

Available online at www.sciencedirect.com

CARBOHYDRATE RESEARCH

Carbohydrate Research 338 (2003) 1023-1031

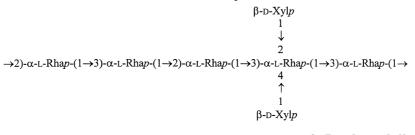
www.elsevier.com/locate/carres

Efficient synthesis of a heptasaccharide, the repeating unit of the O-chain lipopolysaccharide produced by *Xanthomonas campestris* strain 642

Jianjun Zhang, Jun Ning, Fanzuo Kong*

Research Center for Eco-Environmental Sciences, Academia Sinica, P.O. Box 2871, Beijing 100085, China

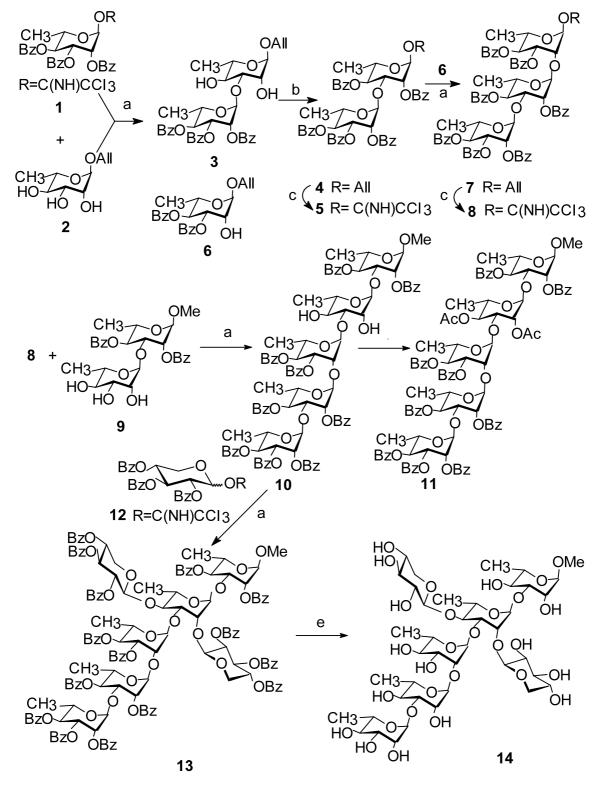
Received 17 December 2002; accepted 12 February 2003


Abstract

 α -L-Rha*p*-(1 \rightarrow 3)- α -L-Rha*p*-(1 \rightarrow 2)- $(1 \rightarrow 3)$ -[β -D-Xyl*p*-(1 \rightarrow 2)-][β -D-Xyl*p*-(1 \rightarrow 4)-] α -L-Rha*p*-(1 \rightarrow 3)- α -L-Rha*p*, the repeating unit of the O-chain lipopolysaccharide produced by *Xanthomonas campestris* strain 642 was synthesized as its methyl glycoside via 3-*O*-selective glycosylation of methyl α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-benzoyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-benzoyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-benzoyl- α -L-rhamnopyranosyl-(1 \rightarrow 2)-3,4-di-*O*-benzoyl- α -L-rhamnopyranosyl trichloroacetimidate (8), followed by dixylosylation with 2,3,4-tri-*O*-benzoyl- α , β -D-xylopyranosyl trichloroacetimidate (12) and subsequent deacylation. © 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Oligosaccharide; Rhamnose; Xylose

1. Introduction


Rhamnose-containing oligosaccharides are widely distributed in natural products,^{1–3} and they usually consist of an α -(1 \rightarrow 2)- and α -(1 \rightarrow 3)-linked backbone with xylose, glucose, ribose, or GlcNAc side chains. *Xanthomonas campestris* is a phytopathogenic bacterium recognized to cause a serious disease in strawberries.⁴ Recently, a new O-polysaccharide chain has been isolated and identified from the LPS fraction of the *X*. *campestris* strain 642, whose repeating unit is a xylosylated rhamnan heptasaccharide as shown below:⁵ Synthesis of these compounds will need orthogonal masking groups and multiple protection–deprotection steps if a traditional stepwise method^{6,7} is used. Our previous work described a highly regio- and stereoselective synthesis using glycosyl trichloroacetimidates as the donors and partially protected sugars as the acceptors, and a variety of branched rhamnans was obtained.^{8–11} Synthetic samples of new rhamnan structures would be very valuable in research in plant pathology and in the design of immunodiagnostic reagents. We present herein a highly efficient synthesis of the title heptasaccharide.

2. Results and discussion

* Corresponding author. Tel.: + 86-10-62936613; fax: + 86-10-62923563 *E-mail address:* fzkong@mail.rcees.ac.cn (F. Kong). As outlined in Scheme 1, condensation of 2,3,4-tri-Obenzoyl- α -L-rhamnopyranosyl trichloroacetimidate (1) with unprotected allyl α -L-rhamnopyranoside (2) selectively gave allyl 2,3,4-tri-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ - α -L-rhamnopyranoside (3)⁸ in satisfactory yield (63.2%). Keeping the temperature below -20 °C during the addition of TMSOTf was necessary in order to avoid byproduct formation. The $(1 \rightarrow 3)$ -linkage was

confirmed by benzoylation of **3** to give **4**, and the ¹H NMR spectrum of **4** showed two newly emerged downfield signals at δ 5.51 (dd, $J_{3,4} = J_{4,5} = 9.8$ Hz) for H-4 and δ 5.28 (dd, $J_{1,2}$ 1.4, $J_{2,3}$ 3.5) for H-2, respectively, compared to **3**. Deallylation with PdCl₂, fol-

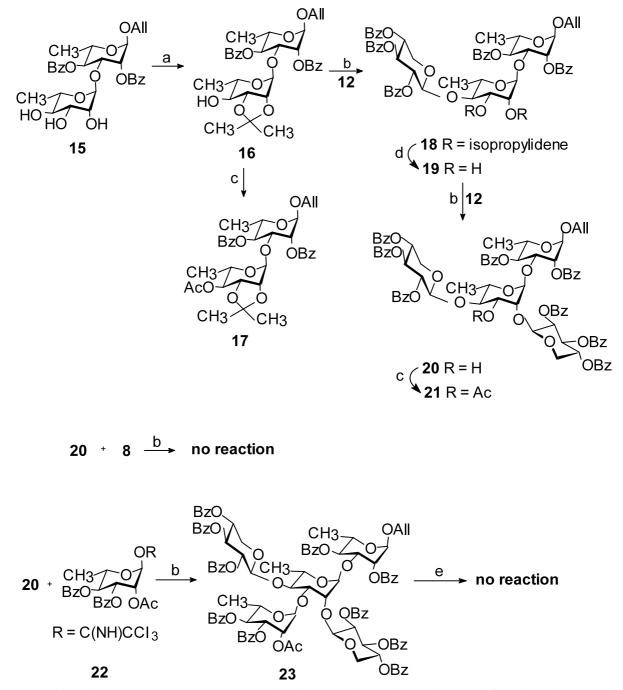
Scheme 1. (a) TMSOTf, CH_2Cl_2 ; (b) BzCl-pyridine (dry); (c) PdCl₂, 90% HOAc-NaOAc, rt, 12 h; then Cl_3CN , DBU, CH_2Cl_2 8 h; (d) Ac_2O -pyridine (dry); (e) satd NH_3 -MeOH, rt, 72 h.

lowed by trichloroacetimidation with CCl₃CN in the presence of DBU or K2CO3,12 gave the disaccharide donor 5. Coupling of compound 5 with allyl 3,4-di-Obenzoyl- α -L-rhamnopyranoside (6)¹⁰ in the presence of catalytic TMSOTf gave trisaccharide 7 in high yield (88.2%), which could be activated by deallylation and trichloroacetimidation to furnish the trisaccharide donor 8. 3-O-Selective glycosylation of methyl α -Lrhamnopyranosyl - $(1 \rightarrow 3)$ - 2,4 - di - O - benzoyl - α - Lrhamnopyranoside $(9)^8$ with the donor 8, promoted by catalytic TMSOTf, gave pentasaccharide 10 in satisfactory yield (57.3%). The structure of 10 was confirmed by acetylation to give methyl 2,3,4-tri-O-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-O-benzoyl- α -Lrhamnopyranosyl - $(1 \rightarrow 2)$ - 3,4 - di - O - benzoyl - α - Lrhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-O-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranoside (11). The ¹H NMR spectrum of 11 showed newly emerged downfield signals at δ 4.99 (dd, H, $J_{3,4}$ = $J_{4.5} = 10.0$ Hz) for H-4' and 4.93 (dd, $J_{1.2} = 0.8$, $J_{2.3} = 2.9$ Hz) for H-2', respectively, compared to 10. With the pentasaccharide diol 10 at hand, the heptasaccharide 13 was readily obtained in high yield (71.3%) by coupling of 10 with the xylose donor 12 in dichloromethane in the presence of TMSOTf. The ¹³C NMR spectrum of 13 showed all of the characteristic peaks, i.e., δ 104.8, 104.8, 104.6, 104.0, 103.3, 103.2, 103.2 for seven C-1s and 18.1, 17.9, 17.5, 17.4, 17.3 for five rhamnose C-6s. Finally deacylation of 13 in ammonia-methanol gave the target heptasaccharide 14.

Before the successful synthesis of the target heptasaccharide by the route described above, we also tried another route using a 4 + 3 (20 + 8) or 4 + 1 + 2 (20 + 22+5) strategy (A) (Scheme 2). Although the target compound was not obtained by the strategy, an interesting effect of steric factors on the glycosylation was observed as described below. Isopropylidenation of compound 15 in DMF with 2,2-dimethoxypropane in the presence of TsOH readily gave allyl 2,3-O-isopropylidene- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-O-benzoyl- α -L-rhamnopyranoside (16) in high yield (87.3%). The structure of 16 was confirmed by acetylation to give 4-O-acetyl-2,3-O-isopropylidene-α-L-rhamnopyallyl ranosyl- $(1 \rightarrow 3)$ -2,4-di-O-benzoyl- α -L-rhamnopyranoside (17), showing characteristic signals in its ^{1}H NMR spectrum at δ 5.48 (dd, $J_{3,4} = J_{4,5} = 9.9$ Hz) for H-4, and 4.71 (dd, $J_{3',4'} = 8.0$ Hz, $J_{4',5'} = 10.0$ Hz) for H-4', respectively. Coupling of 16 with 2,3,4-tri-O-ben $zoyl-\alpha,\beta$ -D-xylopyranosyl trichloroacetimidate (12) in the presence of catalytic TMSOTf gave the trisaccharide 18 (88.5%), and O-deisopropylidenation of 18 in 9:1 trifluoroacetic acid (TFA)-water at room temperature furnished the diol acceptor 19 (90.7%). Condensation of the diol acceptor 19 with 12 in dichloromethane in the presence of TMSOTf at -20 °C selectively gave 2-O-glycosylated tetrasaccharide 20 (79.9%). Acetylation of **20** with acetic anhydride in pyridine gave **21**, and the ¹H NMR spectrum of **21** confirmed the regioselectivity by showing characteristic peaks at δ 4.85 ($J_{2,3}$ 2.9, $J_{3,4}$ 9.2 Hz) for H-3', and 4.48 ($J_{2,3}$ 3.4, $J_{3,4}$ 9.8 Hz) for H-3, respectively.

Condensation of tetrasaccharide 20 with trisaccharide donor 8 did not give the expected heptasaccharide, but afforded only a byproduct and unreacted starting materials. This indicated that the trisaccharide donor was too big to get close to the 3'-OH that was severely shielded by the two xylosyl residues at the 2'- and 4'-positions. However, when the tetrasaccharide 20 was coupled with monosaccharide donor 22, pentasaccharide 23 was obtained in 41.3% yield, revealing that a smaller size of donor was allowed to react with 20, albeit to a limited extent. However, subsequent selective 2"-O-deacetylation of 23 in 2-3% CH₃COCl-MeOH did not work, even at elevated temperature (50 °C), and only unchanged starting material was obtained. Here, severe steric hindrance at the 2"-OAc of the pentasaccharide 23 rejected the deacetylation under normal conditions. It seemed that the target heptasaccharide was not readily obtained by any other methods, and construction of the pentasaccharide backbone, followed by attaching the side chains was the best choice.

In summary, a branched xylosylated rhamnan heptasaccharide was synthesized in a highly regioselective way with a simple procedure. Large-scale preparations should be possible with this method.


3. Experimental

3.1. General methods

Melting points were determined with a 'Mel-Temp' apparatus. Optical rotations were determined with a Perkin-Elmer model 241-MC automatic polarimeter for solutions in a 1-dm, jacketed cell. ¹H, ¹³C, and 2D NMR spectra were recorded with Varian XL-400 spectrometers, for solutions in $CDCl_3$ or in D_2O as indicated. Chemical shifts are expressed in δ (ppm) downfield from the Me₄Si resonance. Mass spectra were recorded with a VG PLATFORM mass spectrometer using the ESI mode. Thin-layer chromatography (TLC) was performed on silica gel HF with detection by charring with 30% (v/v) H₂SO₄ in MeOH or by UV detection. Column chromatography was conducted by elution of a column (8 \times 100, 16 \times 240, 18 \times 300, 35 \times 400 mm) of silica gel (100-200 mesh) with EtOAcpetroleum ether (bp 60-90 °C) as the eluent. Analytical LC was performed with a Gilson HPLC consisting of a pump (model 306), stainless steel column packed with silica gel (Spherisorb SiO₂, 10×300 or 4.6×250 mm), differential refractometer (132-RI Detector), UV-Vis detector (model 118). EtOAc-petroleum ether (bp 6090 °C) was used as the eluent at a flow rate of 1-4 mL/min. Solutions were concentrated at a temperature < 60 °C under diminished pressure.

3.2. Allyl 2,3,4-tri-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranoside (4)

2,3,4-Tri-*O*-benzoyl- α -L-rhamnopyranosyl trichloroacetimidate (1) (6.20 g, 10.0 mmol) and allyl α -Lrhamnopyranoside (2) (2.04 g, 10.0 mmol) were dried together under high vacuum for 2 h, then dissolved in anhyd CH₂Cl₂ (40 mL). TMSOTf (36 μ L, 0.2 mmol) was added dropwise at -25 °C with N₂ protection. The reaction mixture was stirred for 3 h, during which time the temperature was gradually warmed to ambient temperature. Then the mixture was neutralized with Et₃N and concentrated to dryness to afford the crude allyl 2,3,4-tri-*O*-benzoyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)- α -L-rhamnopyranoside (3). To the solution of crude 3 in pyridine (20 mL), benzoyl chloride (3.5 mL, 30

Scheme 2. 2,2-Di-methoxypropene, *p*-TsOH, DMF, rt, 2 h; (b) TMSOTf, CH_2Cl_2 ; (c) Ac_2O -pyridine (dry); (d) 90% TFA, rt, 2 h; (e) 3-5% CH₃COCl-methanol, rt, 14-24 h.

mmol) was added dropwise, and the mixture was stirred overnight at room temperature (rt). TLC (3:1 petroleum ether-EtOAc) indicated that the reaction was complete. Ice-water was added, and the mixture was diluted with CH₂Cl₂, subsequently washed with M HCl, water, and satd aq NaHCO₃. The organic layers were combined, dried, and concentrated. Purification by column chromatography (3:1 petroleum ether-EtOAc) gave 4 (5.50 g, 63.2% for two steps) as a syrup: $[\alpha]_{\rm D}$ + 122.3° (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.25–7.19 (m, 25 H, 5 PhH), 6.01–5.93 (m, 1 H, CH₂=CHCH₂O), 5.61 (dd, 1 H, $J_{3',4'} = J_{4',5'} = 9.7$ Hz, H-4'), 5.58 (dd, 1 H, J_{2',3'} 3.1 Hz, J_{3',4'} 9.7 Hz, H-3'), 5.54 (dd, 1 H, J_{1',2'} 1.5 Hz, J_{2',3'} 3.1 Hz, H-2'), 5.51 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4), 5.38–5.34 (m, 1 H, CH₂=CHCH₂O), 5.28 (dd, 1 H, J_{1,2} 1.4 Hz, J_{2,3} 3.5 Hz, H-2), 5.29-5.25 (m, 1 H, CH₂=CHCH₂O), 5.23 (d, 1 H, $J_{1',2'}$ 1.5 Hz, H-1'), 5.07 (d, 1 H, $J_{1,2}$ 1.4 Hz, H-1), 4.50 (dd, 1 H, J_{2.3} 3.5 Hz, J_{3.4} 9.8 Hz, H-3), 4.26–4.22 (m, 1 H, CH₂=CHCH₂O), 4.15-4.07 (m, 3 H, H-5, H-5', CH₂=CHCH₂O), 1.35 (d, 3 H, J_{5.6} 6.2 Hz, H-6), 1.16 (d, 3 H, J_{5.6} 6.2 Hz, H-6). Anal. Calcd for C₅₀H₄₆O₁₄: C, 68.95; H, 5.32. Found: C, 69.24; H, 5.21.

3.3. 2,3,4-Tri-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranosyl trichloroacetimidate (5)

To a solution of allyl 2,3,4-tri-O-benzoyl-α-L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-O-benzoyl- α -L-rhamnopyranoside (4) (4.35 g, 5 mmol) in 90% HOAc (50 mL) containing NaOAc (1.46 g, 15 mmol) was added PdCl₂ (270 mg, 2.5 mmol), and the mixture was stirred for 12 h, at the end of which time TLC (2:1 petroleum ether-EtOAc) indicated that the reaction was complete. The mixture was diluted with CH_2Cl_2 (150 mL), washed with water and satd aq NaHCO₃. The organic layer was concentrated, and the residue was passed through a short silica gel column with 2:1 petroleum ether-EtOAc as the eluent to give crude 2,3,4-tri-O-benzoyl- α - L - rhamnopyranosyl - (1 \rightarrow 3) - 2,4 - di - O - benzoyl - Lrhamnopyranose as a foamy solid. Dried under high vacuum for 2 h, the solid was was dissolved in CH₂Cl₂ (30 mL), and CCl₃CN (1.0 mL, 10 mmol) and DBU (135 µL, 0.9 mmol) were added. The reaction mixture was stirred for 2 h, at the end of which time TLC (2:1 petroleum ether-EtOAc) indicated that the reaction was complete. Concentration of the reaction mixture, followed by purification of the crude product on a silica gel column with 2:1 petroleum ether-EtOAc as the eluent, furnished the disaccharide donor 5 (4.10 g, 84.1%) as a syrup: $[\alpha]_{\rm D} + 114.7^{\circ}$ (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.82 (s, 1 H, CNHCCl₃), 8.27-7.19 (m, 25 H, 5 PhH), 6.51 (d, 1 H, J_{1,2} 1.9 Hz, H-1), 5.73 (dd, 1 H, J_{1,2} 1.9 Hz, J_{2,3} 3.5 Hz, H-2), 5.71 (dd, 1 H, $J_{3',4'} = J_{4',5'} = 9.8$ Hz, H-4'), 5.60 (dd, 1 H, $J_{2',3'}$ 3.2 Hz, $J_{3',4'}$ 9.8 Hz, H-3'), 5.52 (dd, 1 H, $J_{3,4} = J_{4,5} =$ 10.0 Hz, H-4), 5.33 (dd, 1 H, $J_{1',2'}$ 1.6 Hz, $J_{2',3'}$ 3.2 Hz, H-2'), 5.24 (d, 1 H, $J_{1',2'}$ 1.6 Hz, H-1'), 4.60 (dd, 1 H, $J_{2,3}$ 3.5 Hz, $J_{3,4}$ 10.0 Hz, H-3), 4.29–4.20 (m, 2 H, H-5, H-5'), 1.38 (d, 3 H, $J_{5,6}$ 6.3 Hz, H-6), 1.16 (d, 3 H, $J_{5,6}$ 6.2 Hz, H-6). Anal. Calcd for C₄₉H₄₂Cl₃NO₁₄: C, 60.35; H, 4.34. Found: C, 60.50; H, 4.39.

3.4. Allyl 2,3,4-tri-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -3,4-di-*O*-benzoyl- α -L-rhamnopyranoside (7)

Compound 5 (3.96 g, 3.0 mmol) and allyl 3,4-di-O-ben $zoyl-\alpha$ -L-rhamnopyranoside (6) (1.25 g, 3.0 mmol) were dried together under high vacuum for 2 h, then dissolved in anhyd CH₂Cl₂ (20 mL). TMSOTf (18 µL, 0.1 mmol) was added dropwise at 0 °C with N₂ protection. The reaction mixture was stirred for 3 h at rt, and then neutralized with Et₃N. Concentration of the reaction mixture and purification of the crude product on a silica gel column with 2:1 petroleum ether-EtOAc as the eluent, furnished the trisaccharide 7 (3.24 g, 88.2%)as a foamy solid: $[\alpha]_D + 124.0^\circ$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.16–7.19 (m, 35 H, 7 PhH), 5.99–5.91 (m, 1 H, CH₂=CHCH₂O), 5.80 (dd, 1 H, J_{2.3} 3.3 Hz, J_{3,4} 10.1 Hz, H-3), 5.72 (dd, 1 H, J_{1,2} 1.8 Hz, $J_{2,3}$ 3.3 Hz, H-2), 5.62 (dd, 2 H, $J_{3,4} = J_{4,5} = 9.8$ Hz, 2 H-4), 5.60 (dd, 1 H, $J_{2,3}$ 3.2 Hz, $J_{3,4}$ 9.8 Hz, H-3), 5.52 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.7$ Hz, H-4), 5.41–5.37 (m, 1 H, CH₂=CHCH₂O), 5.34 (dd, 1 H, J_{1,2} 1.7 Hz, J_{2,3} 3.3 Hz, H-2), 5.30 (d, 1 H, J_{1.2} 1.8 Hz, H-1), 5.28–5.24 (m, 1 H, CH₂=CHCH₂O), 5.19 (d, 1 H, J_{1,2} 1.6 Hz, H-1), 5.04 (d, 1 H, J_{1,2} 1.6 Hz, H-1), 4.65 (dd, 1 H, J_{2,3} 3.4 Hz, J_{3,4} 9.8 Hz, H-3), 4.32 (dd, 1 H, J_{1.2} 1.6 Hz, J_{2.3} 3.2 Hz, H-2), 4.31-4.27 (m, 1 H, CH₂=CHCH₂O), 4.26-4.08 (m, 4 H, 3 H-5, CH₂=CHCH₂O), 1.37 (d, 3 H, J_{5,6} 6.1 Hz, H-6), 1.31 (d, 3 H, J_{5.6} 6.3 Hz, H-6), 1.22 (d, 3 H, J_{5.6} 6.2 Hz, H-6); ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 165.6, 165.5, 165.5, 165.4, 164.7, 164.6 (7 C, 7 COPh), 99.4, 99.1, 97.6 (3 C, 3 C-1), 77.2, 74.9, 73.1, 71.9, 71.8, 71.6, 71.0, 70.4, 69.3, 68.2, 67.6, 67.4, 66.9, 17.6, 17.5, 17.3. Anal. Calcd for C₇₀H₆₄O₂₀: C, 68.62; H, 5.27. Found: C, 68.48; H, 5.55.

3.5. 2,3,4-Tri-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -3,4-di-*O*-benzoyl- α -L-rhamnopyranosyl trichloroacetimidate (8)

Compound 7 (2.45 g, 2.0 mmol) was deally lated and then trichloroacetimidated under the same conditions as those used for the preparation of **5** from **4**, giving **8** (2.11 g, 79.6% for two steps) as a foamy solid: $[\alpha]_D$ + 99.8° (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.75 (s, 1 H, CNHCCl₃), 8.16–7.19 (m, 35 H, 7 PhH), 6.48 (d, 1 H, $J_{1,2}$ 1.6 Hz, H-1), 5.83 (dd, 1 H, $J_{2,3}$ 3.4, $J_{3,4}$ 10.0 Hz, H-3), 5.72 (dd, H, $J_{3,4} = J_{4,5} = 9.9$ Hz, H-4), 5.70 (dd, 1 H, $J_{1,2}$ 1.4 Hz, $J_{2,3}$ 3.4 Hz, H-2), 5.62 (dd, H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4), 5.60 (dd, 1 H, $J_{2,3}$ 3.1 Hz, $J_{3,4}$ 9.8 Hz, H-3), 5.54 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4), 5.35 (dd, 1 H, $J_{1,2}$ 1.5 Hz, $J_{2,3}$ 3.2 Hz, H-2), 5.31 (d, 1 H, $J_{1,2}$ 1.0 Hz, H-1), 5.26 (d, 1 H, $J_{1,2}$ 1.3 Hz, H-1), 4.64 (dd, 1 H, $J_{2,3}$ 3.1 Hz, $J_{3,4}$ 9.8 Hz, H-3), 4.55 (dd, 1 H, $J_{1,2}$ 1.6 Hz, $J_{2,3}$ 3.4 Hz, H-2), 4.39–4.36 (m, 1 H, H-5), 4.27–4.24 (m, 1 H, H-5), 4.21–4.18 (m, 1 H, H-5), 1.43 (d, 3 H, $J_{5,6}$ 6.4 Hz, H-6), 1.34 (d, 3 H, $J_{5,6}$ 6.3 Hz, H-6). Anal. Calcd for C₆₉H₆₀Cl₃NO₂₀: C, 62.33; H, 4.55. Found: C, 62.60; H, 4.31.

3.6. Methyl 2,3,4-tri-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -3,4-di-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranoside (10)

Compound 8 (1.33 g, 1.0 mmol) and methyl α -Lrhamnopyranosyl - $(1 \rightarrow 3)$ - 2,4 - di - O - benzoyl - α - Lrhamnopyranoside (9) (530 mg, 1.0 mmol) were dried together under high vacuum for 2 h, then dissolved in anhyd CH₂Cl₂ (20 mL). TMSOTf (18 µL, 0.1mmol) was added dropwise at -25 °C with N₂ protection. The reaction mixture was stirred for 3 h, during which time the mixture was gradually warmed to ambient temperature. Then the mixture was neutralized with Et₃N and concentrated to dryness. Purification of the residue by column chromatography (1:1 petroleum ether-EtOAc) gave 10 (974 mg, 57.3%) as a syrup: $[\alpha]_{\rm D} + 131.5^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): *δ* 8.15–7.19 (m, 45 H, 9 PhH), 5.64 (dd, 1 H, J_{1,2} 1.6 Hz, J_{2,3} 3.3 Hz, H-2), 5.59–5.46 (m, 7 H), 5.33 (dd, 1 H, J_{1,2} 1.4 Hz, J_{2,3} 3.2 Hz, H-2), 5.26 (s, 2 H, 2 H-1), 5.11 (d, 1 H, J_{1,2} 1.3 Hz, H-1), 4.95 (s, 1 H, H-1), 4.83 (d, 1 H, J_{1.2} 1.4 Hz, H-1), 4.57 (dd, 1 H, J_{2.3} 3.1 Hz, J_{3.4} 9.6 Hz, H-3), 4.41 (dd, 1 H, J_{2.3} 3.2 Hz, J_{3.4} 9.8 Hz, H-3), 4.28 (dd, 1 H, J_{1,2} 1.3 Hz, J_{2,3} 3.0 Hz, H-2), 4.26-4.23 (m, 1 H, H-5), 4.17-4.14 (m, 1 H, H-5), 4.05-4.02 (m, 1 H, H-5), 3.93-3.90 (m, 1 H, H-5), 3.74-3.70 (m, 3 H, H-2, H-3, H-5), 3.56 (dd, H, $J_{3.4} =$ $J_{4,5} = 9.3$ Hz, H-4) 3.45 (s, 3 H, OCH₃), 1.30 (d, 3 H, J_{5.6} 6.4 Hz, H-6), 1.25–1.19 (m, 9 H, 3 H-6), 1.01 (d, 3 H, $J_{5,6}$ 6.2 Hz, H-6); ¹³C NMR (100 MHz, CDCl₃): δ 165.9, 165.8, 165.7, 165.5, 165.5, 165.5, 165.3, 164.7, 164.7 (9 C, 9 COPh), 101.4, 99.8, 99.2, 99.1, 98.3 (5 C, 5 C-1), 78.0, 76.7, 75.1, 74.9, 73.5, 73.0, 72.3, 72.2, 71.9, 71.7, 71.6, 70.9, 70.8, 70.4, 69.3, 69.2, 67.7, 67.4, 67.2, 66.4, 55.2, 17.6, 17.4, 17.3, 17.2, 17.1. Anal. Calcd for C₉₄H₉₀O₃₀: C, 66.42; H, 5.34. Found: C, 66.48; H, 5.25.

3.7. Methyl 2,3,4-tri-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -3,4-di-*O*-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranoside (11)

To a solution of 10 (85 mg, 0.05 mmol) in pyridine (5 mL) was added Ac₂O (2.0 mL, 2 mmol). The reaction mixture was stirred at rt for 12 h, at the end of which time TLC (4:1 petroleum ether-EtOAc) indicated that the reaction was complete. The reaction mixture was concentrated, and then the residue was purified by flash column chromatography on a silica gel column (2:1 petroleum ether-EtOAc) to give compound 11 (80 mg, 89.8%) as a foamy solid: $[\alpha]_{D} + 120.7^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.16–7.20 (m, 45 H, 9 Ph*H*), 5.60–5.57 (m, 3 H), 5.53 (dd, H, $J_{3,4} = J_{4,5} = 9.7$ Hz, H-4), 5.47 (dd, H, $J_{3,4} = J_{4,5} = 9.9$ Hz, H-4), 5.45 (dd, 1 H, J_{1,2} 1.2 Hz, J_{2,3} 3.1 Hz, H-2), 5.41 (dd, 1 H, $J_{2,3}$ 3.2 Hz, $J_{3,4}$ 9.8 Hz, H-3), 5.39 (dd, H, $J_{3,4} = J_{4,5} =$ 9.7 Hz, H-4), 5.35 (dd, 1 H, J_{1,2} 1.5 Hz, J_{2,3} 3.0 Hz, H-2), 5.29 (d, 1 H, J_{1,2} 1.5 Hz, H-1), 5.03 (d, 1 H, J_{1,2} 1.4 Hz, H-1), 4.99 (dd, H, $J_{3,4} = J_{4,5} = 10.0$ Hz, H-4'), 4.96 (d, 1 H, J_{1,2} 0.7 Hz, H-1), 4.94 (d, 1 H, J_{1,2} 0.9 Hz, H-1), 4.93 (dd, 1 H, J_{1,2} 0.8 Hz, J_{2,3} 2.9 Hz, H-2'), 4.84 (d, 1 H, J_{1,2} 1.5 Hz, H-1), 4.59 (dd, 1 H, J_{2,3} 3.2 Hz, J_{3,4} 9.7 Hz, H-3), 4.38 (dd, 1 H, J_{2,3} 3.2 Hz, J_{3,4} 9.8 Hz, H-3), 4.21–4.17 (m, 2 H, 2 H-5), 4.03 (dd, 1 H, J_{1.2} 1.0 Hz, J_{2.3} 3.1 Hz, H-2), 3.99 (m, 1 H, H-5), 3.96 (dd, 1 H, J_{2.3} 3.1 Hz, J_{3.4} 9.9 Hz, H-3), 3.85–3.81 (m, 1 H, H-5), 3.80-3.76 (m, 1 H, H-5), 3.44 (s, 3 H, OCH₃), 2.03 (s, 3 H, CH₃CO), 1.97 (s, 3 H, CH₃CO), 1.30 (d, 3 H, J_{5.6} 6.2 Hz, H-6), 1.26 (d, 3 H, J_{5,6} 6.4 Hz, H-6), 1.18 (d, 3 H, J_{5,6} 6.4 Hz, H-6), 1.05 (d, 3 H, J_{5,6} 6.3 Hz, H-6), 0.88 (d, 3 H, $J_{5,6}$ 6.4 Hz, H-6). Anal. Calcd for $C_{98}H_{94}O_{32}$: C, 65.98; H, 5.31. Found: C, 65.69; H, 5.50.

3.8. Methyl 2,3,4-tri-O-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-O-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -3,4-di-O-benzoyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -[2,3,4-tri-O-benzoyl- β -D-xylopyranosyl- $(1 \rightarrow 2)$ -][2,3,4-tri-O-benzoyl- β -D-xylopyranosyl- $(1 \rightarrow 4)$]- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-O-benzoyl- α -L-rhamnopyranoside (13)

Compound **10** (765 mg, 0.45 mmol) and 2,3,4-tri-*O*benzoyl- α , β -D-xylopyranosyl trichloroacetimidate (**12**) (606 mg, 1.0 mmol) were coupled under the same conditions as those used for the preparation of **7** from **5** and **6**, giving **13** (830 g, 71.3%) as a foamy solid: [α]_D+97.3° (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃, characteristic signals are given): δ 5.92 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4-Rha*p*), 5.53 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4-Rha*p*), 5.48 (dd, 1 H, $J_{1,2}$ 1.3 Hz, $J_{2,3}$ 3.2 Hz, H-2-Rha*p*), 5.44 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4-Rha*p*), 5.29 (dd, 1 H, $J_{1,2}$ 1.5 Hz, $J_{2,3}$ 3.4 Hz, H-2Rhap), 5.20 (s, 1 H, H-1-Rhap), 5.11 (s, 1 H, H-1-Rhap), 5.04 (d, 1 H, $J_{1,2}$ 6.1 Hz, H-1-Xylp), 5.01 (s, 1 H, H-1-Rhap), 4.81 (d, 1 H, $J_{1,2}$ 1.5 Hz, H-1-Rhap), 4.74 (d, 1 H, $J_{1,2}$ 5.8 Hz, H-1-Xylp), 4.63 (s, 1 H, H-1-Rhap), 3.45 (s, 3 H, OCH₃), 1.35 (d, 3 H, $J_{5,6}$ 6.4 Hz, H-6), 1.29 (d, 3 H, $J_{5,6}$ 6.3 Hz, H-6), 1.22 (d, 3 H, $J_{5,6}$ 6.2 Hz, H-6), 1.05 (d, 3 H, $J_{5,6}$ 6.4 Hz, H-6), 1.04 (d, 3 H, $J_{5,6}$ 6.4 Hz, H-6); ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 166.5, 165.6, 165.5, 165.4, 165.3, 165.2, 165.1, 165.1, 165.1, 164.9, 164.6, 164.5, 164.5 (15 C, 15 COPh), 100.9, 100.9, 100.2, 98.9, 98.8, 98.8, 98.5 (7 C, 7 C-1), 18.1, 17.9, 17.5, 17.4, 17.3 (5 C, 5 C-6-Rhap). Anal. Calcd for C₁₄₆H₁₃₀O₄₄: C, 67.74; H, 5.06. Found: C, 67.68; H, 5.35.

3.9. Methyl α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ - α -Lrhamnopyranosyl- $(1 \rightarrow 2)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -[β -D-xylopyranosyl- $(1 \rightarrow 2)$ -][β -D-xylopyranosyl- $(1 \rightarrow 4)$]- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ - α -L-rhamnopyranoside (14)

Heptasaccharide 13 (520 mg, 0.20 mmol) was dissolved in a saturated solution of NH₃-MeOH (30 mL). After 96 h at rt, the reaction mixture was concentrated, and the residue was purified by chromatography on Sephadex LH-20 (MeOH) to afford 14 (143 mg, 69.8%) as a foamy solid: $[\alpha]_D - 52.8^\circ$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 5.05 (s 1 H, H-1), 5.03 (d, 1 H, J_{1,2} 1.5 Hz, H-1), 5.02 (d, 1 H, J_{1,2} 1.5 Hz, H-1), 4.67 (d, 2 H, J_{1,2} 1.6 Hz, 2 H-1), 4.61 (d, 1 H, J_{1,2} 7.6 Hz, H-1), 4.47 (d, 1 H, J_{1.2} 7.6 Hz, H-1), 3.40 (s, 3 H, OCH₃), 1.35 (d, 3 H, J_{5.6} 6.4 Hz, H-6), 1.32–1.29 (m, 12 H, 4 H-6); ¹³C NMR (100 MHz, CDCl₃): δ 104.8, 104.8, 104.6, 104.0, 103.3, 103.2, 103.2 (7 C, 7 C-1), 19.3, 19.3, 19.1, 19.1, 19.1 (5 C, 5 C-6); MS (m/z) Calcd for C₄₁H₇₀O₂₉: 1026.97 [M]⁺. Found: 1050.09 [M + Na]⁺.

3.10. Allyl 2,3-*O*-isopropylidene- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-benzoyl- α -L-rhamnopyranoside (16)

To a solution of allyl α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4di-O-benzoyl- α -L-rhamnopyranoside (15) (5.58 g, 10 mmol) in anhyd DMF (50 mL) was added p-TsOH·H₂O (190 mg, 1.0 mmol) and 2,2-dimethoxypropane (3.7 mL, 30 mmol) under N₂ protection. The mixture was stirred at rt for 12 h, and TLC (3:1 petroleum ether-EtOAc) indicated that the reaction was complete. Sodium bicarbonate (5.00 g, 60 mmol) was added to the reaction mixture, and the mixture was stirred for additional 1 h. After filtration, the mixture was concentrated in vacuo to give a residue that was subjected to silica gel column chromatography (2:1 petroleum ether-EtOAc) to give 16 (5.22 g, 87.3%) as a syrup: $[\alpha]_{D} + 52.1^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.12–7.45 (m, 10 H, 2 PhH), 6.03– 5.95 (m, 1 H, OCH₂CH=CH₂), 5.48 (dd, 1 H, $J_{1,2}$ 0.7 Hz, $J_{2,3}$ 3.0 Hz, H-2), 5.47 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.9$ Hz, H-4), 5.38–5.25 (m, 2 H, OCH₂CH=CH₂), 5.07 (s, 1 H, H-1'), 4.97 (s, 1 H, $J_{1,2}$ 0.7 Hz, H-1), 4.42 (dd, 1 H, $J_{2,3}$ 3.0 Hz, $J_{3,4}$ 9.9 Hz, H-3), 4.26–4.22 (m, 1 H, OCH₂CH=CH₂), 4.10–4.04 (m, 2 H, H-4', OCH₂CH=CH₂), 3.82–3.75 (m, 2 H, H-2', H-3'), 3.65– 3.61 (m, 1 H, H-5), 3.24–3.20 (m, 1 H, H-5), 1.35 (s, 3 H, isopropylidene), 1.31 (d, 3 H, $J_{5,6}$ 6.4 Hz, H-6), 1.20 (d, 3 H, $J_{5,6}$ 6.3 Hz, H-6), 0.96 (s, 3 H, isopropylidene). Anal. Calcd for C₃₂H₃₈O₁₁: C, 64.20; H, 6.40. Found: C, 64.08; H, 6.51.

3.11. Allyl 4-*O*-acetyl-2,3-*O*-isopropylidene- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranoside (17)

To a solution of 16 (180 mg, 0.3 mmol) in pyridine (5 mL) was added Ac₂O (2.0 mL, 2 mmol). The reaction mixture was stirred at rt for 12 h, at the end of which time TLC (4:1 petroleum ether-EtOAc) indicated that the reaction was complete. The reaction mixture was concentrated, and the residue was purified by flash column chromatography on a silica gel column (3:1 petroleum ether-EtOAc) to give compound 17 (158 mg, 82.4%) as a syrup: $[\alpha]_{\rm D}$ + 40.3° (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): & 8.14-7.45 (m, 10 H, 2 PhH), 6.01–5.93 (m, 1 H, OCH₂CH=CH₂), 5.48 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.9$ Hz, H-4), 5.40 (dd, 1 H, $J_{1,2}$ 1.0 Hz, $J_{2,3}$ 2.9 Hz, H-2), 5.38–5.25 (m, 2 H, OCH₂CH=CH₂), 5.11 (s, 1 H, H-1'), 4.97 (s, 1 H, J_{1.2} 1.6 Hz, H-1), 4.71 (dd, 1 H, $J_{3',4'} = 8.0$ Hz, $J_{4',5'} = 10.0$ Hz, H-4'), 4.41 (dd, 1 H, $J_{2,3}$ 3.0 Hz, $J_{3,4}$ 9.9 Hz, H-3), 4.25–4.21 (m, 1 H, OCH₂CH=CH₂), 4.10–4.05 (m, 2 H, H-5, OCH₂CH= CH₂), 3.89 (dd, 1 H, J_{2',3'} 5.4 Hz, J_{3',4'} 8.0 Hz, H-3'), 3.74 (d, 1 H, J_{2',3'} 5.4 Hz, H-2'), 3.69-3.66 (m, 1 H, H-5), 2.00 (s, 3 H, CH₃CO), 1.39 (s, 3 H, isopropylidene), 1.32 (d, 3 H, J_{5.6} 6.3 Hz, H-6), 1.08 (d, 3 H, J_{5.6} 6.3 Hz, H-6), 0.93 (s, 3 H, isopropylidene). Anal. Calcd for C₃₄H₄₀O₁₂: C, 63.74; H, 6.29. Found: C, 63.57; H, 6.13.

3.12. Allyl 2,3,4-tri-*O*-benzoyl- β -D-xylopyranosyl- $(1 \rightarrow 4)$ -2,3-*O*-isopropylidene- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranoside (18)

2,3,4-Tri-*O*-benzoyl- α , β -D-xylopyranosyl trichloroacetimidate (**12**) (3.03 g, 5.0 mmol) and allyl 2,3-*O*-isopropylidene- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*benzoyl- α -L-rhamnopyranoside (**16**) (3.0 g, 5.0 mmol) were dried together under high vacuum for 2 h, then dissolved in anhyd CH₂Cl₂ (30 mL). TMSOTf (18.0 µL, 0.10 mmol) was added dropwise at -0 °C with N₂ protection. The reaction mixture was stirred for 2 h and then neutralized with Et₃N. Concentration of the reaction mixture and purification of the residue on a silica gel column (3:1 petroleum ether–EtOAc) afforded compound **18** (4.61 g, 88.5%) as a foamy solid: $[\alpha]_D + 41.2^\circ$ (c 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.03-7.31 (m, 25 H, 5 PhH), 6.01–5.93 (m, 1 H, OCH₂CH=CH₂), 5.71 (dd, 1 H, $J_{2'',3''} = J_{3'',4''} = 7.8$ Hz, H-3"), 5.45 (dd, 1 H, J_{1,2} 1.2 Hz, J_{2,3} 3.2 Hz, H-2), 5.40 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4), 5.36–5.30 (m, 1 H, OCH₂CH=CH₂), 5.30-5.23 (m, 3 H, H-2", H-4", OCH₂CH=CH₂), 5.22 (d, 1 H, J_{1.2} 6.1 Hz, H-1"), 5.04 (s, 1 H, H-1'), 4.97 (s, 1 H, J_{1,2} 1.2 Hz, H-1), 4.40–4.32 (m, 2 H, H-3', H-3), 4.25-4.21 (m, 1 H, OCH₂CH=CH₂), 4.10-4.02 (m, 2 H), 3.84 (dd, 1 H, $J_{3'.4'} = 8.6$ Hz, $J_{4'.5'} = 9.7$ Hz, H-4'), 43.66–3.62 (m, 2 H), 3.56-3.44 (m, 2 H), 1.36 (s, 3 H, isopropylidene), 1.30 (d, 3 H, J_{5.6} 6.4 Hz, H-6), 1.25 (d, 3 H, J_{5.6} 6.3 Hz, H-6), 0.87 (s, 3 H, isopropylidene); ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 165.6, 165.5, 165.4, 165.0 (5 C, 5 COPh), 117.8, 108.7 (2 C, OCH₂CH=CH₂ and Me₂CO₂), 99.8, 99.2, 96.6 (3 C, 3 C-1), 27.6, 25.6 (2 C, Me₂CO₂), 17.6, 17.2 (2 C, 2 C-6). Anal. Calcd for C₅₈H₅₈O₁₈: C, 66.78; H, 5.61. Found: C, 66.64; H, 5.45.

3.13. Allyl 2,3,4-tri-*O*-benzoyl- β -D-xylopyranosyl- $(1 \rightarrow 4)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranoside (19)

Compound 18 (4.17 g, 4 mmol) was dissolved in 9:1 TFA-water (50 mL) and stirred for 2 h, at the end of which time the reaction mixture was poured directly into toluene (200 mL), and then the mixture was concentrated. The residue was purified by flash chromatography (1:1 petroleum ether-EtOAc) to give 19 (3.63 g, 90.7%) as a syrup: $[\alpha]_{\rm D}$ + 32.6° (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.18–7.34 (m, 25 H, 5 PhH), 6.03-5.97 (m, 1 H, OCH₂CH=CH₂), 5.69 (dd, 1 H, $J_{2'',3''} = J_{3'',4''} = 8.8$ Hz, H-3"), 5.52 (dd, 1 H, $J_{1.2}$ 1.6 Hz, $J_{2,3}$ 3.2 Hz, H-2), 5.47 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.9$ Hz, H-4), 5.39-5.29 (m, 3 H, H-2", OCH₂CH=CH₂), 5.24-5.20 (m, 1 H, H-4"), 4.98 (d, 1 H, $J_{1',2'}$ 1.1 Hz, H-1'), 4.88 (d, 1 H, J_{1,2} 1.6 Hz, H-1), 4.85 (d, 1 H, J_{1,2} 6.9 Hz, H-1"), 4.40 (dd, 1 H, J_{2,3} 3.2 Hz, J_{3,4} 9.9 Hz, H-3), 4.29-4.25 (m, 1 H, OCH₂CH=CH₂), 4.19 (dd, 1 H, J_{2',3'} 3.9 Hz, $J_{3',4'}$ 9.8 Hz, H-3'), 4.07–4.03 (m, 1 H, OCH₂CH=CH₂), 4.04–4.01 (m, 1 H, H-5'), 3.84–3.80 (m, 1 H, H-5), 3.69–3.65 (m, 1 H, H-5["]_a), 3.61 (dd, 1 H, $J_{1',2'}$ 1.1 Hz, $J_{2',3'}$ 3.9 Hz, H-2'), 3.55 (dd, 1 H, $J_{3',4'}$ = $J_{4',5'} = 9.8$ Hz, H-4'), 3.19 (dd, 1 H, J 9.0, 11.7 Hz, H-5["]_b), 1.31 (d, 3 H, J_{5.6} 6.4 Hz, H-6), 1.07 (d, 3 H, J_{5.6} 6.4 Hz, H-6); ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 165.6, 165.5, 165.3, 164.9 (5 C, 5 COPh), 117.9, (1 C, OCH₂CH=CH₂), 101.2, 98.6, 96.7 (3 C, 3 C-1), 17.5, 17.3 (2 C, 2 C-6). Anal. Calcd for C₅₅H₅₄O₁₈: C, 65.86; H, 5.43. Found: C, 66.00; H, 5.71.

3.14. Allyl 2,3,4-tri-*O*-benzoyl- β -D-xylopyranosyl- $(1 \rightarrow 2)$ -[2,3,4-tri-*O*-benzoyl- β -D-xylopyranosyl- $(1 \rightarrow 4)$]- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranoside (20)

Compound 19 (3.00 g, 3 mmol) and 2,3,4-tri-O-ben $zoyl-\alpha,\beta$ -D-xylopyranosyl trichloroacetimidate (12)(1.91 g, 3.15 mmol) were dried together under high vacuum for 2 h, then dissolved in anhyd CH₂Cl₂ (50 mL). TMSOTf (18.0 µL, 0.10 mmol) was added dropwise at -20 °C with N₂ protection. The reaction mixture was stirred for 2 h, during which time the temperature was gradually warmed to ambient temperature. Then the mixture was neutralized with Et₃N and concentrated to dryness under reduced pressure. Purification of the residue by column chromatography on a silica gel column (2:1 petroleum ether-EtOAc) furnished the tetrasaccharide 20 (3.47 mg, 79.9%) as a syrup: [α]_D-2.3° (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.05–7.32 (m, 40 H, 8 PhH), 6.01–5.95 (m, 1 H, OCH₂CH=CH₂), 5.57 (dd, 1 H, $J_{2,3} = J_{3,4} = 9.0$ Hz, H-3-Xylp), 5.56 (dd, 1 H, $J_{2,3} = J_{3,4} = 8.9$ Hz, H-3-Xylp), 5.47 (dd, 1 H, J_{1,2} 1.4 Hz, J_{2,3} 3.1 Hz, H-2-Rhap), 5.44 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4-Rhap), 5.36–5.32 (m, 1 H, OCH₂CH=CH₂), 5.29–5.20 (m, 3 H, 2 H-2-Xylp, OCH₂CH=CH₂), 5.18-5.15 (m, 1 H, H-4-Xylp), 4.97 (d, 1 H, J_{1,2} 1.0 Hz, H-1-Rhap), 4.95 (d, 1 H, J_{1.2} 1.4 Hz, H-1-Rhap), 4.94-4.91 (m, 1 H, H-4-Xylp), 4.60 (d, 1 H, J_{1.2} 6.0 Hz, H-1-Xylp), 4.52 (d, 1 H, $J_{1,2}$ 7.1 Hz, H-1-Xylp), 4.44 (dd, 1 H, $J_{2,3}$ 3.1 Hz, J_{3,4} 9.8 Hz, H-3-Rhap), 4.24–4.20 (m, 1 H, OCH₂CH=CH₂), 4.12–4.03 (m, 3 H), 3.77–3.75 (m, 1 H, H-5-Rhap), 3.63 (dd, 1 H, J_{1,2} 1.0 Hz, J_{2,3} 3.1 Hz, H-2-Rhap), 3.58–3.55 (m, 1 H), 3.44 (dd, 1 H, J_{2.3} 3.0 Hz, $J_{3,4}$ 9.9 Hz, H-3-Rhap), 3.34 (dd, 1 H, $J_{3,4} = J_{4,5} =$ 9.9 Hz, H-4-Rhap), 3.02 (dd, 1 H, J 9.1, 11.0 Hz, H-5_b-Xylp), 2.78 (dd, 1 H, J 9.3, 11.7 Hz, H-5_b-Xylp), 1.26 (d, 3 H, J_{5.6} 6.4 Hz, H-6), 1.17 (d, 3 H, J_{5.6} 6.2 Hz, H-6); ¹³C NMR (100 MHz, CDCl₃): δ 165.6, 165.5, 165.4, 165.3, 165.3, 165.2, 165.0, 164.7 (8 C, 8 COPh), 117.8, (1 C, OCH₂CH=CH₂), 101.6, 100.5, 100.1, 96.7 (4 C, 4 C-1), 17.4, 17.4 (2 C, 2 C-6). Anal. Calcd for C₈₁H₇₄O₂₅: C, 67.21; H, 5.15. Found: C, 67.40; H, 5.07.

3.15. Allyl 2,3,4-tri-*O*-benzoyl- β -D-xylopyranosyl- $(1 \rightarrow 2)$ -[2,3,4-tri-*O*-benzoyl- β -D-xylopyranosyl- $(1 \rightarrow 4)$]-3-*O*-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2,4-di-*O*-benzoyl- α -L-rhamnopyranoside (21)

To a solution of **20** (145 mg, 0.1 mmol) in pyridine (5 mL) was added Ac_2O (2.0 mL, 2 mmol). The reaction mixture was stirred at rt for 12 h, at the end of which time TLC (3:1 petroleum ether-EtOAc) indicated that the reaction was complete. The reaction mixture was concentrated, and then the residue was purified by flash column chromatography on a silica gel

1031

column (3:1 petroleum ether-EtOAc) to give compound **21** (113 mg, 75.8%) as a syrup: $[\alpha]_D - 11.4^\circ$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 8.05–7.33 (m, 40 H, 8 PhH), 6.00 (m, 1 H, OCH₂CH=CH₂), 5.57 (dd, 1 H, $J_{2,3} = J_{3,4} = 8.3$ Hz, H-3-Xylp), 5.53 (dd, 1 H, J_{1,2} 1.7 Hz, J_{2,3} 3.1 Hz, H-2-Rhap), 5.48 (dd, 1 H, $J_{2,3} = J_{3,4} = 8.7$ Hz, H-3-Xylp), 5.47 (dd, 1 H, $J_{3,4} =$ $J_{4.5} = 9.8$ Hz, H-4-Rhap), 5.38–5.34 (m, 1 H, OCH₂CH=CH₂), 5.27-5.17 (m, 3 H, 2 H-2-Xylp, OCH₂CH=CH₂), 5.14-5.10 (m, 1 H, H-4-Xylp), 5.01 (d, 1 H, J_{1,2} 2.0 Hz, H-1-Rhap), 4.98 (d, 1 H, J_{1,2} 1.7 Hz, H-1-Rhap), 4.85 (dd, 1 H, J_{2,3} 2.9 Hz, J_{3,4} 9.2 Hz, H-3-Rhap), 4.82-4.78 (m, 1 H, H-4-Xylp), 4.63 (d, 1 H, J_{1,2} 6.0 Hz, H-1-Xylp), 4.48 (dd, 1 H, J_{2,3} 3.4 Hz, $J_{3,4}$ 9.8 Hz, H-3-Rhap), 4.28–4.24 (m, 1 H, OCH₂CH=CH₂), 4.24 (d, 1 H, J_{1,2} 6.1 Hz, H-1-Xylp), 4.12–3.87 (m, 4 H), 3.77 (dd, 1 H, $J_{1,2}$ 2.0 Hz, $J_{2,3}$ 3.1 Hz, H-2-Rhap), 3.59 (dd, 1 H, $J_{3,4} = J_{4,5} = 9.8$ Hz, H-4-Rhap), 3.36–3.21 (m, 2 H), 1.45 (s, 3 H, CH₃CO), 1.29 (d, 3 H, J_{5.6} 6.3 Hz, H-6), 1.27 (d, 3 H, J_{5.6} 6.4 Hz, H-6). Anal. Calcd for C₈₃H₇₆O₂₆: C, 66.93; H, 5.14. Found: C, 66.70; H, 5.33.

3.16. Allyl 2-*O*-acetyl-3,4-di-*O*-benzoyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-[2,3,4-tri-*O*-benzoyl- β -D-xylopyranosyl-(1 \rightarrow 2)-][2,3,4-tri-*O*-benzoyl- β -D-xylopyranosyl-(1 \rightarrow 4)]- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-benzoyl- α -Lrhamnopyranoside (23)

Compound 20 (2.89 g, 2.0 mmol) and allyl 2-O-acetyl-3,4-di-*O*-benzoyl-α-L-rhamnopyranosyl trichloroacetimidate (22) (1.17 g, 2.1 mmol) were dried together under high vacuum for 2 h, then dissolved in anhyd CH₂Cl₂ (50 mL). TMSOTf (18 µL, 0.1 mmol) was added dropwise at -20 °C with N₂ protection. The reaction mixture was stirred for 2 h, during which time the temperature was gradually warmed to rt. Then the mixture was neutralized with Et₃N and concentrated to dryness under reduced pressure. Purification of the residue by column chromatography on a silica gel column (2:1 petroleum ether-EtOAc) furnished the pentasaccharide 23 (1.52 g, 41.3%) as a foamy solid: $[\alpha]_{\rm D} + 32.4^{\circ}$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃, characteristic signals are given): δ 6.02 (m, 1 H, OCH₂CH=CH₂), 5.93 (dd, 1 H, $J_{2,3} = J_{3,4} = 8.9$ Hz, H-3-Xylp), 5.61 (dd, 1 H, $J_{2,3} = J_{3,4} = 8.4$ Hz, H-3-Xylp), 5.08 (d, 1 H, $J_{1,2}$ 1.1 Hz, H-1-Rhap), 5.06 (d, 1 H, $J_{1,2}$ 6.7 Hz, H-1-Xylp), 5.02 (s, 1 H, H-1-Rhap), 4.95 (d, 1 H, $J_{1,2}$ 6.6 Hz, H-1-Xylp), 4.93 (s, 1 H, H-1-Rhap), 2.06 (s, 3 H, CH_3CO), 1.32 (d, 3 H, $J_{5,6}$ 6.2 Hz, H-6), 1.25 (d, 3 H, $J_{5,6}$ 6.3 Hz, H-6); ¹³C NMR (100 MHz, CDCl₃): δ 169.3 (1 C, 1 CH₃CO), 165.7, 165.4, 165.4, 165.2, 165.1, 165.1, 165.1, 165.0, 164.9, 164.7 (10 C, 10 COPh), 117.9 (1 C, OCH₂CH=CH₂), 100.2, 99.8, 99.1, 98.4, 96.8 (5 C, 5 C-1), 20.5 (1 C, 1 CH₃CO), 17.7, 17.5, 17.4 (3 C, 3 C-6). Anal. Calcd for C₁₀₃H₉₄O₃₂: C, 67.09; H, 5.14. Found: C, 67.20; H, 5.26.

Acknowledgements

This work was supported by The Chinese Academy of Sciences (KZCX3-J-08) and by The National Natural Science Foundation of China (Projects 30070185 and 39970864).

References

- Tommasi, N. D.; Piacente, S.; Gacs-Baitz, E.; De Simone, F.; Pizza, C.; Aquino, R. J. Nat. Prod. 1998, 323, 61–66.
- Jackson, G. E.; Ravenscroft, N.; Stephen, A. M. Carbohydr. Res. 1990, 200, 409–418.
- Mcneil, M.; Chatterjee, D.; Hunter, S. W.; Brenna, P. J. Methods Enzymol. 1989, 179, 215–228.
- Mass, J. L.; Pooler, M. R.; Gallette, G. J. Adv. Straberry Res. 1995, 14, 18–24.
- Molinaro, A.; Evidente, A.; Fiore, S.; Lacobellis, N. S.; Lanzetta, R.; Parrilli, M. *Carbohydr. Res.* 2000, 325, 222–229.
- Reimer, K. B.; Harris, S. L.; Varma, V.; Pinto, B. M. Carbohydr. Res. 1992, 228, 399–414.
- Albernas, J. M.; Harris, S. L.; Varma, V.; Pinto, B. M. Carbohydr. Res. 1993, 245, 245–257.
- Zhang, J.; Kong, F. J. Carbohydr. Chem. 2002, 21, 79– 87.
- 9. Zhang, J.; Kong, F. Carbohydr. Res. 2002, 337, 391-396.
- Zhang, J.; Zhu, Y.; Kong, F. Carbohydr. Res. 2001, 336, 329–335.
- 11. Zhang, J.; Kong, F. J. Carbohydr. Chem. 2002, 21, 575–585.
- 12. Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21–125.