H, 13-H), 1.72, 2.13, 2.55 (3×m, 6 H, 6-
H, 8-H, 9-H, OH), 3.60, 3.95 (2×m, 3 H, 2-H, 3-H), 4.18 (m, 1 H,
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7-H), 4.45 (br. s, 2 H, CH2Ph), 7.24 (m, 10 H, COPh) ppm. 13C
NMR (CDCl3): δ = 27.4 (C-11, C-12, C-13), 31.3, 36.0 (2×br. s,
C-6, C-9), 35.6 (C-10), 42.4 (br. s, C-8) 65.8, 66.3 (2×br. s, C-2, C-
3), 70.7 (CH2Ph), 79.8 (br. s, C-7) 104.6 (br. s, C-5), 127.0, 127.5,
127.6, 127.8, 128.4, 128.7 129.9, 131.4, 138.6, 139.0 (COPh) ppm.
MS (70 eV): m/z (%) = 393 (3) [M]+, 364 (1) [M – C2H5]+, 336 (3)
[M – C4H9]+, 287 (5), 258 (9), 245 (7), 214 (5), 182 (4), 146 (4), 124
(5), 105 (100) [Bz]+, 91 (37) [Bn]+, 77 (28) [Ph]+. HRMS: calcd.
393.23039; found 393.23040.

Figure 2. Compounds 12 and 13

Compound 13: Standard benzylation[5] of 10 (73 mg) furnished de-
rivative 13 (83.9 mg; Figure 2) in 89% yield as a pale-yellow syrup.
1H NMR (CDCl3): δ = 0.65 (br. s, 9 H, 11-H, 12-H, 13-H), 1.72,
2.13, 2.55, 3.08 (4×m, 6 H, 6-H, 8-H, 9-H, OH), 3.60, 3.95 (2×m,
3 H, 2-H, 3-H), 4.18 (m, 1 H, 7-H), 4.45 (br. s, 2 H, CH2Ph), 7.24
(m, 10 H, COPh) ppm. 13C NMR (CDCl3): δ = 27.4 (C-11, C-12,
C-13), 31.3, 36.0 (2×br. s, C-6, C-9), 35.6 (C-10), 42.5, 43.9 (2×br.
s, C-8) 65.8, 66.3 (2×br. s, C-2, C-3), 70.6, 71.3 (CH2Ph), 79.3,
79.8 (2×br. s, C-7) 104.6 (br. s, C-5), 127.0, 127.5, 127.8, 127.8,
128.4, 128.7 130.0, 131.5, 138.6, 139.0 (COPh) ppm. MS (70 eV):
m/z (%) = 393 (2) [M]+, 364 (1) [M – C2H5]+, 336 (2) [M – C4H9]
+, 287 (3), 258 (5), 245 (4), 214 (3), 182 (2), 146 (5), 124 (2), 105
(100) [Bz]+, 91 (49) [Bn]+, 77 (25) [Ph]+. HRMS: calcd. 393.23039;
found 393.22975.

Ketones 4 and 11: The known[5] title compounds were obtained for
chiral GC experiments from the corresponding benzylated deriva-
tives 13 and 12, employing published conditions.[3] These com-
pounds were then compared with reference substances available
from previous studies.
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