

Catalytic Asymmetric Synthesis of Trisubstituted Aziridines

Li Huang and William D. Wulff*

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States

S Supporting Information

ABSTRACT: A method is described which provides for the direct asymmetric catalytic synthesis of trisubstituted aziridines from imines and diazo compounds. While unactivated imines were not reactive to α -diazo carbonyl compounds in which the diazo carbon was disubstituted, N-Boc imines react with both α -diazo esters and α -diazo-N-acyloxazolidinones to give trisubstituted aziridines with excellent diastereo- and enantioselectivities.

Significant advances in the catalytic asymmetric synthesis of aziridines have occurred in recent years; yet, limitations and challenges for continued improvement still exist.¹ We have had success with the reaction of diazo compounds with imines and chiral polyborate Brønsted acid catalysts derived from either the VANOL 6 or VAPOL 7 ligands (Scheme 1).^{1c,2-4} The analogous catalysts employing the BINOL ligands 8-10 have been less effective.^{1c,2c,2e} The VANOL and VAPOL catalysts can provide *cis*aziridines 3 with diazo acetate esters^{2,5} and diazomethyl ketones³ and trans-aziridines $5^{4,6}$ with sec-diazoacetamides. Despite these advances, however, a general method for the direct catalytic asymmetric synthesis of trisubstituted aziridines is still lacking.^{7,8} We report here the first highly asymmetric catalytic method for the synthesis of trisubstituted aziridines.

The MEDAM imine 11 (Scheme 2) became a focus for the search for a trisubstituted aziridine synthesis since it was among the best imine substituents we have identified.^{2c} The aziridination of the 11 is ten times faster than the corresponding diphenylmethyl imine and gives a much higher yield and asymmetric induction. For example, the reaction with ethyl diazoacetate gives aziridine 13a in 94% yield and 97% ee and is complete within 1 h at rt with 5 mol % catalyst (Scheme 2). We were thus surprised to find that the high reactivity of 11 with this catalyst did not translate to α -diazoproprionate 14a. Heating 11 and a 5-fold excess of diazo compound 14a with 20 mol % catalyst at 80 °C did not give any detectable amount of the aziridine 13b but, rather, lead only to a 98% recovery of the imine after 64 h (only 16% of **14a** survived).

The introduction of a *tert*-butyloxycarbonyl group (Boc) on the imine nitrogen was sufficient to induce reactivity even at -78 °C as indicated in Table 1. It was quickly found that the catalyst prepared from the VAPOL ligand gave very low induction (entry 2) whereas the catalyst prepared from the VANOL ligand under the same conditions gave the trisubstituted aziridine 17 in 83% ee (entry 3).⁹ This stark difference between these two ligands was unexpected, since the two are comparable in aziridinations giving *cis*-aziridines 3^{2c} and *trans*-aziridines 5^{4} (Scheme 1). The yields are modest and the reactions are quite fast, but the yields for 17a do not increase or decrease with increased reaction times (entries 3-5). The yields also do not

depend on whether an excess of imine 15 or diazo compound 14a is employed (entry 3 vs 6). The asymmetric induction does not increase significantly when the temperature is lowered to -100 °C (entry 7), but it does when the catalyst solution is precooled to -78 °C before addition to the solution of reactants (entry 8). Trisubstituted aziridines could also be obtained for the diazo compounds 14b and 14c, but the more hindered 14d with an iso-propyl group on the diazo carbon failed to give any detectable amount of aziridine (entry 14).

While reaction with the α -diazo esters 14 did give good to excellent asymmetric inductions, the yields of the trisubstituted aziridines were moderate at best (Table 1). In the search for a more suitable diazo partner for the N-Boc imines, we were pleased to find that the α -diazo-*N*-propanoyloxazolidinone **18a** reacted with imine 15 with the VANOL catalyst to give the aziridine 19a in 80% yield and 94% ee with >100:1 selectivity for the trans-diastereomer (Table 2, entry 1).¹⁰ As with the diazo ester 14a, the VAPOL catalyst gave low and reversed asymmetric induction (entry 1 vs 2). BINOL ligands 8-10 did not give useful selectivities (entries 3-6). The catalyst loading could be lowered to 10 mol % and the degree of asymmetric induction retained if the catalyst solution was precooled to -78 °C before addition to the reaction mixture (entry 1 vs 11). The optimized protocol was identified as that in entry 12 of Table 2.

The results of an examination of the scope of aziridination of various N-Boc imines with the α -diazo-N-acyloxazolidinone 18a and 18b are presented in Table 3. Uniformly excellent asymmetric inductions were observed for nearly all substrates. The reactions with electron-withdrawing groups are generally faster and those with para-substituents give high inductions, but this falls off with the meta-bromo substituent (entry 8). The para-methyl substituted aryl imine is slower, but the induction is high (entry 10) as it also is for the meta-methyl substituent (entry 12). The orthomethyl substituent is not tolerated, and there is essentially no reaction for this substrate (entry 13) nor for the imine from cyclohexane carboxaldehyde (entry 19). The para-methoxy substituent slows the reaction considerably and provides the aziridine 43 in only 15% yield in 11 h with 20 mol % catalyst (entry 14). However, the reactivity can largely be recovered for a paraoxygenated substituent in the guise of the pivaloyl substituted imine 30 which gives aziridine 44 in 69% yield and 98% ee with 10 mol % catalyst (entry 15). The reactions of the 3,4-dioxygenated phenyl imines 31 and 32 also gave aziridines in good yields and high asymmetric inductions. Finally, the α -diazo-N-butanyloxazolidinone 18b also gives trisubstituted aziridines with good yields and excellent asymmetric inductions.

The method for the asymmetric catalytic synthesis of trisubstituted trans-aziridines described here and our previously

April 23, 2011 Received: Published: May 20, 2011

Scheme 2

published^{2b} work on the alkylation of disubstituted *cis*-azridines together provide stereocomplementary avenues to cis- and transtrisubstituted aziridines. Specifically, the VANOL catalyst can be utilized to obtain either the cis- or trans-isomers of trisubstituted aziridines-2-carboxylate esters in either a two- or one-step process, respectively. (Scheme 3). This is illustrated in the enantio- and diastereoselective synthesis of the cis- and trans-isomers of the N-Boc aziridines 17a shown in Scheme 4. The reaction of the BUDAM imine 48 (Scheme 1) and ethyl diazoacetate 12 with the VANOL catalyst gives the cis-aziridine 49 in 97% yield and 98% ee (Scheme 4).^{2c} It is known that aziridines of this type can be alkylated with retention,^{2b} and thus, in the present case, methylation, removal of the BUDAM group, and reaction with Boc anhydride give cis-17a (Scheme 4), the diastereomer of the product obtained from the aziridination of N-Boc imine 15 with the diazo ester 14a (Table 1) and also a diastereomer with the aziridine obtained from the reaction of 15 with the diazo oxazolidinone 18a and subsequent ethanolysis (Scheme 4). Note that the (S)-VANOL catalyst gives different face selectivities with 48 and 15. The same chemistry can be used to prepare the *cis*-aziridines 17b and 17c which were used as standards to check the diastereoselection of the aziridinations of diazo esters 14b and 14c shown in Table 1. Thus, with the proper choice of the catalytic asymmetric method and the proper choice of the chirality of the ligand, all four stereoisomers of the trisubstituted aziridines 17 can be obtained in good yield and with very high diastereoselectivity and optical purity.

The possibility for direct access to *cis*-trisubstituted aziridines is suggested by the observation that, while diazo acetamides of the type **4** containing a secondary amide give *trans*-aziridines of the type $S^{4,6e,6f}$ (Scheme 1), tertiary diazo acetamides lacking the N–H bond will react with a switch in the diastereoselectivity to give *cis*-aziridines.^{2c,4} The pertinent question thus becomes, will a

Table	1.	Cataly	tic As	ymmetric	: Azirio	lination	of	α-Diazo
Esters	14	a						

Ph ^{Boc}	$\begin{array}{c} 0\\ R \\ \hline \\ 0Et\\ N_2 \\ 14\\ \hline \\ (R) \cdot VANOL\\ (R) \cdot VAPOL\\ catalyst\\ CH_2Cl_2, -78 \ ^\circ C \end{array} \in \mathbb{C}$		NHBoc tO ₂ C R 16		Ph R trans-(2 <i>S</i> ,3 <i>R</i>)-17		Boc + Ph CO ₂ Et <i>cis</i> -(2 <i>R</i> ,3 <i>R</i>)-17	
entry diazo	R	ligand	mol % cat	time (min)	% yield 16 ^b	trans/ cis ^b	% yield <i>trans</i> ^{b,c}	% ee trans ^d
1° 14a 2° 14a 3 14a 4 14a 5 14a 6° 14a 7° 14a $8^{\circ, f}$ 14a $9^{\circ, f}$ 14a $10^{\circ, f}$ 14a $11^{\circ, f, i}$ 14a $12^{\circ, f}$ 14b $13^{\circ, f}$ 14c	Me Me Me Me Me Me Et <i>n</i> -Pr	TfOH (<i>R</i>)-VAPOL (<i>R</i>)-VANOL (<i>S</i>)-VANOL (<i>S</i>)-VANOL (<i>S</i>)-VANOL (<i>S</i>)-VANOL	20 20 20 20 20 20 20 20 20 20 20 20 20 2	15 60 15 60 240 15 15 15 30 30 15 60 60	25 14 13 13 12 9 12 9 11 23 nd nd	3:1 12:1 20:1 20:1 20:1 10:1 20:1 25:1 25:1 14:1 16:1 5:1	42 49 48 48 45 32 (46) 36 34 27 (32) (25)	5 83 83 84 nd 86 -93 84 83 88 -82 -70

^{*a*} Unless otherwise specified, all reactions were performed with a solution of 0.10 mmol of diazo compound with 2.0 equiv of imine 15 in 0.6 mL of CH₂Cl₂ at -78 °C. A solution of the catalyst in 0.4 mL of CH₂Cl₂ was then added dropwise over a few minutes, and then the solution stirred for the indicated time after which the reaction was quenched by the addition of 0.5 mL of Et₃N. The catalyst was prepared by heating 1 equiv of the ligand, 3 equiv of BH₃·SMe₂, 2 equiv of PhOH, and 3 equiv of H₂O in toluene at 100 °C for 1 h followed by removal of volatiles at 100 °C for 0.5 h at 0.1 mmHg. The residue was then taken up in the proper amount of CH₂Cl₂ to have the desired amount of catalyst in 0.4 mL.^b Determined from the ¹H NMR spectrum of the crude reaction mixture with Ph₃CH as internal standard, nd = not determined. ^c The yields in parentheses are isolated yields after silica gel chromatography. ^d Determined by HPLC on purified trans-17. When trans-17 is not purified, % ee was determined on reaction mixture that was passed through silica gel. A minus sign indicates that the (2R,3S)-enantiomer of trans-17 is formed. ^e 3.0 equiv of imine used. ^fThe catalyst was added as a solution precooled to -78 °C. ^g Reaction performed with 0.10 mmol of imine and 4.0 equiv of diazo ester 14a. ^h Solvent is a 3:2 Et₂O/CH₂Cl₂ mixture (1.0 mL total), and the temperature was -100 °C.ⁱ Catalyst prepared as in footnote a except that the ratio of VANOLPhOH/BH₃/SMe₂ was 1:1:1 and no H₂O was used.

secondary α -diazo amide of the type **51** (Scheme 5), which has two substituents on the diazo carbon, also reverse the diastereoselectivity to give the *cis*-trisubstituted aziridines? The answer is that while there is a large change in the level of diastereoselectivity from >100:1 for the diazo compound **18a** to 1.5:1 for diazo compound **51**, the *trans*-compound is still the major product. The low yields observed at complete conversion and the low asymmetric inductions found for both *cis*- and *trans*-**52** serve to stem any further consideration for continued investigation of this approach to *cis*-trisubstituted aziridines.

The synthetic utility of the oxazolidinone function of the trisubstituted aziridines is illustrated in the facile conversion of **19a** to the ester **53** and the acid **54** (Scheme 5). The absolute configuration of **53** has been reported,⁷¹ and thus conversion of **19a** to **53** establishes the absolute configuration of **19a**. The conversion of **54** to the amide **52** serves to identify the absolute configuration of the *trans*-aziridine **52** obtained from the reaction of the N–H diazo amide **51**. Note that the difference in the diastereoselectivity between *cis*- and *trans*-**52** is the result of the change in the facial selectivity to the imine and not to the diazo compound. This same phenomenon was observed in the catalytic asymmetric synthesis of *cis*- and *trans*-disubstituted aziridines (Scheme 1).⁴

Table 2. Optimization of the Aziridination of α -Diazo-*N*-Acyloxazolidinone 18a^{*a*}

Ph´ 1	N ^{Boc} + 5	Me N2 18		catalyst solvent, –78 °	°C	Ph Me trans-(2S,3R) trans:cis = >1	0 N 0- 19a 100:1
entry	ligand	mol % cat	solvent	time (h)	conv % ^b	% yield trans- 19a °	% ee trans-19a ^d
1	(<i>R</i>)-6	20	CH ₂ Cl ₂	4	100	80	94
2	(<i>R</i>)-7	20	CH ₂ Cl ₂	4	66	21	-8
3	(<i>R</i>)-8	20	CH ₂ Cl ₂	4	92	56	40
4 ^e	(<i>R</i>)-8	60	CH ₂ Cl ₂	4	100	65	-16
5	(<i>R</i>)-9	20	CH ₂ Cl ₂	4	100	79	53
6	(<i>R</i>)-10	20	CH ₂ Cl ₂	4	65	14	0
7	(<i>R</i>)-6	10	CH ₂ Cl ₂	4	100	78	90
8	(<i>S</i>)-6	10	toluene	6	96	74	-84
9	(<i>S</i>)-6	10	THF	8	93	67	-77
10	(<i>S</i>)-6	10	Et ₂ O	8	100	83	-79
11 [†]	(<i>S</i>)-6	10	CH ₂ Cl ₂	4	100	78	-94
12 ^{f,g}	(<i>S</i>)-6	10	CH ₂ Cl ₂	6	98	72	-94
13 ^{f,h}	(<i>S</i>)-6	10	CH ₂ Cl ₂	6	85	58	-94
14 ^{f,i}	(<i>S</i>)-6	20	CH ₂ Cl ₂	4	100	80	-95

^a Unless otherwise specified, all reactions were performed with a solution of 0.10 mmol of diazo compound with 3.0 equiv of imine 15 in CH₂CI₂ at -78 °C at 0.2 M in 18a with 10 mol % catalyst and 0.1 M with 20 mol % catalytst. A solution of the catalyst in the proper amount of CH2CI2 to give the desired concentration was then added dropwise over a few minutes, and then the solution stirred for 4-8 h at -78 °C after which the reaction was quenched with 0.5 mL of Et₃N. The catalyst was prepared as described in Table 1. cis-19a could not be detected by ¹H NMR in the crude reaction mixtures. The trans/cis selectivity was determined to be >100:1 for the reaction in entry 11 (see Supporting Information). ^b Determined from the ¹H NMR spectrum of the crude reaction mixture. ^c Isolated yields after silica gel chromatography. ^d Determined by HPLC on purified trans-19a. A minus sign means that trans-(2R,3S) 19a was formed. ^{*e*} The catalyst was prepared by heating 2 equiv of (R)-BINOL 8 and 1 equiv of BH₃/SMe₂ in toluene at 100 °C for 1 h followed by removal of volatiles at 100 °C for 0.5 h at 0.1 mmHg. The catalyst loading of 60 mol % is based on amount of ligand used.^{*f*} The catalyst was added as a solution precooled to the reaction temperature.^g 2.0 equiv of 15 used.^h 1.5 equiv of 15 used. ^{*i*} Catalyst prepared as indicated in footnote i of Table 1.

There has been a large body of work devoted to the synthesis of α, α -disubstituted amino acids, but only a few involve aziridines as intermediates.¹¹An example of how biological activity is a function of α -substitution is L-dopa **58** and L-methyldopa **59**. L-dopa is used clinically in the treatment of Parkinson's disease, whereas L-methyldopa is an antihypertensive agent used in the treatment of high blood pressure, especially gestational hypertension. We have previously reported that the disubstituted aziridine *cis*-(2*S*,3*S*)-**57** can be used to access L-dopa.^{2a} Here, we show that the trisubstituted aziridine *trans*-(2*S*,3*R*)-**46** can provide access to L-methyldopa. Treatment of **46** with bromomagnesium methoxide allows for cleavage of the oxazolidinone and generates the methyl ester **55** in 86% yield. The aziridine ring can be opened by simple hydrogenation to give the α, α -disubstituted amino ester **56** in 92% yield as a protected form of L-methyldopa (Scheme 6).

With the development of the catalytic asymmetric synthesis of trisubstituted aziridines presented here, it will be of interest to investigate the mechanistic differences in the reactions of electron-rich *N*-alkyl imines giving disubstituted aziridines^{2b,4b} and electron-poor *N*-Boc imines giving trisubstituted aziridines, both from VANOL derived borate catalysts. The catalyst for these reactions is prepared⁹ in the manner used to generate the catalyst for the aziridination with *N*-alkyl imines where the imine causes the assembly of the boroxinate catalyst.^{2d,e} Given the lower

Table 3. Catalytic Asymmetric Aziridination with α -Diazo-*N*-Acyloxazolidinone 18^{*a*}

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(<i>R</i>)-VANOL catalyst CH ₂ Cl ₂ , −78 °C t			R ¹ R ¹ rans-(2 <i>S</i> ,3 <i>R</i>)- 19, 34-47		
entry	imine	R ¹	R ²	mol % cat	time (h)	conv % ^b	aziridine	% yield ^c	ee d
1	15	C ₆ H ₅	Me	10	6	98	19a	72	-94
2	20	4-NO ₂ C ₆ H ₄	Me	10	6	100	34	62	90
3	21	4-CF ₃ C ₆ H ₄	Me	10	1	100	35	58	95
4	22	4-BrC ₆ H ₄	Me	10	8	100	36a	70	96
5	23	4-CIC ₆ H ₄	Me	10	6	92	37	74	-93
6	24	4-FC ₆ H ₄	Me	20	6	100	38	64	-96
7	24	4-FC ₆ H ₄	Me	10	8	80	38	55	-96
8	25	3-BrC ₆ H ₄	Me	10	4	100	39	56	85
9	26	4-MeC ₆ H ₄	Me	10	9	60	40	42 (70)	95
10	26	4-MeC ₆ H ₄	Me	10	27	100	40	83	-97
11	27	3-MeC ₆ H ₄	Me	20	6	100	41	83	92
12	27	3-MeC ₆ H ₄	Me	10	8	84	41	71	92
13	28	2-MeC ₆ H ₄	Me	20	9		42	trace	_
14	29	4-MeOC ₆ H ₄	Me	20	11	40	43	15	_
15	30	4-PivOC ₆ H ₄	Me	10	11	87	44	69	98
16	31	3,4-(OAc) ₂ C ₆ H ₃	Me	10	11	100	45	65	88
17	32	3,4-(OPiv) ₂ C ₆ H ₃	Me	20	10	100	46	63	88
18	32	3,4-(OPiv) ₂ C ₆ H ₃	Me	10	10	85	46	46	88
19	33	cyclohexyl	Me	20	8	_	47	na na (na)	_
20	15	C ₆ H ₅	Et .	10	9	35	190	30 (86)	83
21	15	C ₆ H ₅	Et	10	30	68	190	55 (81)	-85
22	22	4-BrU ₆ H ₄	Et	20	0	100	360	60	-98
23	22	4-BrU ₆ H ₄	Εť	10	đ	100	30D	02	94

^{*a*} Unless otherwise specified, all reactions were performed as indicated in entry 12 in Table 2. The reaction with 20 mol % catalyst performed at 0.1 M in **18**, and those with 10 mol % catalyst performed at 0.2 M. *cis*-Aziridines could not be detected in the ¹H NMR spectrum of the crude reaction mixture. The data from all reactions with 10 mol % catalyst are the average of 2 runs except entry 10. ^{*b*} Determined from the ¹H NMR spectrum of the crude reaction mixture. ^{*c*} Isolated yields after silica gel chromatography. Yields in parentheses are based on recovered diazo compound **18**. nd = not detected. ^{*d*} Determined by HPLC on purified aziridine.

Scheme 3

Scheme 4

Scheme 6

basicity of the *N*-Boc imines, it is not clear that the assembly of a boroxinate is induced. Further studies on the structure of the catalyst for these reactions are needed.

ASSOCIATED CONTENT

Supporting Information. Synthetic procedures and spectral data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author wulff@chemistry.msu.edu

ACKNOWLEDGMENT

This work was supported by NSF Grant CHE-0750319. We thank Dr. Zhenjie Lu for helpful discussions.

REFERENCES

 (a) Müller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905.(b) Aziridines and Epoxides in Organic Synthesis; Yudin, A. K., Ed.; Wiley-VCH: Weinheim, 2006. (c) Zhang, Y.; Lu, Z.; Wulff, W. D. Synlett 2009, 2715.
 (d) Johnston, J. N.; Muchalski, H.; Troyer, T. L. Angew. Chem., Int. Ed. 2010, 49, 2290. (e) Pellissier, H. Tetrahedron 2010, 66, 1509. (2) (a) Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. 2000, 39, 4518. (b) Patwardan, A.; Pulgam, V. R.; Zhang, Y.; Wulff, W. D. Angew. Chem., Int. Ed. 2005, 44, 6169. (c) Mukherjee, M.; Gupta, A. K.; Lu, Z.; Zhang, Y.; Wulff, W. D. J. Org. Chem. 2010, 75, 5643. (d) Hu, G.; Gupta, A. K.; Huang, R. H.; Mukherjee, M.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 14669. (e) Huang, L.; Wulff, W. D. Unpublished results. (3) (a) Deng, Y.; Lee, Y. R.; Newman, C. A.; Wulff, W. D. Eur. J. Org.

Chem. 2007, 2068. (b) Ren, H.; Wulff, W. D. Org. Lett. 2010, 12, 4908.
(4) (a) Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13100.
(b) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13104.

(5) For other asymmetric catalysts for *cis*-aziridinations, see: (a) Hansen, K. B.; Finney, N. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. Engl. **1995**, 34, 676. (b) Rasumussen, K. G.; Jørgensen, K. A. J. Chem. Soc., Perkin Trans. 1 **1997**, 1287. (c) Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Chem. Soc., Perkin Trans. 1 **1999**, 2293. (d) Mayer, M. F.; Hossain, M. M. J. Organomet. Chem. **2002**, 654, 202. (e) Krumper, J. R.; Gerisch, M.; Suh, J. M.; Bergman, R. G.; Tilley, T. D. J. Org. Chem. **2003**, 68, 9705. (f) Redlich, M.; Hossain, M. M. Tetrahedron Lett. **2004**, 45, 8987. (g) Wipf, P.; Lyon, M. A. ARKIVOC **2007**, *xii*, 91. (h) Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. **2009**, 11, 2445. (i) Ranocchiari, M.; Mezzetti, A. Organometallics **2009**, 28, 3611.

(6) For other asymmetric catalysts for *trans*-aziridinations, see: (a) Aggarwal, V. K.; Thompson, A.; Jones, R. V. H.; Standen, M. C. H. J. Org. Chem. 1996, 61, 8368. (b) Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M. Angew. Chem., Int. Ed. 2001, 40, 1433. (c) Aggarwal, V. K.; Ferrara, M.; O'Brien, C. J.; Thompson, A.; Jones, R. V. H.; Fieldhouse, R. J. Chem. Soc., Perkin Trans. 1 2001, 1635. (d) Aggarwal, V. K.; Vasse, J.-L. Org. Lett. 2003, 5, 3987. (e) Hashimoto, T.; Uchiyama, N.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 14380. (f) Zeng, X.; Zeng, X.; Xu, Z.; Lu, M.; Zhong, G. Org. Lett. 2009, 11, 3036.

(7) For the asymmetric synthesis of trisubstituted aziridines with chiral auxiliaries, see: (a) Davis, F. A.; Liu, H.; Reddy, G. V. *Tetrahedron Lett.* **1996**, 37, 5473. (b) Li, A.-H.; Zhou, Y.-G.; Dai, L.-X.; Hou, X.-L.; Xia, L.-J.; Lin, L. *Angew. Chem., Int. Ed. Engl.* **1997**, 36, 1317. (c) Davis, F. A.; Liu, H.; Zhou, P.; Fang, T.; Reddy, G. V.; Zhang, Y. J. Org. Chem. **1999**, 64, 7559. (d) Davis, F. A.; Deng, J.; Zhang, Y.; Haltiwanger, R. C. *Tetrahedron* **2002**, 58, 7135. (e) Satoh, T.; Fukuda, Y. *Tetrahedron* **2003**, 59, 9803. (f) Di Chenna, P. H.; Robert-Peillard, F.; Dauban, P.; Dodd, R. H. Org. Lett. **2004**, 6, 4503. (g) Denolf, B.; Mangelinckx, S.; Törnroos, K. W.; De Kimpe, N. Org. Lett. **2006**, 8, 3129. (h) Davis, F. A.; Deng, J. Org. Lett. **2007**, 9, 1707. (i) Zhang, X.-J.; Yan, M.; Huang, D. Org. Biomol. Chem. **2009**, 7, 187. (j) Hashimoto, T.; Nakatsu, H.; Watanabe, S.; Maruoka, K. Org. Lett. **2011**, 6, 607–613.

(8) There are a few reports that described moderate to good inductions or isolated examples: (a) Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M. Angew. Chem., Int. Ed. 2001, 40, 1433. (b) Liang, J.-L.; Yuan, S.-X.; Chan, P. W. H.; Che, C.-M. Tetrahedron Lett. 2003, 44, 5917. (c) Fioravanti, S.; Mascia, M. G.; Pellacani, L.; Tardella, P. A. Tetrahedron 2004, 60, 8073. (d) Pesciaioli, F.; De Vincentiis, F.; Galzerano, P.; Bencivenni, G.; Bartoli, G.; Mazzanti, A.; Melchiorre, P. Angew. Chem., Int. Ed. 2008, 47, 8703.

(9) Following a previously developed protocol (ref 4a), the catalyst was prepared by heating 1 equiv of the ligand, 3 equiv of BH₃•SMe₂, 2 equiv of PhOH, and 3 equiv of H₂O in toluene at 100 °C for 1 h followed by removal of volatiles at 100 °C for 0.5 h at 0.1 mmHg.

(10) Maruoka and co-workers reported (refs 7i and 7j) that diazo compound 18a reacts with imine 15 in the presence of 20 mol% BF₃•OEt₂ to give aziridine 19a in 52% yield and with a >20:1 trans/ cis ratio.

(11) (a) Soloshonok, V. A.; Sorochinsky, A. E. Synthesis 2010, 2319.
(b) Cativiela, C.; Diaz-de-Villegas, M. D. Tetrahedron: Asymmetry 2007, 18, 569. (c) Cativiela, C.; Ordonez, M. Tetrahedron: Asymmetry 2009, 20, 1. (d) Vogt, H.; Brase, S. Org. Biomol. Chem. 2007, 5, 406.