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The one step synthesis of difluoromethylphosphonamidates from dialkylphosphonates is reported. The
addition of lithiated amides onto dialkyl difluoromethylphosphonates afforded the corresponding phos-
phonamidates, as potential prodrug precursors. The remarkable high stability of these phosphonamidates
in acidic medium was studied by 31P NMR.
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1. Introduction

Phosphoramidates are important in medicinal chemistry and
have been developed to prepare prodrugs containing mainly nucle-
oside derivatives, or to design new transition state analogues as
enzyme inhibitors.1 However, in order to prevent the rapid cleav-
age of the carbon–oxygen bond of a monophosphate function by
phosphatases, the replacement of the bridging oxygen atom by a
difluoromethylene group has been intensively studied.2 In
addition, the replacement of a hydroxyl group of a phosphate by
a difluoromethylene group stabilizes the phosphate bond, as
exemplified by the synthesis of modified inositol or nonionic
dinucleotide derivatives.3 It is well established that the dif-
luoromethylphosphonate function (DFMP) can be introduced as a
stable phosphate mimic, but its derivation into the corresponding
phosphonamidate as a prodrug has been scarcely studied. Phos-
phonamidates have been used as potential transition-state ana-
logues of peptidases,4 and difluorophosphonamidates were
designed as new prodrugs to facilitate the transportation of PTB
1B inhibitors (Fig. 1).5

The importance of the difluoromethylene group has been dem-
onstrated, and the presence of such electron attracting group at-
tached onto the phosphorus center enhanced the stability of the
P–N bond by two units of pH: difluorophosphonamidates are sta-
ble above pH 5, and slowly decompose at pH 2.6,7 Yet, the main
limitation for further use of those phosphonamidate derivatives
ll rights reserved.
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lies in the fact that their synthesis requires the tricky activation
of the phosphorus center. In most cases, it is realized by formation
of intermediate phosphonyl dichloride derivatives produced upon
treatment of the corresponding dialkyl phosphonic ester with oxa-
lyl chloride or thionyl chloride (Scheme 1). These phosphonyl
dichlorides were directly converted by addition of primary or sec-
ondary amines, or transformed in their activated species by addi-
tion of aromatic or tertiary amines.5,7 This approach is of great
R'2N

phosphonamidate

2) R3OH

Scheme 1. Synthesis of phosphonamidates as prodrugs.
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Scheme 4. Reaction with deuterated amine.

Table 1
Formation of difluoromethylphosphonamidates12,13

Entry Amine Product Yields (%)

1 Benzylamine

O

PHN
OiPr

CF2H
Ph

3b 

77

2 Ethylamine

O

PHN
OiPr

CF2H

8 

63

3 Phenylethylamine

O
PHN
OiPr

CF2H

Ph

9 

68

4 Allylamine

O

PHN
OiPr

CF2H 63
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interest but limited to structures containing chemical functions
stable toward these strong electrophilic reagents (SOCl2, (ClCO)2O),
and often gives moderate yields.

Taking into account that the presence of a difluoromethylene
group enhances the electrophilic character of the phosphorus
center,8 the direct transformation of phosphonates into the
corresponding phosphonamidates from amines and difluoro-
methylphosphonate dialkyl esters was explored and our progress
in this field is reported.

2. Results and discussion

In a first approach the addition of lithium benzylamide onto
difluoroethylphosphonate 1 was realized (Scheme 2). However,
no addition reaction was observed at �78 �C, and partial decompo-
sition occurred at 20 �C, affording a mixture of unidentified
products. A similar reaction was then realized from the dif-
luoromethylphosphonate 2. In contrast with the first assay, we
were pleased to observe that the corresponding phosphonamidate
3b was formed after 30 min under stirring at �78 �C (yield 33%).
When the reaction mixture was allowed to warm up from �78 �C
to room temperature, the isolated yield was increased up to 49%.
Similar results were obtained from diisopropyl and diethyl phos-
phonate esters, and use of an excess of lithiated amide (2.5 equiv)
induced a partial decomposition of the reagents.

As LDA is the usual base used to deprotonate 2,2 it is assumed
that in the present case a competitive addition reaction (path a)
to a deprotonation reaction (path b) appeared (Scheme 3). Another
mechanism involving the formation of the intermediate isopropyl-
phosphinico difluoromethane 5b from anion 5a after ejection of
one isopropyl group is not excluded.9

With less hindered lithium amide, the rearrangement of the
phosphorane intermediate 4 can occur, placing the isopropyl group
in the apical position, favorable for its elimination.10 Since the
reaction eventually ends up with a reasonable global yield, this
could be possible if the different species are in equilibrium as de-
picted in Scheme 3. To confirm this hypothesis the lithiated anion
5a was formed from sulfide 6 (Scheme 4),11 and directly treated
(iPrO)2(O)PCF2R

1 R = CH3
2 R = H
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Scheme 2. Addition of lithium amide onto difluorophosphonates.
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Scheme 3. Suggested mechanism.
with benzylamine (1.3 equiv) over 30 min at �78 �C. Under these
conditions, the addition reaction reached completion after 30 min
at �78 �C, and phosphonamidate 3b was isolated in 77% yield. In
this mechanism, the protonation of carbanion 5a by the amine
must be achieved prior to the addition reaction. Indeed, addition
of MeI to the crude mixture before hydrolysis afforded exclusively
10 

5 Cyclohexylamine
O

PHN

OiPr

CF2H

11 

66

6 Pyrrolidine

O

PN

OiPr

CF2H

12 

55

7 Piperidine

O

PN

OiPr

CF2H

13 

60

8 Morpholine

O

PN

OiPr

CF2HO

14 

70

9 Diethylamine

O

PN

OiPr

CF2H

15 

63a

10 Aniline
O
PHN
OiPr

CF2H

16 

74a

a Reaction performed from �78 �C to 20 �C over 1 h.
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phosphonamidate 3b. This protonation of the starting carbanion 5a
prior to the addition reaction was also confirmed when the reac-
tion was performed with deuterated benzylamine (Scheme 4).
Carbanion 5a was treated with PhCH2ND2 at �78 �C over 30 min.
After hydrolysis, the 19F NMR analysis of the crude mixture pre-
sented a ABXZ system (�135.4 ppm, ddt, 2JFF = 345.8 Hz, 2JFP =
88.1 Hz, 2JFD = 7.5 Hz), as the major signal corresponding to the
CF2D compound 7. This compound 7 was obtained in a ratio of
7:3 with the corresponding phosphonamidate 3b. We assumed
that the formation of 3b was due to the quality of the deuterated
amine (deuterated at 80%). As mentioned early, in this case the for-
mation of the isopropylphosphinico difluoromethane 5b cannot be
excluded, although a SN2 mechanism is more probable.9a

The scope and limitations of the synthesis of phosphonamidates
were next explored from primary and secondary amines and sul-
fide 6.12,13 Carbanion 5a formed in situ was immediately proton-
ated by the amine and reacted with the corresponding lithiated
amide during 0.5 h at �78 �C. From primary aliphatic amines,
products 8–11 were isolated by flash chromatography in 63–66%
yield (Table 1). However, the addition reaction was unsuccessful
from diethylamine at this temperature.

In contrast, the addition of secondary cyclic amines afforded the
expected phosphonamidates 12–14 in 55–70% yield. From less
nucleophilic or secondary linear amines, such as aniline or diethyl-
amine, the reaction reached completion only when the reaction
mixture was warmed-up from �78 �C to 20 �C over 1 h. In these
cases, the corresponding phosphonamidates 15 and 16 were ob-
tained in 63% and 74% yields, respectively (entries 9 and 10).

This reaction is highly sensitive to the steric demand of the
amine or the phosphorus center, reflecting the ease of the phos-
phorane rearrangement. Indeed, as expected, the experiment real-
ized with diisopropylamine afforded exclusively phosphonate 2. In
this case, the pentacoordinated intermediate related to 4 was not
formed, due to the high steric demand of the amino group. This
limitation was also observed from hindered phosphonate. No reac-
tion occurred when the direct addition of lithium benzylamide
onto sulfide 6 was realized at �78 �C. We assumed that the steric
Figure 2. Evolution of 16 in acidic m
hindrance due to the presence of the methylsulfanyl group pre-
vented the formation or the rearrangement of the pentacoordinat-
ed intermediate.14

The stability of compound 16 was evaluated in acidic medium
by NMR analysis. A solution of 16 in MeOH was gradually acidified
by addition of diluted methanolic HCl solution (0.01 M), and 31P
NMR analysis was performed every 1 h or day (Fig. 2). At pH 3.4,
the acidity of the medium induced a slight shift of the signal of
16. As shown in Figure 2, this phosphonamidate 16 was slowly pro-
tonated between pH 8 and pH 3 and the intermediate cation 17
was gradually formed (Scheme 5).

This intermediate was exclusive at pH 0.3. The reaction was
reversible since 16 was recovered when aqueous NaOH was added
to the solution of 17 (see Supplementary data). The most surprising
is the remarkable stability of intermediate 17 since no decomposi-
ethanolic medium by 31P NMR.



Figure 3. Formation of 19 from 16 and CH3SO3H.
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tion was observed after 5 h at this pH. It is only after several hours
in solution at 20 �C that 17 evolved slowly in the medium to form
after 85 h the expected dialkoxyphosphonate 18, illustrating once
again the poor ability of the amine to be placed in the apical posi-
tion of the phosphorane. The trans-esterification reaction of 16
with the solvent was also observed (triplet at 5.5 ppm). This unu-
sual protonated form of phosphonamidate 16 has been confirmed
after reaction with sulfonic acid in aprotic solvent. A CDCl3 solution
of 16 was treated by a gradual addition of methanesulfonic acid at
20 �C (Scheme 6, Fig. 3). In the presence of 1 equiv of methanesulf-
onic acid, a new signal appeared at 6.4 ppm (31P NMR), corre-
sponding to the salt 19.

Finally, a preliminary study of the further functionalization of
phosphonamidate 12 was explored by trapping the corresponding
carbanion with benzaldehyde at �78 �C. However, in this case the
carbanion appeared to be less reactive than anion 5a and product
20 was isolated in a modest yield (Scheme 7). Further works are
underway to further explore the functionalization of these diflu-
orophosphonamidates in order to introduce this function onto a
large variety of electrophiles.

3. Conclusion

The particular high electrophilic character of the phosphorus
center next to a difluoromethylene group allowed the addition of
metalated amides to form in one step a variety of phosphonami-
dates. It appeared that the steric demand of the amino group is
important to perform this reaction, and the steric hindrance
around the phosphorus center seems to be crucial, reflecting the
apicophilicity of the different groups present on the phosphorus
center. High stability of phosphonamidate 16 was observed in
methanolic acidic medium, and at pH 0.3, its slow solvolysis oc-
curred at 20 �C. The functionalization of these phosphonamidates
and the study of the mechanism involved in their synthesis are
underway to explore the synthetic potential of these species, and
the exact nature of the intermediates formed during this
transformation.
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