## Palladium-Mediated [2+1] Cycloaddition of Norbornene Derivatives with Ynamides

Hervé Clavier,<sup>a,\*</sup> Aymeric Lepronier,<sup>a</sup> Nathalie Bengobesse-Mintsa,<sup>a</sup> David Gatineau,<sup>a</sup> Hélène Pellissier,<sup>a</sup> Laurent Giordano,<sup>a</sup> Alphonse Tenaglia,<sup>a</sup> and Gérard Buono<sup>a,\*</sup>

<sup>a</sup> Centrale Marseille, Aix-Marseille Université, CNRS, iSm2 UMR 7313, 13397, E-mail: herve.clavier@univ-amu.fr or gerard.buono@univ-amu.fr

Received: October 9, 2012; Published online: February 1, 2013

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201200903.

**Abstract:** An efficient palladium-catalyzed [2+1] cycloaddition between ynamides and norbornenes or norbornadienes is reported. Both phosphapalla-dacycles and palladium/secondary phosphine oxide catalytic systems were found to be competent for the transformation allowing the preparation of aminomethylenecyclopropanes. The reaction showed general applicability to various functionalized bicyclo[2.2.1]hept-2-enes and ynamides. A chiral phosphapalladacycle was tested to carry out this transformation in an enantioselective fashion.

**Keywords:** cycloaddition; cyclopropanes; norbornenes; palladium; phosphorus; ynamides

Methylenecyclopropanes (MCPs) are a unique class of carbocyclic compounds with a strained three-membered ring and an exo methylene moiety.<sup>[1]</sup> In addition to being versatile synthons for a myriad of organic transformations,<sup>[2]</sup> they are found in natural products.<sup>[3]</sup> They have also been incorporated in biologically active substances such as nucleosides analogues that are established as powerful antiviral agents against a broad range of viruses.<sup>[4]</sup> In these drugs, the aminomethylenecyclopropane moiety A seems to play a crucial role. To date only few methods allow the preparation of such a pattern.<sup>[5]</sup> As depicted in Scheme 1, the synthesis of aminomethylenecyclopropanes has been achieved from the cyclopropanecarbaldehydes by aminal formation and subsequent rearrangement into A by heating.<sup>[6]</sup> For the synthesis of nucleoside analogues, Somekawa and Zemlicka independently reported the use of 1-bromo-1-(bromomethyl)cyclopropane for an N-alkylation, followed by an in situ  $\beta$ -elimination.<sup>[7,8]</sup> Herein, we report an alternative approach for the synthesis of aminomethylenecy-



**Scheme 1.** Main strategies for the preparation of aminomethylenecyclopropanes.

clopropane A using a palladium-mediated [2+1] cycloaddition between an activated alkene and an ynamide partner.<sup>[9]</sup>

As a part of our research program dedicated to the transition metal-promoted formations of carbocycles,<sup>[10]</sup> it was discovered that catalyst **2a** promoted the hydroalkynation of alkyl- and aryl-substituted alkynes to norbornadienes **1** to afford coupling products **3** (Scheme 2).<sup>[11]</sup> On the other hand, with the same reactants, the catalytic behaviour of palladium(II) complexes prepared from secondary phosphine oxides (SPO)<sup>[12]</sup> was found to be different since MCP derivatives **4** were achieved.<sup>[13]</sup> These results prompted us to evaluate both palladium-based catalytic systems for the preparation of aminomethylenecyclopropane **A**.

We started examining the benchmark substrates norbornadiene (nbd) **1a** and ynesulfonamide **5a** and found that the formation of aminomethylenecyclopropane **6a** could be achieved by using both catalytic systems (Table 1). Nonetheless, the combination of  $Pd(OAc)_2$  (5 mol%) with SPOs was found to be less efficient and exclusively limited to the use of PhCyP(O)H as SPO (entries 4–6). The screening of



**Scheme 2.** Palladium-mediated hydroalkynation *versus* [2+1]cycloaddition of norbornenes with alkynes.

**Table 1.** Palladium-catalyzed [2+1] cycloaddition of norbornadiene **1a** with ynamide **5a**: effect of reaction parameters.<sup>[a]</sup>

|       |                                                                         | N <sup>-Te</sup><br>Ph    |
|-------|-------------------------------------------------------------------------|---------------------------|
| 1a    | 5a                                                                      | 6a                        |
|       | R, R<br>P, O<br>P, O<br>P, O<br>P, O<br>P, O<br>P, O<br>P, O<br>P, O    | <i>o</i> -Tol<br>Ph<br>Cy |
| Entry | Change from "the standard conditions" Iso                               | plated yield [%           |
| 1     | None                                                                    | 66                        |
| 2     | Catalyst 2b instead of 2a                                               | 44                        |
| 3     | Catalyst 2c instead of 2a                                               | 48 <sup>[b]</sup>         |
| 4     | Catalyst Pd(OAc) <sub>2</sub> /[PhCyP(O)H] <sub>2</sub> instead of 2a   | 44                        |
| 5     | Catalyst Pd(OAc) <sub>2</sub> /[PhtBuP(O)H] <sub>2</sub> instead of 2a  | -                         |
| 6     | Catalyst Pd(OAc) <sub>2</sub> /[PhMeP(O)H] <sub>2</sub> instead of $2a$ | -                         |
| 7     | Toluene instead of DCE                                                  | 39                        |
| 8     | THF instead of DCE                                                      | 66                        |
| 9     | Dioxane instead of DCE                                                  | 39                        |
| 10    | DMF instead of DCE                                                      | 36                        |
| 11    | 8 h instead of 24 h                                                     | 33                        |
| 12    | 55 h instead of 24 h                                                    | 50                        |
| 13    | 40 °C, 2 h instead of 25 °C, 24 h                                       | 62                        |
| 14    | 60 °C, 1 h instead of 25 °C, 24 h                                       | 66                        |
|       |                                                                         |                           |

[a] Reaction conditions: ynamide 5a (0.5 mmol), nbd 1a (1 mmol), 2a (2.5-5 mol% [Pd]), DCE (3 mL, 0.17M), 25 °C.

<sup>[b]</sup> 18% of product **7a** were also isolated.

several phosphapalladacycles 2 demonstrated that the use of 2c as catalyst proceeded with the formation of by-product 7a in 18% yield in addition to 48% of 6a,



**Figure 1.** Ball-and-stick representation of by-product **7a** (most of the hydrogens have been omitted for clarity).

while it was detected as traces by <sup>1</sup>H NMR from the crude reaction mixture using catalysts **2a** and **2b** (entries 1–3). The structure of compound **7a** was unambiguously determined by X-ray analysis (Figure 1). Its formation results from the valence isomerization process<sup>[13a,14]</sup> of **6a**, which seems to be favoured by electron-rich phosphapalladacycle **2c** triggering the splitting of the distal bond of the MCP subunit. Reaction time investigations showed that, at 25 °C, 24 h were required for consumption of ynamide **5a**; the mass balance accounting for degradation (entries 11 and 12). However, a slight thermal activation to 40 and 60 °C led to a considerable decrease in reaction time (entries 13 and 14).

Having established the optimal reaction conditions, we further investigated the reaction scope with a range of bicyclo[2.2.1]hepta-2,5-diene derivatives (Table 2). 7-Oxygen substituted norbornadienes were tolerated but led to moderate yields or longer reaction times (entries 2 and 3) compared to electron-rich substituted equivalents (entries 4 and 5). Other bicyclic substrates were converted in the corresponding tricyclo[ $3.2.1.0^{2,4}$ ]oct-6-enes 6, except for 1,4-dihydro-1,4-epoxynaphthalene 1i which gave rise to a complex mixture (entry 9). Despite extended heating at 60 °C, [2+1]cycloaddition on the less reactive 1,4-dihydro-1,4-ethanonaphthalene 1j failed (entry 10).<sup>[15]</sup> In all the cases studied, reaction occurred on the less hindered double bond.

In the light of these results, we decided to examine the scope of the cycloaddition further by testing bicyclo[2.2.1]hept-2-ene derivatives **8** (Table 3). Although the reactivity was found to be lower, we were pleased to isolate the cycloadduct **9a** arising from the reaction of norbornene **8a** in a moderate yield (65%, entry 1). The treatment of substrates **8b** and **8c** with ynamide **5a** and phosphapalladacycle **2a** afforded the expected cycloadducts but with a low diastereoselectivity (entries 2 and 3). Whereas the diaza compound **8f** was well tolerated (entry 6), the reaction of maleic anhydride derivative **8d** and substituted oxanorbornene **8g** required heating to 60 °C to provide the corTable 2. [2+1] Cycloaddition with a variety of norbornadiene derivatives and ynamide 5a.[a]



[a] Reaction conditions: ynamide 5a (0.5 mmol), nbd 1 (1 mmol), 2a (2.5 mol%), DCE (3 mL, 0.17 M), 40 °C. [b]

Reaction carried out at 60°C.

responding products in low to moderate yields (entries 4 and 7). Under the same reaction conditions the electron-poor tetracyano compound 8e was found to be inert (entry 5).

We then examined the transformation scope with respect to the ynamide partner (Table 4). In addition to the N-substituted phenylynamide 5a, the alkyl analogues 5b and 5c gave rise to the corresponding adducts with moderate yields (entries 1 and 2). On the other hand, allyl counterpart 5d led to the formation of a complex mixture (entry 3). While ynesulfonamides were found to be relatively good partners for the [2+1] cycloaddition (entries 4 and 5), an vnecarbamate, such as 5g, gave the corresponding cycloadduct with a moderate yield (entry 6). The para-nosyl Table 3. [2+1] Cycloaddition with a variety of norbornene derivatives 8 and vnamide 5a.[a]



[a] Reaction conditions: ynamide 5a (0.5 mmol), norbornene 8 (0.6 mmol), 2a (2.5 mol%), DCE (3 mL, 0.17 M), 40 °C. [b] Reaction carried out at 60°C.

compound 10e, isolated in good yield, was used to confirm the aminomethylenecyclopropane structure by single crystal X-ray determination (Figure 2). When the reaction was performed with the vinylogous indole-containing ynamide 5h, the anticipated product was obtained, but as an inseparable mixture with an unidentified compound. Carrying out the reaction



Figure 2. Ball-and-stick representation of the cycloadduct **10e** (hydrogen atoms have been omitted for clarity).



Table 4. [2+1] Cycloaddition with a variety of ynamides 5.<sup>[a]</sup>

- [a] Reaction conditions: ynamide 5 (0.5 mmol), norbornadiene 1 (1 mmol), 2a (2.5 mol%), DCE (3 mL, 0.17 M), 40°C. Ns=4-nitrobenzenesulfonyl.
- <sup>[b]</sup> Reaction performed with 5 mol% of Pd(OAc)<sub>2</sub>/ [PhCyP(O)H]<sub>2</sub> instead of **2a**.

with the Pd(OAc)<sub>2</sub>/PhCyP(O)H system turned out to be cleaner since only **10h** was isolated in the satisfactory yield of 77% (entry 7).

Due to the E/Z geometry of the carbon-carbon double bond in the methylenecyclopropane moiety, [2+1] cycloadducts showed a peculiar chirality called geometrical enantiomorphic isomerism (*cis-trans* enantiomerism or Z-E enantiomerism).<sup>[16,17]</sup> We had previously demonstrated that the asymmetric [2+1] cycloaddition between alkyne and norbornene could be achieved using chiral secondary phosphine oxides as enantioselectivity inductors with enantiomeric excesses of up to 95% *ee*.<sup>[18]</sup> Since the synthesis of enantiopure phosphapalladacycle **11** has been recently reported,<sup>[19]</sup> we decided to test this catalyst in an asymmetric [2+1] cycloaddition with ynamide **5a** 



**Scheme 3.** Asymmetric [2+1] cycloaddition using an optically active phosphapalladacycle.

(Scheme 3). Whereas the reaction proceeded smoothly at room temperature, giving 80% yield after 4 h, the chiral induction observed was modest but promising for further development considering that no optimization of catalyst design has been done.

In modern organic chemistry, there is always the need for new, efficient, and selective methodologies for the synthesis of complex molecules. Herein, we have reported a new palladium-catalyzed intermolecular [2+1]cycloaddition of bicyclo[2.2.1]hept-2-ene derivatives with vnamides giving rise to aminomethylenecyclopropane A. We have shown that either phosphapalladacycles or the Pd(OAc)<sub>2</sub>/PhCyP(O)H combination are able to promote this transformation. Optimal catalytic conditions and key parameters have been identified. Thus, excellent yields have been reached, of up to 88%, for variously substituted ynamides and norbornenes. Preliminary results to perform this transformation in an enantioselective fashion are encouraging and further developments are underway in our laboratory as also is the study of mechanistic considerations.

### **Experimental Section**

# General Procedure for the Palladium-Mediated [2+1] Cycloaddition

A Schlenk flask, under nitrogen, was charged with Herrmann–Beller catalyst (11.2 mg, 0.0125 mmol, 0.05 equiv. in Pd.), and DCE (1 mL). Successively, were added norbornadiene derivative (1 mmol, 2 equiv.) or norbornene derivative (0.6 mmol, 1.2 equiv.), ynamide (0.5 mmol) and DCE (1 mL). The resulting mixture was stirred at the stipulated temperature for the indicated time. Volatiles were removed and the crude mixture was purified by column chromatography on silica gel using a Combiflash Companion [4 g SiO<sub>2</sub> 45 µm; PE/AcOEt 95:5 (5 min) gradient].

The Supporting Information contains the experimental details, product characterization and NMR spectra. The CIF files of carbocycles **7a** and **10e** have also been deposited as CCDC 870844 and CCDC 870845. These data can be ob-

tained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data\_request/cif.

### Acknowledgements

We thank the CNRS and the ANR (program BLAN07-1 190839) for funding and the Ministère de l'enseignement supérieur et de la recherche (A.L. and D.G. Ph.D. grants). We are grateful to Christophe Chendo and Dr. Valérie Monnier for mass spectrometry analyses and Dr. Michel Giorgi for X-ray determination (Spectropole, Fédération des Sciences Chimiques de Marseille). We also thank Dr. Nicolas Vanthuyne for chiral HPLC separation.

### References

- For reviews on the synthesis of MCPs, see: a) A. Brandi, A. Goti, *Chem. Rev.* **1998**, *98*, 589–635; b) G. Audran, H. Pellissier, *Adv. Synth. Catal.* **2010**, *352*, 575–608.
- [2] For reviews on synthetic applications of MPCs, see: a) A. Brandi, S. Cicchi, M. Cordero, A. Goti, Chem. Rev. 2003, 103, 1213–1269; b) M. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev. 2007, 107, 3117-3179; c) H. Pellissier, Tetrahedron 2010, 66, 8341-8375; d) A. Ahmad, I. Marek, Chem. Eur. J. 2010, 16, 9712-9721; for recent selected examples, see: e) F. López, A. Delgado, J. R. Rodríguez, L. Castedo, J. L. Mascareñas, J. Am. Chem. Soc. 2004, 126, 10262-10263; f) M. Gulías, Juan Durán, F. López, L. Castedo, J. L. Mascareñas, J. Am. Chem. Soc. 2007, 129, 11026-11027; g) J. Terao, M. Tomita, S. P. Singh, N. Kambe, Angew. Chem. 2010, 122, 148-151; Angew. Chem. Int. Ed. 2010, 49, 144-147; h) S. Saito, K. Maeda, R. Yamasaki, T. Kitamura, M. Nakagawa, K. Kato, I. Azumaya, H. Masu, Angew. Chem. 2010, 122, 1874-1877; Angew. Chem. Int. Ed. 2010, 49, 1830-1833; i) T. Inami, T. Kurahashi, S. Matsubara, Chem. Commun. 2011, 47, 9711-9713; j) A. P. Evans, P. A. Inglesby, J. Am. Chem. Soc. 2012, 134, 3635-3638.
- [3] Selected examples: a) J. R. Evans, E. J. Napier, R. A. Fletton, *J. Antibiot.* 1978, *31*, 952–958; b) T. Nemoto, M. Ojika, Y. Sakagami, *Tetrahedron Lett.* 1997, *38*, 5667–5670; c) T. Nemoto, G. Yoshino, M. Ojika, Y. Sakagami, *Tetrahedron* 1997, *53*, 16699–16710.
- [4] a) J. Zemlicka, in: Recent Advances in Nucleosides: Chemistry and Chemotherapy, (Ed.: C. K. Chu), Elsevier Science, Amsterdam, 2002, pp 327–357; b) J. Zemlicka, in: Advances in Antiviral Drug Design, (Ed.: E. De Clercq), Elsevier, Amsterdam, 2007, pp 113–167.
- [5] For relatively unconventional examples, see: a) J. Montgomery, G. M. Wieber, L. S. Hegedus, J. Am. Chem. Soc. 1990, 112, 6255–6263; b) A. T. McNichols, P. J. Stang, D. M. Addington, Tetrahedron Lett. 1994, 35, 437–440; c) V. Nair, A. T. Biju, S. C. Mathew, Synthesis 2007, 697–704.
- [6] A. G. Cook, S. B. Herscher, D. J. Schultz, J. A. Burke, J. Org. Chem. 1970, 35, 1550–1554.

- [7] a) C. Cheng, T. Shimo, K. Somekawa, M. Kawaminami, *Tetrahedron Lett.* 1997, 38, 9005–9008; b) C. Cheng, T. Shimo, K. Somekawa, M. Baba, *Tetrahedron* 1998, 54, 2031–2040; c) Y.-L. Qiu, M. B. Ksebati, R. G. Ptak, B. Y. Fan, J. M. Breitenbach, J.-S. Lin, Y.-C. Cheng, E. R. Kern, J. C. Drach, J. Zemlicka, *J. Med. Chem.* 1998, 41, 10–23; d) Y.-L. Qiu, J. Zemlicka, *Synthesis* 1998, 1447–1452.
- [8] M. Limbach, A. Lygin, M. Es-Sayed, A. de Meijere, Eur. J. Org. Chem. 2009, 1357–1364.
- [9] For comprehensive reviews, see: a) G. Evano, A. Coste, K. Jouvin, Angew. Chem. 2010, 122, 2902–2921; Angew. Chem. Int. Ed. 2010, 49, 2840–2859; b) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev. 2010, 110, 5064–5106.
- [10] a) H. Clavier, K. Le Jeune, I. De Riggi, A. Tenaglia, G. Buono, Org. Lett. 2011, 13, 308–311; b) T. Achard, A. Lepronier, Y. Gimbert, H. Clavier, L. Giordano, A. Tenaglia, G. Buono, Angew. Chem. 2011, 123, 3614–3618; Angew. Chem. Int. Ed. 2011, 50, 3552–3556; c) A. Tenaglia, S. Marc, L. Giordano, I. De Riggi, Angew. Chem. 2011, 123, 9228–9231; Angew. Chem. Int. Ed. 2011, 50, 9062–9065; d) H. Clavier, L. Giordano, A. Tenaglia, Angew. Chem. 2012, 124, 8776–8779; Angew. Chem. Int. Ed. 2012, 51, 8648–8651.
- [11] a) A. Tenaglia, L. Giordano, G. Buono, Org. Lett. 2006, 8, 4315–4318; see also: b) A. Tenaglia, K. Le Jeune, L. Giordano, G. Buono, Org. Lett. 2011, 13, 636–639.
- [12] For reviews on secondary phosphine oxides, see: a) L. Ackermann, Synthesis 2006, 1557–1571; b) L. Ackermann, R. Born, J. H. Spatz, A. Althammer, C. J. Gschrei, Pure Appl. Chem. 2006, 78, 209–214; c) L. Ackermann, Synlett 2007, 507–526; d) L. Ackermann, in: Phosphorus Ligands in Asymmetric Catalysis, Vol. 2, (Ed.: A. Börner), Wiley-VCH, Weinheim, 2008, pp 831–847; e) T. M. Shaikh, C.-M. Weng, F.-E. Hong, Coord. Chem. Rev. 2012, 256, 771–803.
- [13] a) J. Bigeault, L. Giordano, G. Buono, Angew. Chem.
  2005, 117, 4831–4835; Angew. Chem. Int. Ed. 2005, 44, 4753–4757; b) J. Bigeault, L. Giordano, I. De Riggi, Y. Gimbert, G. Buono, Org. Lett. 2007, 9, 3567–3570; c) J. Bigeault, I. De Riggi, Y. Gimbert, L. Giordano, G. Buono, Synlett 2008, 1071–1075.
- [14] The tricyclo[3.2.1.0<sup>2,4</sup>]oct-6-ene structure is known to rearrange into tetracyclo[3.3.0.0<sup>2,8</sup>.0<sup>4,6</sup>]octane following either a photoinduced process, see: a) H. Prinzbach, W. Eberbach, G. von Veh, Angew. Chem. 1965, 77, 454–455; Angew. Chem. Int. Ed. Engl. 1965, 4, 436–437; a thermal activation, see: b) D. Aue, H. M. J. Meshishnek, J. Am. Chem. Soc. 1977, 99, 223–231; c) J. Krebs, D. Guggisberg, U. Stämpfli, M. Neuenschwander, Helv. Chim. Acta 1986, 69, 835–848; or a rhodium-promoted pathway, see: d) H. C. Volger, H. Hogeveen, M. M. P. Gaasbeek, J. Am. Chem. Soc. 1969, 91, 218–219; e) D. Kaufmann, H.-H. Fick, O. Schallner, W. Spielmann, L.-M. Meyer, P. Gölitz, A. De Meijere, Chem. Ber. 1983, 116, 587–609.
- [15] a) P. R. Khoury, J. D. Goddard, W. Tam, *Tetrahedron* 2004, 60, 8103–8112; b) M. Balci, M. Güney, A. Dastan, A. Azizoglu, J. Org. Chem. 2007, 72, 4756–4762.
- [16] a) E. L. Eliel, S. H. Wilen, L. N. Mander, in: Stereochemistry of Organic Compounds, Wiley, New York,

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Adv. Synth. Catal. 2013, 355, 403-408

**1994**, pp 1137–1138; b) R. E. Lyle, G. G. Lyle, *J. Org. Chem.* **1957**, 22, 856; c) R. E. Lyle, G. G. Lyle, *J. Org. Chem.* **1959**, 24, 1679–1684; d) G. G. Lyle, E. T. Pelosi, *J. Am. Chem. Soc.* **1966**, 88, 5976–5979.

[17] For recent examples, see: a) S. Chandrasekhar, S. K. Gorla, *Tetrahedron: Asymmetry* 2006, 17, 92–98; b) C. Cismas, N. Vanthuyne, H. Rispaud; R. A. Varga, E.

Bogdan, C. Roussel, I. Grosu, *Chirality* 2011, 23, 167–171.

- [18] D. Gatineau, D. Moraleda, J.-V. Naubron, T. Bürgi, L. Giordano, G. Buono, *Tetrahedron: Asymmetry* 2009, 20, 1912–1917.
- [19] D. Gatineau, L. Giordano, G. Buono, J. Am. Chem. Soc. 2011, 133, 10728–10731.