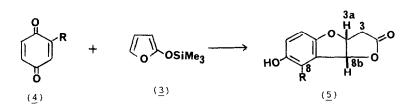
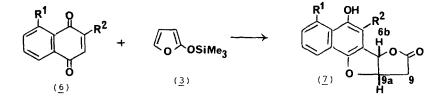

1,4-ADDITION OF 2-TRIMETHYLSILYLOXYFURAN TO QUINONES: A FACILE ROUTE TO THE FURO[3,2-b]BENZOFURAN NUCLEUS

Margaret A. Brimble* and Jennifer J. Gibson Department of Chemistry and Biochemistry Massey University, Palmerston North, New Zealand and Raymond Baker*, Mark T. Brimble, Alex A. Kee and Mary J. O'Mahony Department of Chemistry, The University, Southampton SO9 5NH, England

The uncatalysed addition of 2-trimethylsilyloxyfuran (3) to a range of activated quinones (4) and (6) yields the crystalline adducts (5) and (7) in 51-91% yield. This novel furofuran-annulation to a quinone system provides a facile entry to the furo[3,2-b]benzofuran ring system.


Panacene (<u>1</u>), a potent fish antifeedent, is one of several halogenated marine natural products isolated from the sea hare <u>Aplysia brasiliana¹</u>. Spectroscopic techniques revealed the presence of the uncommon <u>cis</u>-3a,8b-dihydrofuro[3,2-b]benzofuran ring system also present in the alkaloid rutagravine² and in a decomposition product (<u>2</u>) of the coumarin micromelin³.


Previous syntheses⁴⁻⁷ of the <u>cis</u>-3a,8b-dihydrofuro[3,2-b]benzofuran ring system include the oxidation of a benzofuran with manganic acetate⁴, Fétizon oxidation of a primary B-alkoxycyclopropylcarbinol⁵, reduction of a 2-coumaranonylacetic acid⁶ and an electrophilic cyclisation of an unsaturated alcohol^{7a,b}. All the above approaches, however, involved a stepwise construction of the desired ring system.

We now wish to report the addition of 2-trimethylsilyloxyfuran $(\underline{3})$ to a range of activated benzoquinones $(\underline{4})$ which provide an elegant entry into the furo[3,2-b]benzofuran ring system. It was anticipated that after initial 1,4-addition of 2-trimethylsilyloxy-furan $(\underline{3})$ ortho to the activating group on the quinone ring, aromatization, followed by a second 1,4-addition of the resulting phenoxy group onto the neighbouring butenolide moiety might occur, providing the desired heterocycle $(\underline{5})$.

2-Trimethylsilyloxyfuran (3) was prepared⁸ from butenolide using triethylamine and chlorotrimethylsilane. The 2-substituted benzoquinones (4a-e) were prepared from the corresponding hydroquinones by oxidation with manganese dioxide or silver oxide. Addition of a solution of the furan (3) in acetonitrile to a solution of the quinones (4a-c) in acetonitrile, cooled to 0°C, rapidly provided the adducts (5a-c)⁹ in 51-75% yields. Typically, (5a) was obtained in a yield of 75%, m.p. 171.5-172°C (Found: C, 57.23; H, 3.9. C₁₂H₁₀O₆ requires C, 57.61; H, 4.03%); $\delta_{\rm H}$ (80 MHz, d⁶-acetone) 2.93-3.17 (2H, m, 3-H and 3'-H), 4.01 (3H, s, OMe), 5.47 (1H, ddd, J_{3a,8b} 5.9, J_{3a,3} 6.1, J_{3a,3}, 1.4Hz, 3a-H), 6.44 (1H, d, J_{3a,8b} 5.9Hz, 8b-H), 6.99 (1H, d, J_{5,6} 9.2Hz, Ar-H) and 10.51 (1H, s, -OH); $v_{\rm max}$ (nujol) 3600-3100, 1770 and 1680 cm⁻¹.

(a) $R = -CO_2Me$, (b) R = -COMe, (c) R = -SOPh, (d) $R = -CO_2CH_2CCI_3$, (e) $-CO_2CH_2COPh$

(5) (a) $R^1 = H$, $R^2 = CO_2 Me$, (b) $R^1 = OMe$, $R^2 = CO_2 Me$

Similarly, reactions of the naphthoquinones ($\underline{6}a$) and ($\underline{6}b$) yielded ($\underline{7}a$), 91%, m.p. 247-247.5°C $\delta_{\rm H}$ (360MHz, CDCl₃), 3.13 (2H, d, J_{9,9a} 3.9Hz, 9-H_{ax}+9-H_{eq}), 4.08 (3H, s, CO₂CH₃), 5.48 (1H, dt, J_{9a,9} 3.9Hz, J_{9a,6b} 6.3Hz, 9a-H), 6.47 (1H, d, J_{9a,6b} 6.3Hz, 6b-H), 7.64 (1H, dd, J 7Hz and 7Hz Ar-H), 7.70 (1H, dd, J 7Hz and 7Hz, Ar-H), 7.95 (1H, d, J 7Hz, Ar-H), 8.42 (1H, d, J 7Hz, Ar-H), 11.98 (1H, s, O-H) $\nu_{\rm max}$ (nujol) 3400, 1770, 1660 cm⁻¹; and ($\underline{7}b$), 70%, m.p. 2090C (decomp). In all cases, the addition reactions took place in a matter of seconds and the use of other solvents such as acetone, methanol, chloroform and dimethylformamide resulted in the same products in comparable yields.

This novel furofuran-annulation to a quinone ring system was established from the ¹H nmr spectrum of the adducts (<u>5</u>a-c). The magnitude of the coupling constant $J_{3a,8b}$ 5.7-6.2Hz found in (<u>5</u>a) was in agreement with that found in panacene (<u>1</u>)¹, consistent with the <u>cis</u> fusion of the furofuran rings.

REFERENCES

- 1. R. Kinnel, A.J. Duggan, T. Eisner and J. Meinwald, Tetrahedron Lett., 1977, 18, 3913
- 2. A. Nahrstedt, V. Wray, B. Engel and R. Reinhard, Planta Med., 1985, 6, 517
- 3. S.K. Talapatra, N.C. Ganguly, S. Goswami and B. Talapatra, <u>J.Nat.Prod</u>., 1983, <u>46</u>, 401
- 4. A. Kasahara, T. Izumi, A. Suzuki and T. Takeda, Bull.Chem.Soc.Jpn., 1976, 49, 3711
- E. Wenkert, M.E. Alonso, B.L. Buckwater and R.L. Sanchez, <u>J.Am.Chem.Soc</u>., 1983, <u>105</u>, 2021
- 6. P.C. Arora and P. Brassard, Can.J.Chem., 1971, 49, 3477
- (a) K.S. Feldman, C. Crawford Mechem and L. Nader, <u>J.Am.Chem.Soc</u>., 1982, <u>104</u>, 4011;
 (b) K.S. Feldman, <u>Tetrahedron Lett</u>., 1982, <u>23</u>, 3031
- E. Yoshii, T. Koizumi, R. Kitatsuji, T. Kawazoe and T. Kaneko, <u>Heterocycles</u>, 1976, <u>4</u>, 1663
- 9. (<u>5</u>b), m.p. 162-164^oC, (72% yield); (<u>5</u>c), m.p. 154.5-155.5^oC, (51%); (<u>5</u>d), m.p. 188-188.5^oC, (76%); (<u>5</u>e), m.p. 201-204^oC, (70%).

(Received in UK 31 July 1987)