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ABSTRACT: A ligand-controlled palladium-catalyzed three-com-
ponent reaction of o-bromobenzaldehyde, N-tosylhydrazone, and
methanol is described. This reaction uses readily available
compounds as starting materials while displaying a broad substrate
scope and good functional group compatibility.

2-Benzylbenzoic acid derivatives are highly valuable building
blocks for organic synthesis.1 A variety of bioactive compounds
could be prepared by using these acid derivatives as key
intermediates. Among known procedures for these deceptively
simple-looking yet useful building blocks, the seemingly
straightforward approach involves benzylation of ortho-lithiated
benzoic acid derivatives (Scheme 1a). While this method was

efficient for methylation of simple benzoic acid derivatives, the
benzylation of corresponding ortho-lithiated arenes was suffered
from low to moderate yields.2 Furthermore, the preparation of
analogues with structural complexity through this method could
be problematic. Because multiple equivalents of strong base
organolithium agents were required during the lithiation
process, a mixture of regioisomers could be obtained when

other coordinating groups were decorated on the aryl ring.2b

Transition metal-catalyzed cross-coupling reaction of organic
halides with organometallic agents is a modern optional
approach (Scheme 1b).3 However, the need to manipulate
moisture sensitive organometallic reagents restricts the synthetic
potential and functional group compatibility. Other methods,
including reduction of ortho-benzoylated aromatic carboxylic
acids or the oxidation of ortho-benzylated benzyl alcohols, may
be not suitable for establishing a library of products with rich
structural diversity, as the corresponding reactants were not
readily accessible. In this context, the development of a new
strategy3h that allows simultaneous setup benzyl and carboxyl
functionalities via a single-step transformation of abundant
feedstocks will be of high value to the synthetic and medicinal
chemistry fields. Herein, we describe an unprecedented protocol
by using palladium-catalyzed cross-coupling of 2-bromobenzal-
dehydes and N-tosylhydrazones as a versatile platform for
accessing 2-benzylbenzoic esters (Scheme 1c). This reaction
uses readily available materials as reactants and exhibits a broad
substrate scope and good functional group compatibility, which
may render our protocol practical and synthetically useful.
Moreover, we found that the backbone of phosphine ligands
exerted profound effects on altering the reaction pathways.
Bidentate ligands mainly lead to the formation of desired
diarylmethane 3, and bulky monodentate ligands give methyl
ether 4 as the major product while leaving the pendant aldehyde
moiety intact.
As pioneered by Van Vranken,4 and later developed well by

Barluenga,5 Wang,6 and others,7 the migratory insertion of a
palladium carbene intermediate has been proven to be versatile
for the construction of carbon−carbon and carbon−heteroatom
bonds. Recently, we have developed a palladium carbene8 that
participated in bridging C−H bond activation.9 In these events,
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Scheme 1. Selected Strategies for the Synthesis of 2-
Benzylbenzoic Acid Derivatives
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the carbene precursor acted as a bridging arm to deliver the
palladium catalyst to the reacting site; the oxygen anion also
acted as an internal nucleophile to accomplish the acylation.
Illuminated by this discovery, we have conceived a palladium-
catalyzed three-component reaction as a potential platform for
the construction of 2-benzylbenzoic acid derivatives (Scheme
1c). Compared with our previous work, a number of obvious
pitfalls must be kept in mind: (i) O−H bond insertion10 of
alcohol to the diazo compound generated in situ from N-
tosylhydrazone and (ii) C−O bond formation through the
coupling reaction of alcohol with aryl halide in the presence of a
palladium catalyst.
At the outset of the study, readily available o-bromobenzalde-

hyde 1a and N-tosylhydrazone 2b were selected as the model
substrates. Fortunately, when the reaction was carried out in
MeOH at 60 °C for 3 h using Pd(OAc)2 and dppm as the
precatalyst and K2CO3 as the base, the desired diarylmethane 3b
was obtained, albeit in 15% GC yield (Table 1, entry 1).

Switching the ligand to dppb enhanced the yield of 3b to 54%
(Table 1, entry 2). Intriguingly, when monodentate ligand
JohnPhos was employed, the chemoselectivity was switched. 2-
[Methoxy(p-tolyl)methyl]benzaldehyde 4b was obtained as the
major product (Table 1, entry 3). After the extensive evaluation
of other reaction parameters,11 we have identified a set of
optimal conditions for the synthesis of 3b, namely, carrying out
the reaction at 100 °C, and using dppf (L6) as a ligand, affording
3b in 88% yield upon isolation (Table 1, entry 7). Gratifyingly,
the three-component coupling that yields 4b could also be
increased by altering the ligand to L9 (Table 1, entry 8).

Replacing the base K2CO3 with t-BuOK could further enhance
the yield of 4b to 72% after isolation (Table 1, entry 9). o-
Iodobenzaldehyde also worked well under the optimal condition
(Table 1, entry 11). The reaction of triflate 1c derived from
salicylaldehyde under the optimal condition was not ideal.
However, a brief examination of the effects of the base showed
that NaHCO3 was superior to others, affording 3b in 86%
isolated yield (Table 1, entry 12).
With the optimal conditions established, we next focused on

exploring the scope of aldehydes and N-tosylhydrazones with
different substituents on the aromatic rings (Scheme 2). With
respect to aldehydes, a series of substituents, including electron-
donating or electron-withdrawing groups on the phenyl ring of
o-bromobenzaldehyde, were all compatible (Scheme 2, 3c−3n),
giving the corresponding products in moderate to excellent
yields. In general, aldehydes bearing electron-donating groups
react better than those bearing electron-withdrawing groups.
The reaction of o-bromobenzaldehyde with a tosylate
functionality at position 4 could also proceed well, while giving
free phenolic product 3k in 58% isolated yield, together with a
17% yield of 3d. The heteroaromatic furan ring (3o), labile mom
(3n) group, and alkynyl moiety (3p) were tolerated, as well.
For the scope of N-tosylhydrazones, the electron-donating

and electron-withdrawing substituents at the para, meta, and
ortho positions of the phenyl ring were all tolerated well.
Notably, a potentially reactive bromo group was compatible (3z
and 3aa), which could be a useful handle for further cross-
coupling reactions.N-Tosylhydrazones derived from thiophene-
2-carbaldehyde and furan-2-carbaldehyde could also participate
in the current transformation, while affording the corresponding
products 3ag and 3ah in diminished yields. Pleasingly,
hydrazones decorated by terminal alkenyl (3an), ferecenyl
(3ao), ester (3ap), and amide (3aq and 3ar) groups were good
substrates for current three-component reactions. Dihydrazone
could also couple with o-bromobenzaldehyde, giving the
corresponding C2-symmetric diester 3as in 54% yield upon
isolation. The current protocol was also amenable to late-stage
modification of complex molecules. For instance, 3at, 3au, and
3ay embedded with core structural motifs of approved drugs
estrone, repaglinide, and mianserin were obtained in 68%, 52%,
and 77% isolated yields, respectively.
As mentioned above, 2-benzylbenzoic acid derivatives are

versatile building blocks. For example, 3i has been applied for
the synthesis of tricyclic benzothiazolo[4,5]azepine derivativeA,
which shows promising anxiolytic activity.12 Product 3s was
used as a precursor to construct tetrahydroisoquinoline-3-
carboxylic acid B, which could be a nonpeptide inhibitor of
angiotensin II binding to the AT2 site.

1c According to very recent
study, product 3w bearing a fluoro atom could be applied for a
straightforward synthesis of glucose-regulated protein 94
(Grp94) inhibitor D. D exhibits a 0.54 μm affinity and a 73-
fold selectivity toward Grp94 and offers opportunities for
inhibition of metastatic cancer.1j Product 3t bearing two
methoxyl groups on each phenyl ring provides an opportunity
for the preparation of xanthene type dyes. Lavis and co-workers
have used 3t as a handle to synthesize carbofluoresceinC and its
derivative carborhodamine.1i Moreover, products 3ak and 3am
could be applied for natural product synthesis, such as
Justincidin E1d,13 and Marosporin.1h It is worth mentioning
that alcohols other than methanol are not suitable components
under current conditions. As depicted, when ethanol was
employed as a solvent, the desired adduct 3az was produced in
23% NMR yield.

Table 1. Evaluation of Reaction Conditions

entrya 1 ligand (mol %) temp (°C) 3b (%)b 4b (%)b

1 1a L1 (7.5) 60 15 trace
2 1a L3 (7.5) 60 54 0
3 1a L7 (15) 60 4 30
4 1a L3 (7.5) 100 93 (85) 0
5 1a L2 (7.5) 100 80 1
6 1a L4 (7.5) 100 56 1
7 1a L6 (7.5) 100 99 (88) 0
8 1a L9 (15) 100 13 61
9c 1a L9 (15) 100 9 80 (72)
10 1a L8 (15) 100 28 18
11 1b L6 (7.5) 100 99 (86) 0
12d 1c L6 (7.5) 100 99 (86) 0

aReaction conditions: 1 (0.3 mmol), 2b (0.45 mmol), Pd(OAc)2 (5
mol %), ligand (x mol %), K2CO3 (3.0 equiv) in MeOH (3.0 mL),
stirring under an argon atmosphere. bGC yields using n-decane as an
internal standard. Numbers in parentheses refer to isolated yields. ct-
BuOK was used as a base. dNaHCO3 was used as a base.
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A one-pot, four-component, two-step reaction of benzalde-
hyde with tosyl hydrazide and o-bromobenzaldehyde in
methanol was carried out on a 5 mmol scale (Scheme 3). To

our delight, the desired product 3a was obtained in 94% yield.
Saponification of 3a gave free carbolic acid 5 in excellent yield.
According to the reported procedure, 5 could be easily

Scheme 2. Substrate Scopea

aFor reaction conditions, see entry 7 of Table 1. b3-Bromo-4-formylphenyl 4-methylbenzenesulfonate was employed. cAryl triflate was used instead
of the corresponding aryl bromide. dNMR yield.
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converted to value-added heterocyclic compounds isobenzofur-
anone 6,14 substituted isoindolinone 7,1k and dibenzo[b,e]-
azepin-6-one 9.15 Following a two-step procedure, ester 3a was
converted to aldehyde 10 in high efficiency. Treatment of 10
with tosylamine in the presence of BF3·Et2O gave anthracene 11
in almost quantitative yield.16 Additionally, upon irradiation
under certain conditions, aldehyde 10 and its derivative ketone
12 could serve as hydroxy-o-quinodimethane precursors to
participate in Diels−Alder reactions.13 As described by
Melchiorre and co-workers, 2-benzylbenzophenone 12 reacting
with N-tert-butylmaleimide could produce 13 in a highly
stereoselective manner.17

After establishing a reliable method for various 2-benzylben-
zoic ester synthesis, we next briefly investigated the substrate
scope for the synthesis of 4. As one can see from the results
compiled in Scheme 4, when (o-tolyl)3P was used as ligand and
t-BuOK was employed as base, a variety of 2-[methoxy(aryl)-

methyl]benzaldehydes 4 could be selectively obtained.
Although the generality of the current condition for this
reaction is a bit limited at the moment, this represents a rare
example on a palladium-catalyzed three-component reaction of
aryl halides with simple N-tosylhydrazones and external
nucleophiles to form new carbon−carbon and carbon−
heteroatom bonds on the same carbenic carbon center.7a The
aldehyde function is crucial for the current condition, as a simple
phenyl bromide could not react to give 4j. Further studies to
enhance the utility of this transformation are ongoing.
In conclusion, we have reported an unprecedented palladium-

catalyzed three-component reaction of o-bromobenzaldehydes
with N-tosylhydrazone and methanol. This transformation
offers a modular approach to synthetically valuable building
block 2-benzylbenzoic acid derivatives in a single step. The
reaction displays a relatively broad substrate scope and good
functional group compatibility and is amenable for late-stage
modification of approved drugs. Moreover, the backbone of the
phosphine ligands exhibits pronounced effects on controlling
the chemoselectivity.
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