P-72

SYNTHETIC STUDIES ON THE α-FLUORO-α-AMINO ACID DERIVATIVES

Yoshio Takeuchi*, Rumiko Masamoto (née Ura), Tohru Hagi and Toru Koizumi

Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-01 (Japan)

Syntheses of α -fluoro- α -amino acid derivatives have been attempted from the viewpoints of their structural and biological interests.

 α -Amino esters were diazotized with i-AmONO or NaNO, to produce the corresponding diazo esters, which were treated with NBS and HF/pyridine to yield the α -bromo- α -fluoro esters(R-CFBr-COOEt, $1a \sim c$). Introduction of nitrogenous functionality was undertaken by reaction of 1b(R=Me) and 1c (R=CH₂Ph) with potassium phthalimide to produce the undesired elimination Reaction of 1a(R=H) with the potassium salts of phthalimide or products. iminodicarboxylates gave the α -fluoroglycine derivatives(R'R"N-CHF-COOEt, 2a:R'--R"≈phthaly1, 2b:R'=COOMe, R"=COOBu^t, 2c:R'=R"=COOBu^t). Removal of the phthalyl group of 2a under various conditions was unsuccessful. Acid treatment of 2b produced the unstable fluoro ester, MeOCONH-CHF-COOEt, which was easily hydrolyzed during workup to give the hydroxy derivative, MeOCONH-CH(OH)-COOEt. On the other hand, reaction of 2c with CF2COOH resulted in complete decomposition, probably via the imine(HN=CH-COOEt) Then, the alkaline hydrolysis of 2c was first carried out to formation. yield successfully the N-protected fluoroglycine((Bu^tOCO)₂N-CHF-COOH, 3). However, the deprotection of the t-butoxycarbonyl group of 3 under acidic condition did not produce the 'free' a-fluoroglycine, presumably owing to the acid labile property of the α -fluoro- α -amino acid structure.

Reductions of the novel trifunctional carbon compounds, N_3 -CHF-COOR and O_2 N-CHF-COOCH₂Ph, under several kinds of neutral conditions, were also attempted.