DOI: 10.1002/ejoc.201300998

Synthesis of *gem*-Difluoromethylenated Spiro- γ -butyrolactones by Employing PhSCF₂Si(CH₃)₃ as a gem-Difluoromethylenating Agent

Pages: 16

Adisak Chatupheeraphat,^[a] Darunee Soorukram,^[a] Chutima Kuhakarn,^[a] Patoomratana Tuchinda,^[a] Vichai Reutrakul,^[a] Chaveng Pakawatchai,^[b] Saowanit Saithong,^[b] and Manat Pohmakotr*^[a]

© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Keywords: Lactones / Difluoromethylenation / Cyclization / Fluorine

PhSCF₂TMS was utilized as a useful gem-difluoromethylene building block for the synthesis of gem-difluoromethylenated spiro- γ -butyrolactones. The radical cyclization of γ -alkenylγ-gem-difluoro(phenylsulfanyl)methyl-γ-butyrolactones provided *gem*-difluoromethylenated spiro- γ -butyrolactones.

Introduction

Fluorine-containing organic molecules are important structural motifs in a number of drug candidates, agrochemical reagents, and functional materials.^[1] Their unique properties stem from the enhanced chemical, physical, and metabolic stability of the fluorinated moiety. Accordingly, there has been great interest in the syntheses of fluorinecontaining natural product analogs and materials.^[2] Despite this interest, general synthetic methods for the introduction of the gem-difluoromethylene group into organic compounds are still highly desirable. Among several fluorinated reagents, PhSCF₂TMS (1; TMS = trimethylsilyl), first introduced by Prakash and co-workers, has gained popularity as a useful and convenient gem-difluoromethylene building block.^[3] In connection with our work on the synthesis of fluorine-containing organic molecules by using 1 as a gemdifluoromethylene radical anion equivalent (CF_2^{-}) ,^[4] we report herein a synthetic strategy to gem-difluoromethylenated spiro- γ -butyrolactones. It was envisaged that the gem-difluoromethylenated spiro-y-butyrolactones 5 could be derived from the key intermediates 3 by an intramolecular radical cyclization (Scheme 1). Compounds 3 should be obtained by sequential chemoselective fluoride-catalyzed nucleophilic addition of 1 and lactonization of γ -keto esters 2, prepared by treatment of succinic anhydride with alkenyl-

- http://chemistry.sc.mahidol.ac.th [b] Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand

Eur. J. Org. Chem. 0000, 0-0

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201300998.

magnesium bromides followed by esterification. Alternatively, the key compounds 3 should also be derived from γ gem-difluoro(phenylsulfanyl)methylated γ -butyrolactones 4, which could be prepared by the fluoride-catalyzed nucleophilic addition of 1 with phthalic anhydride. The treatment of 4 with alkenylmagnesium bromides followed by lactonization gave the key intermediates 3. Notably, the functionalized cyclopentanes and cyclohexanes bearing a spiro- γ -

Scheme 1. Proposed synthetic route to gem-difluoromethylenated spiro-γ-butyrolactones.

🕅 WILEY 师 ONI INF LIBRARY

[[]a] Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Rama VI Road, Bangkok 10400, Thailand E-mail: manat.poh@mahidol.ac.th

Pages: 16

FULL PAPER

butyrolactone moiety have been found in natural products that exhibit potential bioactivities.^[5] Therefore, there has been considerable interest in the development of efficient methods for the syntheses of spiro- γ -butyrolactones.^[6]

Results and Discussion

Preparation of 3 from Succinic Anhydride

To begin with, the requisite γ -keto esters **2a** and **2a'** were prepared in good yields by treatment of succinic anhydride with homoallylmagnesium bromide (2 equiv.) in the presence of a catalytic amount of CuI^[7] at -20 °C followed by esterification of the resulting ketocarboxylic acid with a mixture of SOCl₂/MeOH or SOCl₂/EtOH at -10 °C to room temp. for 2 h. The olefin cross-metathesis of **2a'** with styrene derivatives mediated by the 2nd generation Grubbs catalyst (2.5 mol-%) in CH₂Cl₂ at reflux gave keto esters **2b–d** as *E* isomers (Scheme 2).

Scheme 2. Preparation of γ -keto esters 2.

We initially screened for the optimized conditions for chemoselective fluoride-catalyzed nucleophilic addition of 1 with γ -keto ester **2a**.^[4d] The treatment of **1** (2 equiv.) with 2a in the presence of 10 mol-% of tetrabutylammonium fluoride (TBAF) in tetrahydrofuran (THF) at -78 °C to room temp. for 5 h followed by lactonization [*p*TsOH (cat.), CH_2Cl_2 , room temp.] gave the expected γ -butyrolactone **3a** in 46% yield together with 6 in 49% yield (Table 1, Entry 1). The formation of **3a** can be explained by the chemoselective fluoride-catalyzed nucleophilic addition of 1 to the keto group of 2a followed by lactonization under acidic treatment of the firstly formed γ -hydroxy ester adduct. The undesired adduct 6 was believed to derive from the nonselective fluoride-catalyzed addition of 1 to both of the keto and the ester groups of 2a followed by lactol formation upon acidic workup. A similar result was observed when tetrabutylammonium triphenyldifluorosilicate (TBAT) was employed in place of TBAF (Table 1, Entry 2). The reduction of the amount of 1 employed (from 2 equiv. to

1.5 equiv.) led to an improved yield of **3a** (75%, Table 1, Entry 3). Fortunately, the reaction with 1.2 equivalents of **1** in THF at -78 °C for 3.5 h gave an excellent yield of **3a** (92%) along with **6** (1%) (Table 1, Entry 4). Under the optimized reaction conditions (Table 1, Entry 4), the reaction of **2a**' readily proceeded to yield the expected γ -butyrolactone **3a** in 97% yield as a single product (Table 1, Entry 5). Under similar reaction conditions, keto esters **2b**-d afforded γ -gem-difluoro(phenylsulfanyl)methyl- γ -butyrolactones **3b**-d in high yields (93–94%) after lactonization. The reactions are summarized in Scheme 3.

Table 1. Fluoride-catalyzed nucleophilic addition of 1 to γ -keto esters 2 under various conditions.

[a] Yield of isolated product.

Scheme 3. Fluoride-catalyzed nucleophilic addition of 1 to γ -keto esters **2b–d**.

Preparation of 3 from Phthalic Anhydride

 γ -Lactol **4** was readily prepared in good yield (88%) by the TBAT-catalyzed nucleophilic addition of **1** (2 equiv.) to phthalic anhydride (Scheme 4) according to our previous report.^[3a] Primarily, the treatment of **4** with homoallylmagSynthesis of gem-Difluoromethylenated Spiro-y-butyrolactones

nesium bromide (5 equiv.) at -10 °C for 0.5 h gave the expected product **3e** (27% yield) along with **7** (53%) after lactonization. An improved yield of **3e** (52% yield) was achieved when the reaction with the Grignard reagent was performed at -78 °C for 3 h. However, a significant amount of **7** was also isolated (31% yield). In the presence of an additive, tetrabutylammonium bromide (TBAB, 5 equiv.), homoallylmagnesium bromide reacted with **4** at -78 °C for 3 h to provide **3e** (62% yield) and **7** (23% yield).^[8] Under similar reaction conditions, compounds **8a** and **7** were obtained in 58 and 29% yields, respectively, from the reaction of **4** with 1-pentenylmagnesium bromide. The formation of **7** could be rationalized by competitive reduction of the intermediate **4A** owing to a β -hydrogen transfer from the Grignard reagent during the reaction.

Scheme 4. Preparation of 3e and 8a from phthalic anhydride.

With compounds **3e** and **8a** in hand, we used them to prepare the alkenyl-substituted compounds **3f–h** and **8b–e** in good yields through olefin cross-metathesis, as summarized in Scheme 5. Except for **8e**, the alkenyl-substituted compounds were obtained as mixtures of E and Z isomers with the E isomer as the major isomer.

Scheme 5. Synthesis of **3f-h** and **8b-e** by olefin cross-metathesis of **3e** and **8a** with styrene derivatives.

Preparation of *gem*-Difluoromethylenated Spiro-γbutyrolactones 5

Having achieved the preparation of γ -difluoro(phenylsulfanyl)methyl- γ -butyrolactones **3** and **8**, which are the key intermediates for the syntheses of the desired γ -(*gem*-difluoromethylenated) spiro- γ -butyrolactones, we next investigated an intramolecular radical cyclization (Table 2). Thus, the exposure of **3a**-**d** to Bu₃SnH in the presence of a cata-

Table 2. Preparation of *gem*-difluoromethylenated spiro- γ -butyrolactones **5** by intramolecular radical cyclization of **3** and **8**.

Table 2. (continued)

[a] Isolated yield; a small amount of its diastereomer is included, see Supporting Information. [b] Isolated yield of pure diastereomer. [c] Isolated yield of a mixture of diastereomers. [d] The ratio of diastereoisomers was determined by ¹⁹F NMR spectroscopy of the crude mixture.

lytic amount of azobisisobutyronitrile (AIBN) in toluene at reflux overnight yielded the expected γ -(*gem*-difluoromethylenated) spiro- γ -butyrolactones **5a**–**d** in good yields (68– 83%) as mixtures of two diastereomers, which could be chromatographically separated.

Under similar reaction conditions, the radical cyclizations of **3e-h** and **8a-e** were achieved without difficulty to The relative stereochemistry of **5dA** and **5iA** were assigned on the basis of X-ray crystallography (Figure 1).^[9] Therefore, we speculate that the relative stereochemistries of **5aA–5cA** and **5jA–5lA** are similar to those of **5dA** and **5iA**.

Conclusions

In conclusion, we have developed a synthetic entry to gem-difluoromethylenated spiro- γ -butyrolactones by employing PhSCF₂TMS (1) as a "CF₂⁻⁻" building block. The present method proves potentially useful as a general synthetic entry to gem-difluoromethylenated spiro- γ -butyrolactones, which are versatile building blocks for the synthesis of natural products containing spiro- γ -butyrolactone moieties.

Experimental Section

General: All reactions were performed under an argon atmosphere, and glassware, needles, and syringes were oven-dried and then kept in a desiccator before use. THF was distilled from sodium-benzophenone ketyl. Dichloromethane, toluene, and ethanol were distilled from calcium hydride and stored over activated molecular sieves (4 Å). Methanol was distilled from Mg turnings. Column chromatography was performed by using Merck silica gel 60 PF₂₅₄ (Art 7736). Other common solvents [hexanes, ethyl acetate (EtOAc), and acetone] were distilled before use. The ¹H NMR spectra were recorded with a Bruker DPX-300 (300 MHz), Bruker-400 (400 MHz), or Bruker-500 (500 MHz) spectrometer with samples in CDCl₃ and tetramethylsilane as an internal standard. The ${}^{13}C$ NMR spectra were recorded with a Bruker DPX-300 (75 MHz), Bruker-400 (100 MHz), or Bruker-500 (125 MHz) spectrometer with samples in CDCl₃ and residual non-deuterated solvent peaks as an internal standard. The ¹⁹F NMR spectra were recorded with a Bruker-400 (376 MHz) or a Bruker-500 (470 MHz) spectrometer, and chemical shifts (δ) were measured with trichlorofluoromethane $(\delta = 0 \text{ ppm})$ as an internal standard. The IR spectra were recorded with either a Jasco A-302 or a Perkin-Elmer 683 infrared spectrometer. The mass spectra were recorded by using a Thermo Finnigan Polaris Q mass spectrometer. The high-resolution mass spectra were recorded with either an HR-TOF-MS Micromass model VQ-TOF2 or Finnigan MAT 95 mass spectrometer. Melting points were recorded with a Buchi 501 melting point apparatus. The Xray crystallographic analysis was performed with a Bruker SMART APEX CCD diffractometer.

4-Oxooct-7-enoic Acid: To a suspension of magnesium turnings (6.5 g, 268 mmol) in dry THF (80 mL) was slowly added a solution of homoallyl bromide (8.1 mL, 80 mmol) in dry THF (80 mL) with a cannula over a period of 1 h at room temperature. The reaction mixture was stirred at room temperature for 2 h. The resulting Grignard reagent was then added dropwise over a period of 30 min to a suspension of succinic anhydride (4 g, 40 mmol) and copper iodide (1.1 g, 6 mmol) in dry THF (40 mL) at -20 °C. The reaction mixture was stirred at -20 °C and then warmed to 0 °C for 3 h. The reaction mixture was quenched with HCl (2 M, 20 mL) at 0 °C and extracted with EtOAc (4 × 50 mL). The combined organic

Synthesis of *gem*-Difluoromethylenated Spiro-γ-butyrolactones

Figure 1. X-ray crystallographic structures of 5dA and 5iA.

phase was washed with brine (50 mL) and dried with anhydrous Na₂SO₄. After removal of the solvent, the crude product was purified by column chromatography (SiO₂, 30% EtOAc/0.5% AcOH in hexanes) to afford 4-oxooct-7-enoic acid (3.7 g, 59%) as a pale yellow viscous oil. FTIR (CHCl₃): $\tilde{v} = 3029$, 1713, 1404, 1368, 1286, 1256, 920 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 10.58-8.80$ (br, 1 H, OH), 5.79 (ddt, J = 16.7, 12.9, 6.4 Hz, 1 H, CH₂=CH), 5.09–4.90 (m, 2 H, CH₂=CH), 2.75–2.68 (m, 2 H, CH₂), 2.67–2.59 (m, 2 H, CH₂), 2.58–2.50 (m, 2 H, CH₂), 2.40–2.27 (m, 2 H, CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 208.0$ (C), 178.7 (C), 136.8 (CH), 115.3 (CH₂), 41.7 (CH₂), 36.8 (CH₂), 27.7 (CH₂), 27.6 (CH₂) ppm. MS: m/z (%) = 157 (100) [M + H]⁺, 139 (7), 111 (34), 95 (32), 55 (2). HRMS (ESI-TOF): calcd. for C₈H₁₂O₃Na [M + Na]⁺ 179.0684; found 179.0688.

General Procedure A for the Preparation of Keto Esters 2

Methyl 4-Oxooct-7-enoate (2a): A solution of 4-oxooct-7-enoic acid (704 mg, 4.5 mmol) in dry MeOH (20 mL) was treated with thionyl chloride (0.8 mL, 11 mmol) at -10 °C, and the mixture was slowly warmed to room temperature for 2 h. The reaction mixture was quenched with saturated Na₂CO₃ (10 mL), and the resulting mixture was evaporated and extracted with EtOAc (3 × 20 mL). The combined organic phase was washed successively with water (10 mL) and brine (10 mL) and dried with anhydrous Na₂SO₄. After removal of the solvent, the crude product was purified by col-

umn chromatography (SiO₂, 20% EtOAc in hexanes) to give **2a** (713 mg, 93% yield) as a colorless liquid. FTIR (CHCl₃): $\tilde{v} = 1733$, 1719, 1439, 1411, 1365, 1178, 919 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 5.73$ (ddt, J = 16.7, 12.9, 6.5 Hz, 1 H, CH₂=CH), 5.02–4.85 (m, 2 H, CH₂=CH), 3.60 (s, 3 H, OCH₃), 2.73–2.64 (m, 2 H, CH₂), 2.58–2.43 (m, 4 H, 2× CH₂), 2.30–2.20 (m, 2 H, CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 208.0$ (C), 173.2 (C), 136.9 (CH), 115.2 (CH₂), 51.7 (CH₃), 41.7 (CH₂), 37.0 (CH₂), 27.6 (2× CH₂) ppm. MS: *m*/*z* (%) = 171 (100) [M + H]⁺, 169 (18), 159 (4), 115 (13), 111 (20), 95 (25), 93 (2). HRMS (ESI-TOF): calcd. for C₉H₁₄O₃Na [M + Na]⁺ 193.0841; found 193.0840.

Ethyl 4-Oxooct-7-enoate (2a'): According to general procedure A, a mixture of 4-oxooct-7-enoic acid (1.6 g, 10 mmol) in dry EtOH (50 mL) and thionyl chloride (2.5 mL, 30 mmol) gave **2a'** (1.52 g, 82% yield) as a colorless liquid after purification by column chromatography (SiO₂, 20% EtOAc in hexanes). FTIR (CHCl₃): $\tilde{v} = 1718$, 1412, 1376, 1351, 1096, 919 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 5.78$ (ddt, J = 16.7, 12.9, 6.5 Hz, 1 H, CH₂=CH), 5.07–4.90 (m, 2 H, CH₂=CH), 4.10 (q, J = 7.2 Hz, 2 H, OCH₂), 2.75–2.63 (m, 2 H, CH₂), 2.61–2.48 (m, 4 H, 2× CH₂), 2.40–2.20 (m, 2 H, CH₂), 1.22 (t, J = 7.2 Hz, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 208.1$ (C), 172.7 (C), 136.9 (CH), 115.2 (CH₂), 60.5 (CH₂), 41.7 (CH₂), 37.0 (CH₂), 27.9 (CH₂), 27.6 (CH₂), 14.1 (CH₃) ppm. MS: *m/z* (%) = 185 (100) [M + H]⁺, 129 (4), 111

FULL PAPER

(16), 95 (18). HRMS (ESI-TOF): calcd. for $C_{10}H_{16}O_3Na$ [M + Na]⁺ 207.0997; found 207.1003.

General Procedure B for the Preparation of Keto Esters 2b-d

(E)-Ethyl 4-Oxo-8-phenyloct-7-enoate (2b): A solution of 2a' (1.9 g, 10 mmol) and styrene (4.5 mL, 40 mmol) in dry CH₂Cl₂ (40 mL) was treated with a catalytic amount of Grubbs' 2nd generation catalyst (212 mg, 0.3 mmol) in CH₂Cl₂ (10 mL). The reaction mixture was heated to reflux overnight. After completion of the reaction, the solvent was evaporated, and the crude product was purified by column chromatography (SiO₂, 100% hexanes to 10% EtOAc in hexanes) to give 2b (1.6 g, 62% yield) as a pale yellow viscous oil. FTIR (CHCl₃): $\tilde{v} = 1721$, 1447, 1412, 1376, 1350, 1192, 1097, 966 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.40–7.26 (m, 4 H, 4× ArH), 7.25–7.16 (m, 1 H, ArH), 6.42 (d, J = 15.9 Hz, 1 H, CH=CH), 6.21 (dt, J = 15.9, 6.7 Hz, 1 H, CH=CH), 4.15 (q, J = 7.2 Hz, 2 H, OCH₂), 2.83–2.71 (m, 2 H, CH₂), 2.71–2.58 (m, 4 H, $2 \times CH_2$, 2.58–2.46 (m, 2 H, CH₂), 1.27 (t, J = 7.2 Hz, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 208.0 (C), 172.7 (C), 137.3 (C), 130.7 (CH), 128.7 (CH), 128.4 (2× CH), 127.0 (CH), 125.9 $(2 \times CH)$, 60.6 (CH₂), 42.2 (CH₂), 37.1 (CH₂), 27.9 (CH₂), 27.0 (CH₂), 14.1 (CH₃) ppm. MS: m/z (%) = 261 (100) [M + H]⁺, 259 (11), 215 (3), 169 (4), 117 (3). HRMS (ESI-TOF): calcd. for $C_{16}H_{20}O_3Na [M + Na]^+$ 283.1310; found 283.1297.

(E)-Ethyl 4-Oxo-8-(4-tolyl)oct-7-enoate (2c): According to general procedure B, the reaction of 2a' (1.8 g, 10 mmol), 4-methylstyrene (5 mL, 40 mmol), and Grubbs' 2nd generation catalyst (212 mg, 0.3 mmol) in dry CH_2Cl_2 (50 mL) gave 2c (1.7 g, 64% yield) as a pale yellow viscous oil after purification by column chromatography (SiO₂, 100% hexanes to 10% EtOAc in hexanes). FTIR $(CHCl_3)$: $\tilde{v} = 1720, 1514, 1445, 1412, 1376, 1192, 1034, 969 cm^{-1}$. ¹H NMR (500 MHz, CDCl₃): δ = 7.22 (d, J = 8.1 Hz, 2 H, 2× ArH), 7.09 (d, J = 8.1 Hz, 2 H, 2× ArH), 6.37 (d, J = 15.8 Hz, 1 H, CH=CH), 6.13 (dt, J = 15.8, 6.8 Hz, 1 H, CH=CH), 4.13 (q, J) = 7.1 Hz, 2 H, OCH₂), 2.74 (t, J = 6.4 Hz, 2 H, CH₂), 2.63 (t, J =7.2 Hz, 2 H, CH₂), 2.59 (t, J = 6.3 Hz, 2 H, CH₂), 2.53–2.41 (m, 2 H, CH₂), 2.32 (s, 3 H, CH₃), 1.25 (t, J = 7.2 Hz, 3 H, CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 208.0 (C), 172.7 (C), 136.8 (C), 134.6 (C), 130.6 (CH), 129.1 (2 × CH), 127.7 (CH), 125.9 (2 × CH), 60.6 (CH₂), 42.3 (CH₂), 37.1 (CH₂), 28.0 (CH₂), 27.0 (CH₂), 21.1 (CH₃), 14.1 (CH₃) ppm. MS: m/z (%) = 275 (8) [M + H]⁺, 247 (48), 257 (14), 256 (66), 229 (19), 228 (40), 169 (75), 168 (30), 131 (100), 129 (95), 128 (51), 115 (47), 91 (50), 77 (14), 55 (21). HRMS (ESI-TOF): calcd. for $C_{17}H_{22}O_3Na [M + Na]^+$ 297.1467; found 297.1462.

(E)-Ethyl 8-(Naphthalen-2-yl)-4-oxooct-7-enoate (2d): According to general procedure B, the reaction of 2a' (1.4 g, 8 mmol), 2-vinylnaphthalene (3.6 g, 23 mmol), and Grubbs' 2nd generation catalyst (141 mg, 0.2 mmol) in dry CH₂Cl₂ (50 mL) gave 2d (1.3 g, 55%) as a pale yellow viscous oil after purification by column chromatography (SiO₂, 100% hexanes to 10% EtOAc in hexanes). FTIR (CHCl₃): $\tilde{v} = 1718$, 1410, 1375, 1187, 1098, 1019, 966 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.74–7.62 (m, 3 H, 3 × ArH), 7.58 (s, 1 H, ArH), 7.46 (dd, J = 8.6, 1.7 Hz, 1 H, ArH), 7.42–7.26 (m, 2 H, 2× ArH), 6.48 (d, J = 15.8 Hz, 1 H, CH=CH), 6.23 (dt, J = 15.8, 6.7 Hz, 1 H, CH=CH), 4.05 (q, J = 7.1 Hz, 2 H, OCH₂), 2.75–2.35 (m, 8 H, $4 \times$ CH₂), 1.16 (t, J = 7.1 Hz, 3 H, CH₃) ppm. $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃): δ = 208.1 (C), 172.7 (C), 134.8 (C), 133.6 (C), 132.7 (C), 130.8 (CH), 129.1 (CH), 128.0 (CH), 127.8 (CH), 127.6 (CH), 126.1 (CH), 125.3 (CH), 125.5 (CH), 123.4 (CH), 60.6 (CH₂), 42.2 (CH₂), 37.1 (CH₂), 28.0 (CH₂), 27.1 (CH₂), 14.1 (CH₃) ppm. MS: m/z (%) = 311 (9) [M + H]⁺, 310 (27) [M]⁺, 292 (100), 264 (14), 218 (11), 204 (23), 191 (10), 179 (59), 165 (65),

152 (34), 141 (21), 129 (15), 115 (8), 101 (26). HRMS (ESI-TOF): calcd. for $C_{20}H_{22}O_3Na [M + Na]^+$ 333.1467; found 333.1467.

General Procedure C for the Preparation of γ -(Difluorophenylsulfanylmethyl)- γ -butyrolactones 3

 γ -[Difluoro(phenylsulfanyl)methyl]- γ -(butyl-3-ene)- γ -butyrolactone (3a): A solution of 1 (241 mg, 1 mmol) and 2a (92 mg, 0.5 mmol) in dry THF (1 mL) was treated with 10 mol-% TBAF solution (0.25 mL, 0.1 mmol, 0.4 M solution in dry THF) at $-78 \text{ }^\circ\text{C}$, and the mixture was slowly warmed to room temperature for 5 h. The reaction was quenched at room temperature with excess TBAF solution, and the resulting mixture was stirred at room temperature for 15 min, diluted with water (10 mL), and then extracted with EtOAc $(3 \times 10 \text{ mL})$. The combined organic phase was washed successively with water (10 mL) and brine (10 mL) and dried with anhydrous Na₂SO₄. After removal of the solvent, the crude product was treated with a catalytic amount of pTsOH in CH₂Cl₂ (2 mL). The reaction mixture was stirred at room temperature overnight. After removal of the solvent, water (10 mL) was added, and the mixture was extracted with EtOAc ($4 \times 10 \text{ mL}$). The combined organic phase was washed with water (15 mL) and brine (15 mL) and dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography (SiO₂, 10% EtOAc in hexanes) to give 3a (68 mg, 46% yield) as a white solid [m.p. 44-45 °C (hexanes)] and 6 (119 mg, 49% yield) as a white solid [m.p. 90-92 °C (CH₂Cl₂/ hexanes)]. Compound **3a**: FTIR (CHCl₃): $\tilde{v} = 1787$, 1643, 1475, 1441, 1214, 1211, 1151, 1063, 971, 920 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.54 (d, J = 7.3 Hz, 2 H, 2× ArH), 7.43–7.35 (m, 1 H, ArH), 7.35–7.25 (m, 2 H, $2 \times$ ArH), 5.75 (ddt, J = 16.5, 10.3, 6.1 Hz, 1 H, CH=CH₂), 5.02 (dd, J = 16.1, 1.1 Hz, 1 H, CH=CH*H*), 4.96 (d, *J* = 10.2 Hz, 1 H, CH=CH*H*), 2.70–2.60 (m, 1 H, CH*H*), 2.55–2.45 (m, 2 H, CH₂), 2.25–2.05 (m, 4 H, 2 × CH₂), 1.95–1.80 (m, 1 H, CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 175.3 (C), 136.8 (2 × CH), 136.6 (CH), 130.1 (t, J = 287.0 Hz, CF₂), 130.1 (CH), 129.1 (2 × CH), 124.7 (C), 115.7 (CH₂), 88.0 (t, J = 25.0 Hz, C), 33.8 (CH₂), 28.3 (CH₂), 26.8 (CH₂), 26.0 (CH₂) ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ = -84.1 (d, J = 210.4 Hz, 1 F), -85.0 (d, J = 210.4 Hz, 1 F) ppm. MS: m/z (%) = 299 (100) [M + H]⁺, 279 (31), 251 (54), 241 (11), 231 (8), 169 (9), 149 (17), 147 (26), 121 (18), 111 (20), 93 (6), 83 (3), 55 (13). HRMS (ESI-TOF): calcd. for $C_{15}H_{16}F_2O_2Na [M + Na]^+$ 321.0737; found 321.0757. Compound 6: FTIR (CHCl₃): $\tilde{v} = 3570, 1642, 1475, 1441, 1214,$ 1067, 1033, 971, 918 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.70 $(d, J = 7.0 \text{ Hz}, 2 \text{ H}, 2 \times \text{ArH}), 7.65 (d, J = 7.1 \text{ Hz}, 2 \text{ H}, 2 \times \text{ArH}),$ 7.55–7.30 (m, 6 H, $6 \times$ ArH), 5.91 (ddt, J = 16.8, 12.9, 6.5 Hz, 1 H, $CH=CH_2$), 5.14 (dd, J = 17.2, 1.6 Hz, 1 H, CH=CHH), 5.06 (d, J = 10.2, 1.6 Hz, 1 H, CH=CHH), 3.28 (s, 1 H, OH), 2.66–2.54 (m, 1 H, CHH), 2.49 (dd, J = 13.3, 9.6 Hz, 1 H, CHH), 2.40–2.24 (m, 3 H, 3× CHH), 2.22–2.10 (m, 2 H, 2× CHH), 2.06–2.15 (m, 1 H, CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 138.0 (CH), 136.9 (2 × CH), 136.7 (2 × CH), 131.0 (dd, J = 288.5, 284.4 Hz, CF₂), 129.9 (CH), 129.7 (CH), 129.0 ($2 \times$ CH), 128.9 ($2 \times$ CH), 126.3 (d, J = 285.6 Hz, CF₂), 125.9 (C), 115.0 (CH₂), 125.7 (C), 107.0 (t, J = 28.0 Hz, C), 91.5 (dd, J = 24.0, 21.0 Hz, C), 35.7 (CH₂), 33.5 (CH₂), 29.9 (CH₂), 27.9 (CH₂) ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ = -80.9 (d, J = 210.8 Hz, 1 F), -83.3 (d, J = 210.8 Hz, 1 F), -85.9 (s, 2 F) ppm. MS: m/z (%) = 458 (7) [M]⁺, 440 (47) $[M - H_2O]^+$, 331 (74), 279 (68), 271 (31), 251 (28), 231 (40), 189 (47), 159 (36), 147 (100), 135 (71), 109 (54), 77 (52). HRMS (ESI-TOF): calcd. for $C_{22}H_{22}F_4O_2S_2Na [M + Na]^+$ 481.0895; found 481.0896.

Preparation of 3a from 2a': According to general procedure C, a solution of 1 (143 mg, 0.6 mmol) and **2a'** (97 mg, 0.5 mmol) in dry

Synthesis of gem-Difluoromethylenated Spiro- γ -butyrolactones

THF (1 mL) was treated with 10 mol-% TBAF solution (0.25 mL, 0.1 mmol, 0.24 M solution in dry THF) at -78 °C, followed by treatment with a catalytic amount of *p*TsOH in CH₂Cl₂ (2 mL) to give **3a** (145 mg, 97% yield) as a white solid.

 γ -[Difluoro(phenylsulfanyl)methyl]- γ -(4-phenylbutyl-3-ene)- γ -butyrolactone (3b): According to general procedure C, the reaction of 1 (289 mg, 1.2 mmol) and 2b (262 mg, 1 mmol) and purification by column chromatography (SiO2, 8% EtOAc and 2% CH2Cl2 in hexanes) provided 3b (350 mg, 94% yield) as a white solid [m.p. 68-69 °C (hexanes)]. FTIR (CHCl₃): \tilde{v} = 1787, 1497, 1475, 1463, 1442, 1214, 1215, 1173, 1063, 969 cm ^1. ¹H NMR (500 MHz, CDCl₃): δ = 7.54 (d, J = 7.26 Hz, 2 H, 2× ArH), 7.40–7.34 (m, 1 H, ArH), 7.31–7.18 (m, 6 H, 6× ArH), 7.17–7.09 (m, 1 H, ArH), 6.37 (d, J= 15.9 Hz, 1 H, CH=CH), 6.10 (dt, J = 15.8, 6.6 Hz, 1 H, CH=CH), 2.73–2.58 (m, 1 H, CHH), 2.57–2.43 (m, 2 H, CH₂), 2.33–2.05 (m, 4 H, $2 \times$ CH₂), 2.00–1.80 (m, 1 H, CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 175.3 (C), 137.1 (C), 136.8 (2 × CH), 131.2 (CH), 130.1 (t, J = 281.6 Hz, CF₂), 130.1 (CH), 129.1 (2× CH), 128.5 (2× CH), 128.2 (CH), 127.2 (CH), 126.0 (2× CH), 124.7 (C), 87.9 (t, J = 24.9 Hz, C), 34.3 (CH₂), 28.3 (CH₂), 26.2 (CH₂), 26.1 (CH₂) ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -84.2$ (d, J = 210.9 Hz, 1 F), -84.9 (d, J = 210.9 Hz, 1 F) ppm. MS: m/z $(\%) = 375 (100) [M + H]^+, 335 (22), 311 (3), 225 (18), 177 (13),$ 179 (20), 165 (10), 117 (7), 91 (4). HRMS (ESI-TOF): calcd. for $C_{21}H_{20}F_2O_2SNa [M + Na]^+$ 397.1050; found 397.1072.

 $\gamma - [Difluoro(phenylsulfanyl)methyl] - \gamma - (4 - tolylbutyl - 3 - ene) - \gamma - butyro$ lactone (3c): According to general procedure C, the reaction of 1 (297 mg, 1.2 mmol) and 2c (295 mg, 1 mmol) and purification by column chromatography (SiO_2, 8 % EtOAc and 2 % CH_2Cl_2 in hexanes) provided 3c (376 mg, 93% yield) as a white solid [m.p. 89-90 °C (hexanes)]. FTIR (CHCl₃): \tilde{v} = 1787, 1513, 1475, 1442, 1235, 1172, 1150, 1060, 970 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.55 (d, J = 7.2 Hz, 2 H, 2× ArH), 7.38 (dd, J = 7.4, 7.4 Hz, 1 H, ArH), 7.32 (dd, *J* = 7.7, 7.7 Hz, 2 H, 2 × ArH), 7.17 (d, *J* = 7.6 Hz, 2 H, 2× ArH), 7.04 (d, J = 8.0 Hz, 2 H, 2× ArH), 6.35 (d, J = 15.9 Hz, 1 H, CH=CH), 6.06 (dt, J = 15.7, 6.6 Hz, 1 H, CH=CH), 2.73–2.58 (m, 1 H, CHH), 2.57–2.43 (m, 2 H, 2× CHH), 2.33–2.05 (m, 7 H, CH₃, $2 \times$ CH₂), 2.00–1.80 (m, 1 H, CH*H*) ppm. ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3): \delta = 175.4 \text{ (C)}, 137.1 \text{ (C)}, 136.9 \text{ (}2 \times \text{CH)}, 134.4 \text{ (}125 \text{ MHz}, \text{CDCl}_3): \delta = 175.4 \text{ (C)}, 137.1 \text{ (C)}, 136.9 \text{ (}2 \times \text{CH)}, 134.4 \text{ (}125 \text{ MHz}, \text{CDCl}_3): \delta = 175.4 \text{ (C)}, 137.1 \text{ (C)}, 136.9 \text{ (}2 \times \text{CH)}, 134.4 \text{ (}125 \text{ MHz}, \text{CDCl}_3): \delta = 175.4 \text{ (C)}, 137.1 \text{ (C)}, 136.9 \text{ (}2 \times \text{CH)}, 134.4 \text{ (}125 \text{ MHz}, \text{CDCl}_3): \delta = 175.4 \text{ (C)}, 137.1 \text{ (C)}, 136.9 \text{ (}2 \times \text{CH)}, 134.4 \text{ (}25 \text{ MHz}, \text{CDCl}_3): \delta = 175.4 \text{ (C)}, 137.1 \text{ (C)}, 136.9 \text{ (}2 \times \text{CH)}, 134.4 \text{ (}25 \text{ MHz}, \text{CDCl}_3): \delta = 175.4 \text{ (C)}, 137.1 \text{ (C)}, 136.9 \text{ (}2 \times \text{CH)}, 134.4 \text{ (}25 \text{ MHz}, \text{CDCl}_3): \delta = 175.4 \text{ (}25 \text{ MHz}, 137.1 \text{ (C)}, 136.9 \text{ (}2 \times \text{CH)}, 134.4 \text{ (}25 \text{ MHz}, 138.4 \text{ (}25 \text{ (}25 \text{ MHz}, 138.4 \text{$ (C), 131.1 (CH), 130.2 (t, J = 288.5 Hz, CF₂), 130.2 (CH), 129.2 (2 × CH), 129.1 (2 × CH), 127.1 (CH), 125.9 (2 × CH), 124.7 (C), 88.0 (t, J = 25.1 Hz, C), 34.4 (CH₂), 28.4 (CH₂), 26.3 (CH₂), 26.1 (CH₂), 21.1 (CH₃) ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ = -84.3 (d, J = 210.4 Hz, 1 F), -85.0 (d, J = 210.4 Hz, 1 F) ppm. MS: m/z $(\%) = 389 (18) [M + H]^+, 388 (76) [M]^+, 280 (8), 279 (39), 259 (25),$ 241 (33), 239 (42), 231 (16), 213 (36), 199 (29), 131 (62), 91 (39). HRMS (ESI-TOF): calcd. for $C_{22}H_{22}F_2O_2SNa [M + Na]^+$ 411.1206; found 411.1216.

γ-**[Difluoro(phenylsulfanyl)methyl]-γ-[4-(2-naphthyl)butyl-3-ene]-γ-butyrolactone (3d):** According to general procedure C, the reaction of **1** (336.2 mg, 1.2 mmol) and **2c** (312 mg, 1 mmol) and purification by column chromatography (SiO₂, 8% EtOAc and 2% CH₂Cl₂ in hexanes) afforded **3d** (403 mg, 94% yield) as a white solid [m.p. 97–98 °C (hexanes)]. FTIR (CHCl₃): $\tilde{v} = 1787$, 1508, 1475, 1441, 1174, 1152, 1061, 970 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 7.50$ (t, J = 7.6 Hz, 3 H, 3 × ArH), 7.60 (s, 1 H, ArH), 7.55 (d, J = 7.1 Hz, 2 H, 2 × ArH), 7.49 (dd, J = 10.2, 1.7 Hz, 1 H, ArH), 7.43–7.25 (m, 5 H, 5 × ArH), 6.53 (d, J = 15.9 Hz, 1 H, CH=CH), 6.23 (dt, J = 15.7, 6.5 Hz, 1 H, CH=CH), 2.73–2.58 (m, 1 H, CHH), 2.57–2.43 (m, 2 H, CH₂), 2.33–2.05 (m, 4 H, 2 × CH₂), 2.00–1.80 (m, 1 H, CHH) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 175.4$ (C), 136.9 (2 × CH), 134.6 (C), 133.6 (C), 132.8 (C), 131.3 (CH), 130.2

(CH), 130.2 (t, J = 287.5 Hz, CF₂), 129.1 (2 × CH), 128.7 (CH), 128.2 (CH), 127.9 (CH), 127.6 (CH), 126.2 (CH), 125.7 (2 × CH), 124.7 (C), 123.4 (CH), 88.0 (t, J = 24.9 Hz, C), 34.4 (CH₂), 28.4 (CH₂), 26.4 (CH₂), 26.2 (CH₂) ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -84.2$ (d, J = 210.8 Hz, 1 F), -84.9 (d, J = 210.8 Hz, 1 F) ppm.

$$\begin{split} &\delta = -84.2 \ (d, J = 210.8 \ Hz, 1 \ F), -84.9 \ (d, J = 210.8 \ Hz, 1 \ F) \ ppm. \\ &MS: m/z \ (\%) = 425 \ (2) \ [M + H]^+, 424 \ (3) \ [M]^+, 310 \ (23), 293 \ (26), \\ &292 \ (100), 265 \ (4), 205 \ (16), 191 \ (15), 179 \ (55), 165 \ (56), 152 \ (26), \\ &141 \ (31), 129 \ (15), 101 \ (10), 73 \ (5), 55 \ (6). \ HRMS \ (ESI-TOF): \\ &calcd. \ for \ C_{25}H_{22}F_2O_2SNa \ [M + Na]^+ \ 447.1206; \ found \ 447.1208. \end{split}$$

 γ -[Difluoro(phenylsulfanyl)methyl]- γ -hydroxyisobenzo-furan-1(3H)one (4): According to the literature procedure,^[3a] a mixture of 1 (1.4 g, 6 mmol) and phthalic anhydride (0.4 g, 3 mmol) in dry THF (8 mL) was treated with 10 mol-% TBAT (0.4 g, 0.7 mmol) at -20 °C. The reaction mixture was stirred at -20 °C and slowly warmed to room temperature overnight. The reaction was quenched with H₂O (3 mL) and extracted with EtOAc (3×25 mL). The organic phase was washed successively with water and brine and dried with anhydrous Na₂SO₄. After solvent removal, a crude product was purified by column chromatography (SiO₂, 20% EtOAc in hexanes) to give 4 (0.85 g, 88% yield) as white needles [m.p. 79–80 °C (CH₂Cl₂/hexanes)]. FTIR (CHCl₃): $\tilde{v} = 3120, 1757,$ 1468, 1441, 1063, 1044, 764, 747 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.95 (d, J = 8.3 Hz, 1 H, ArH), 7.80–7.74 (m, 2 H, $2 \times$ ArH), 7.73–7.68 (m, 1 H, ArH), 7.60 (d, J = 7.4 Hz, 2 H, $2 \times$ ArH), 7.50–7.44 (m, 1 H, ArH), 7.43–7.36 (m, 2 H, 2× ArH), 4.69 (br, 1 H, OH) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 166.8 (C), 143.0 (2 × C), 136.8 (2 × CH), 134.9 (CH), 131.9 (CH), 130.3 (CH), 129.2 (2 × CH), 127.4 (C), 126.4 (t, J = 287.3 Hz, CF₂), 124.5 (CH), 124.0 (CH), 102.9 (t, J = 30.4 Hz, C) ppm. ¹⁹F NMR $(470 \text{ MHz}, \text{CDCl}_3): \delta = -84.5 \text{ (d, } J = 213.4 \text{ Hz}, 1 \text{ F}), -87.1 \text{ (d, } J = 213.4 \text{ Hz}, 1 \text{ F})$ 213.4 Hz, 1 F) ppm. MS: m/z (%) = 309 (12) [M + H]⁺, 308 (8) $[M]^+$, 160 (38), 149 (100), 121 (22), 110 (10), 93 (10), 77 (5), 65 (17), 51 (5). HRMS (ESI-TOF): calcd. for $C_{15}H_{10}F_2O_3SNa$ [M + Na]⁺ 331.0216; found 331.0231.

General Procedure D for the Preparation of γ -[Difluoro(phenylsulf-anyl)methyl]- γ -butyrolactones 3e and 8a

3-(But-3-enyl)-3-[difluoro(phenylsulfanyl)methyl]isobenzofuran-1(3H)-one (3e): A solution of homoallyl bromide (5 mL, 50 mmol) in dry THF (40 mL) was slowly added by cannula over a period of 1 h to a suspension of magnesium turnings (1.9 g, 80 mmol) in dry THF (40 mL). The reaction mixture was stirred at room temperature for 2 h. The resulting homoallylmagnesium bromide was added dropwise over 45 min to a suspension of 4 (3.1 g, 10 mmol) and tetra-n-butylammonium bromide (16.1 g, 50 mmol) in dry THF (20 mL) at -78 °C. The reaction mixture was stirred at -78 °C for 3 h. After the reaction was completed, it was quenched with HCl (2 M, 20 mL) at -78 °C and extracted with EtOAc (4 \times 50 mL). The organic phase was washed with brine (50 mL) and dried with anhydrous Na₂SO₄. After removal of the solvent, the crude product was treated with a catalytic amount of pTsOH in dry CH₂Cl₂ (20 mL) under reflux overnight. After the solvent was removed, the residue was diluted with water (20 mL) and extracted with EtOAc $(4 \times 20 \text{ mL})$. The combined organic phase was washed with water (20 mL) and brine (20 mL) and dried with anhydrous Na₂SO₄. The crude product was purified by column chromatography (SiO₂, 10% EtOAc in hexanes) to afford 3e (2.2 g, 62% yield) as a pale yellow viscous oil and 7 (642 mg, 23% yield) as a white solid [m.p. 75-76 °C (CH₂Cl₂/hexanes)]. Compound **3e**: FTIR (CHCl₃): $\tilde{v} = 1783$, 1644, 1467, 1287, 920 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.87 (d, J = 7.6 Hz, 1 H, ArH), 7.63 (ddd, J = 7.5, 7.5, 1.1 Hz, 1 H,ArH), 7.55 (ddd, J = 7.5, 7.5, 1.1 Hz, 1 H, ArH), 7.48 (d, J = 7.7 Hz, 1 H, ArH), 7.42 (d, J = 7.1 Hz, 2 H, 2× ArH), 7.36–7.29

FULL PAPER

(m, 1 H, ArH), 7.28–7.21 (m, 2 H, $2 \times$ ArH), 5.59 (ddt, J = 16.4, 13.1, 6.5 Hz, 1 H, CH=CH₂), 4.88–4.75 (m, 2 H, CH=CH₂), 2.49 (ddd, J = 14.5, 11.3, 5.1 Hz, 1 H, CHH), 2.25 (ddd, J = 14.6, 11.3, 11.3)5.0 Hz, 1 H, CHH), 1.92–1.80 (m, 1 H, CHH), 1.52–1.39 (m, 1 H, CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 168.7 (C), 145.7 (C), 136.7 (2× CH), 136.3 (CH), 134.4 (CH), 130.5 (CH), 130.0 (CH), 129.0 (2 × CH), 128.3 (t, J = 287.6 Hz, CF₂), 127.4 (C), 125.8 (CH), 125.1 (C), 123.4 (CH), 115.6 (CH₂), 89.2 (t, J = 27.8 Hz, C), 31.2 (CH₂), 26.7 (CH₂) ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -80.8$ (d, J = 212.7 Hz, 1 F), -82.3 (d, J = 212.7 Hz, 1 F) ppm. MS: m/z (%) = 347 (100) [M + H]⁺, 346 (9), 327 (4), 261 (3), 237 (9), 217 (21), 197 (17), 187 (42), 169 (100), 151 (8), 141 (30), 129 (8), 77 (7), 65 (6). HRMS (ESI-TOF): calcd. for C₁₉H₁₆F₂O₂SNa [M + Na]⁺ 369.0737; found 369.0734. Compound 7: FTIR (CHCl₃): $\tilde{v} = 1784, 1602, 1475, 1286, 976 \text{ cm}^{-1}$. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.98 \text{ (d, } J = 8.5 \text{ Hz}, 1 \text{ H}, \text{ArH}), 7.73 \text{ (ddd,})$ J = 8.4, 8.4, 1.1 Hz, 1 H, ArH), 7.66 (d, J = 7.5 Hz, 2 H, 2× ArH), 7.60 (d, J = 7.1 Hz, 2 H, 2× ArH), 7.50–7.43 (m, J = 6.5, 1.3 Hz, 1 H, ArH), 7.42–7.34 (m, 2 H, $2 \times$ ArH), 5.65 (dd, J = 10.5, 5.3 Hz, 1 H, CF₂CH) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 168.8 (C), 142.3 (C), 136.7 (2× CH), 134.5 (CH), 130.6 (CH), 130.3 (CH), 129.2 (2 × CH), 126.5 (t, J = 282.0 Hz, CF₂), 126.5 (C), 125.9 (CH), 124.9 (C), 124.1 (CH), 79.6 (t, J = 32.4 Hz, CH) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -79.0 (d, J = 216.5 Hz, 1 F), -85.5 (dd, J = 216.5, 10.6 Hz, 1 F) ppm. MS: m/z (%) = 293 (28) [M + H]⁺, 292 (59) [M]⁺, 160 (14), 159 (100), 133 (70), 127 (12), 105 (17), 99 (1), 77 (30). HRMS (ESI-TOF): calcd. for C₁₅H₁₀F₂O₂SNa [M + Na]⁺ 315.0267; found 315.0261.

3-[Difluoro(phenylsulfanyl)methyl]-3-(pent-4-enyl)isobenzofuran-1(3H)-one (8a): According to general procedure D, a solution of the Grignard reagent generated from magnesium turnings (2.0 g, 80 mmol) and 5-bromopent-1-ene (6 mL, 50 mmol) in dry THF (80 mL) was treated with 4 (3 g, 10 mmol) and tetra-n-butylammonium bromide (16 g, 50 mmol) in dry THF (20 mL) to give 8a (2 g, 58% yield) as a pale yellow viscous oil and 7 (0.85 g, 29% yield) as a white solid after purification by column chromatography (SiO₂, 10% EtOAc in hexanes). Compound 8a: FTIR (CHCl₃): v $= 1783, 1644, 1467, 1287, 920 \text{ cm}^{-1}$. ¹H NMR (500 MHz, CDCl₃): δ = 7.94 (d, J = 7.6 Hz, 1 H, ArH), 7.69 (ddd, J = 7.5, 7.5, 1.1 Hz, 1 H, ArH), 7.69 (ddd, J = 7.6, 7.6, 0.8 Hz, 1 H, ArH), 7.54 (d, J= 7.7 Hz, 1 H, ArH), 7.49 (d, J = 7.1 Hz, 2 H, 2× ArH), 7.45– 7.34 (m, 1 H, ArH), 7.31 (t, J = 7.7 Hz, 2 H, 2 × ArH), 5.64 (ddt, *J* = 17.0, 13.4, 6.7 Hz, 1 H, C*H*=CH₂), 5.00–4.85 (m, 2 H, CH=CH₂), 2.50–2.35 (m, 1 H, CHH), 2.30–2.18 (m, 1 H, CHH), 2.10-1.90 (m, 2 H, CH₂), 1.38-1.20 (m, 1 H, CHH), 0.90-0.70 (m, 1 H, CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 168.8 (C), 145.9 (C), 137.3 (CH), 136.7 (2 × CH), 134.4 (CH), 130.4 (CH), 130.0 (CH), 128.9 (2× CH), 128.3 (t, J = 286.3 Hz, CF₂), 127.2 (C), 125.8 (CH), 125.1 (CH), 123.3 (C), 115.4 (CH₂), 89.4 (t, J =27.4 Hz, C), 33.1 (CH₂), 31.3 (CH₂), 21.5 (CH₂) ppm. ¹⁹F NMR $(376 \text{ MHz}, \text{CDCl}_3): \delta = -80.8 \text{ (d, } J = 212.7 \text{ Hz}, 1 \text{ F}), -82.3 \text{ (d, } J = 212.7 \text{ Hz}, 1 \text{ F})$ 212.7 Hz, 1 F) ppm. MS: m/z (%) = 361 (28) [M + H]⁺, 360 (8) [M]⁺, 251 (19), 211 (14), 201 (30), 183 (70), 165 (100), 159 (22), 155 (17), 147 (12), 131 (11), 103 (14), 91 (3), 77 (9), 76 (3). HRMS (ESI-TOF): calcd. for $C_{20}H_{18}F_2O_2SNa [M + Na]^+$ 383.0893; found 383.0896.

General Procedure E for the Preparation of γ -[Difluoro(phenylsulf-anyl)methyl]- γ -butyrolactones 3f-3h and 8b-8e

ElZ Mixture of 3-[Difluoro(phenylsulfanyl)methyl]-3-(4-phenylbut-3enyl)isobenzofuran-1(*3H*)-one (3f): A solution of 3e (1 g, 3 mmol), styrene (1.4 mL, 12 mmol), and Grubbs' 2^{nd} generation catalyst (64 mg, 75 µmol) in dry CH₂Cl₂ (20 mL) was heated at reflux overnight. After completion of the reaction, the solvent was evaporated, and the crude product was purified by column chromatography (SiO₂, 100% hexanes to 10% EtOAc in hexanes) to give 3f (E/Z = 13:1; 814 mg, 64% yield) as a colorless viscous oil. FTIR (CHCl₃): $\tilde{v} = 1789, 1600, 1467, 1287, 966 \text{ cm}^{-1}$. ¹H NMR (500 MHz, CDCl₃, *major* isomer marked *): δ = 7.84 (ddd, J = 7.6, 0.7, 0.7 Hz, 1 H, ArH*), 7.80 (ddd, J = 7.7, 0.8, 0.8 Hz, 1 H, ArH minor), 7.64–7.55 (m, 2 H, $2 \times$ ArH major and minor), 7.53–7.45 (m, 4 H, $4 \times$ ArH major and minor), 7.38–7.33 (m, 4 H, $4 \times$ ArH major and minor), 7.33–7.26 (m, 2 H, 2× ArH major and minor), 7.26–7.19 (m, 4 H, $4 \times$ ArH major and minor), 7.19–7.12 (m, 8 H, 8 × ArH major and minor), 7.11-7.05 (m, 1 H, ArH*), 7.04-6.93 (m, 1 H, ArH minor), 6.28 (d, J = 15.8 Hz, 1 H, CH=CH minor), 6.11 (d, J = 15.8 Hz, 1 H, CH=CH*), 5.89 (dt, J = 15.8, 6.9 Hz, 1 H, CH=CH*), 5.57 (dt, J = 15.3, 7.4 Hz, 1 H, CH=CH minor), 3.21 (dd, J = 14.8, 7.2 Hz, 1 H, CH*H minor*), 3.06 (dd, *J* = 14.5, 7.3 Hz, 1 H, CH*H minor*), 2.65-2.45 (m, 1 H, CHH*), 2.40-2.25 (m, 1 H, CHH*), 2.10-1.95 (m, 2 H, $2 \times CHH$ major and minor), 1.70–1.55 (m, 2 H, $2 \times CHH$ *major* and *minor*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 168.6 (C), 145.6 (C), 137.1 (C), 136.7 (2 × CH), 134.5 (CH), 131.0 (CH), 130.5 (CH), 130.0 (CH), 129.0 (2×CH), 128.4 (2×CH), 128.3 (t, J = 288.0 Hz, CF₂), 127.9 (CH), 127.3 (C), 127.1 (CH), 125.9 (2× CH), 125.8 (CH), 125.0 (C), 123.4 (CH), 89.2 (t, J = 27.6 Hz, C), 31.5 (CH₂), 26.1 (CH₂) ppm. Owing to low signal intensity, the minor isomer could not be detected by ¹³C NMR spectroscopy. ¹⁹F NMR (376 MHz, CDCl₃): δ = -67.1 (d, *J* = 225.6 Hz, 1 F *minor*), -67.5 (d, J = 212.5 Hz, 1 F*), -68.5. (d, J = 225.6 Hz, 1 F minor), -68.8 (d, J = 212.8 Hz, 1 F*) ppm. MS: m/z (%) = 423 (51) [M + H]⁺, 422 (35) [M]⁺, 333 (12), 332 (35), 313 (20), 276 (13), 273 (16), 223 (22), 203 (51), 183 (16), 175 (59), 159 (35), 149 (25), 131 (22), 117 (62), 115 (100), 105 (31), 91 (55), 77 (54), 65 (22). HRMS (ESI-TOF): calcd. for $C_{25}H_{20}F_2O_2SNa [M + Na]^+ 445.1050$; found 445.1059.

E/Z Mixture of 3-[Difluoro(phenylsulfanyl)methyl]-3-(4-tolylbut-3enyl)isobenzofuran-1(3H)-one (3g): According to general procedure E, the reaction of **3e** (1 g, 3 mmol), 4-methylstyrene (1.6 mL, 12 mmol), and Grubbs' 2nd generation catalyst (64 mg, 75 µmol) in dry CH₂Cl₂ (20 mL) gave 3g (E/Z = 16:1; 872 mg, 63% yield) as a colorless viscous oil after purification by column chromatography (SiO₂, 100% hexanes to 10% EtOAc in hexanes). FTIR (CHCl₃): $\tilde{v} = 1789, 1600, 1513, 1467, 1287, 968 \text{ cm}^{-1}$. ¹H NMR (500 MHz, CDCl₃, major isomer marked *): $\delta = 8.19$ (d, J = 7.6 Hz, 1 H, ArH*), 8.14 (d, J = 7.6 Hz, 1 H, ArH minor), 8.00–7.90 (m, 2 H, $2 \times$ ArH major and minor), 7.83–7.79 (m, 4 H, 4× ArH major and minor), 7.78–7.70 (m, 4 H, $4 \times$ ArH major and minor), 7.70–7.60 (m, 2 H, $2 \times$ ArH major and minor), 7.60–7.53 (m, 4 H, $4 \times$ ArH major and minor), 7.43–7.30 (m, 4 H, 4× ArH major and minor), 7.30–7.27 (m, 4 H, 4 \times ArH *major* and *minor*), 6.59 (d, J = 15.8 Hz, 1 H, CH=CH minor), 6.43 (d, J = 15.8 Hz, 1 H, CH=CH*), 6.19 (dt, J = 15.7, 6.9 Hz, 1 H, CH=CH*), 5.86 (dt, J = 15.7, 7.8 Hz, 1 H, CH=CH minor), 3.55 (dd, J = 14.6, 7.3 Hz, 1 H, CHH minor), 3.39 (dd, J = 14.4, 7.4 Hz, 1 H, CHH minor), 3.00–2.80 (m, 1 H, CHH*), 2.73–2.60 (m, 1 H, CHH*), 2.56 (s, 3 H, CH₃*), 2.52 (s, 3 H, CH₃ minor), 2.43-2.30 (m, 2 H, CHH major and minor), 2.10-1.83 (m, 2 H, CHH major and minor) ppm. $^{13}\mathrm{C}$ NMR (125 MHz, $CDCl_3$): $\delta = 168.6$ (C), 145.7 (C), 136.9 (C), 136.7 (2 × CH), 134.4 (CH), 134.3 (C), 130.8 (CH), 130.5 (CH), 130.0 (CH), 129.1 (2 \times CH), 129.0 (2 × CH), 128.8 (t, J = 276.1 Hz, CF₂), 127.3 (C), 126.8 (CH), 125.8 (3 × CH), 125.8 (C), 123.4 (CH), 89.1 (t, J = 27.6 Hz, C), 31.6 (CH₂), 26.0 (CH₂), 21.1 (CH₃) ppm. Owing to low signal intensity, the minor isomer could not be detected by ¹³C NMR spectroscopy. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.5 (d, J = 214.5 Hz, 1 F minor), -80.9 (d, J = 214.5 Hz, 1 F*), -81.8 (d, J =

8

459.1206.

Pages: 16

(ESI-TOF): calcd. for $C_{26}H_{22}F_2O_2SNa [M + Na]^+ 459.1206$; found

214.5 Hz, 1 F minor), -82.3 (d, J = 214.5 Hz, 1 F*) ppm. MS: m/z= 16.5, 12.(%) = 437 (28) [M + H]⁺, 436 (43) [M]⁺, 347 (43), 327 (61), 3231 H, CHE(93), 289 (48), 279 (55), 259 (30), 251 (57), 235 (18), 159 (39), 1312.16-2.00(80), 129 (77), 115 (58), 105 (69), 91 (100), 77 (72), 65 (24). HRMSCHH mino

E/Z Mixture of 3-[Difluoro(phenylsulfanyl)methyl]-3-[4-(3-methoxyphenyl)but-3-enyl]isobenzofuran-1(3H)-one (3h): According to general procedure E, the reaction of 3e (1 g, 3 mmol), 3-methoxystyrene (1.6 mL, 12 mmol), and Grubbs' 2nd generation catalyst (64 mg, 75 μ mol) in dry CH₂Cl₂ (20 mL) gave **3h** (*E*/*Z* = 13:1; 1 g, 73% yield) as a colorless viscous oil after purification by column chromatography (SiO₂, 100% hexanes to 10% EtOAc in hexanes). FTIR (neat): $\tilde{v} = 1789$, 1600, 1580, 1470, 1288, 1156, 968 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, *major* isomer marked *): $\delta = 7.84$ (dd, J = 7.6, 0.8 Hz, 1 H, ArH*), 7.79 (d, J = 7.6 Hz, 1 H, ArH minor), 7.63–7.54 (m, 2 H, 2× ArH major and minor), 7.53–7.55 (m, 4 H, $4 \times$ ArH major and minor), 7.43–7.33 (m, 4 H, $4 \times$ ArH major and *minor*), 7.32–7.26 (m, 2 H, $2 \times$ ArH *major* and *minor*), 7.25–7.18 (m, 4 H, 4× ArH major and minor), 7.08 (t, J = 7.9 Hz, 1 H, ArH*), 7.02 (t, J = 7.9 Hz, 1 H, ArH minor), 6.73 (d, J = 7.7 Hz, 1 H, ArH*), 6.70-6.58 (m, 4 H, 4× ArH major and minor), 6.56-6.45 (m, 1 H, ArH minor), 6.25 (d, J = 15.8 Hz, 1 H, CH=CH minor), 6.08 (d, J = 15.8 Hz, 1 H, CH=CH*), 6.19 (dt, J = 15.7, 6.9 Hz, 1 H, CH=CH*), 5.56 (dt, J = 15.2, 7.4 Hz, 1 H, CH=CH minor), 3.68 (s, 3 H, OCH₃*), 3.63 (s, 3 H, CH₃ minor), 3.20 (dd, J = 14.6, 7.4 Hz, 1 H, CHH minor), 3.05 (dd, J = 14.5, 7.5 Hz, 1 H, CHH minor), 2.60-2.49 (m, 1 H, CHH*), 2.39-2.25 (m, 1 H, CHH*), 2.10-1.95 (m, 2 H, CHH major and minor), 1.70-1.55 (m, 2 H, CHH major and minor) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 168.6$ (C), 159.7 (C), 145.6 (C), 138.5 (C), 136.6 (2 × CH), 134.4 (CH), 130.9 (CH), 130.5 (CH), 130.0 (CH), 129.3 (CH), 128.9 $(2 \times CH)$, 128.2 (t, J = 277.5 Hz, CF₂), 128.2 (CH), 127.3 (C), 125.8 (CH), 125.0 (C), 123.4 (CH), 118.6 (CH), 112.8 (CH), 111.3 (CH), 89.0 (t, J = 28.0 Hz, C), 55.1 (CH₃), 31.5 (CH₂), 26.0 (CH₂) ppm. Owing to low signal intensity, the *minor* isomer could not be detected by ¹³C NMR spectroscopy. ¹⁹F NMR (376 MHz, CDCl₃): δ = -80.5 (d, J = 209.8 Hz, 1 F minor), -80.9 (d, J = 213.2 Hz, 1 F*), -81.8 (d, J = 209.8 Hz, 1 F minor), -82.3 (d, J = 213.2 Hz, 1 F*) ppm. MS: m/z (%) = 452 (58) [M + H]⁺, 451 (64) [M]⁺, 343 (26), 323 (17), 305 (30), 303 (64), 275 (51), 215 (16), 161 (53), 147 (100), 145 (47), 117 (15), 115 (34), 91 (86), 77 (19), 65 (9). HRMS (ESI-TOF): calcd. for C₂₆H₂₂F₂O₃SNa [M + Na]⁺ 475.1155; found 475.1151.

E/Z Mixture of 3-[Difluoro(phenylsulfanyl)methyl]-3-(5-phenylpent-4-enyl)isobenzofuran-1(3H)-one (8b): According to general procedure E, the reaction of 8a (936 mg, 2.6 mmol), styrene (1.6 mL, 12 mmol), and Grubbs' 2nd generation catalyst (64 mg, 75 µmol) in dry CH₂Cl₂ (20 mL) gave **8b** (E/Z = 4:1; 972 mg, 87% yield) a as a colorless viscous oil after purification by column chromatography (SiO₂, 100% hexanes to 10% EtOAc in hexanes). FTIR (CHCl₃): $\tilde{v} = 1790, 1600, 1493, 1468, 1287, 1048, 967 \text{ cm}^{-1}$. ¹H NMR (500 MHz, CDCl₃, *major* isomer marked *): $\delta = 7.87$ (ddd, J = 7.6, 0.9, 0.9 Hz, 1 H, ArH*), 7.82 (ddd, J = 7.5, 0.8, 0.8 Hz, 1 H, ArH minor), 7.65-7.59 (m, 2 H, 2× ArH major and minor), 7.58-7.49 (m, 2 H, $2 \times$ ArH major and minor), 7.48–7.44 (m, 2 H, $2 \times$ ArH major and minor), 7.44-7.39 (m, 4 H, 4× ArH major and minor), 7.35–7.29 (m, 2 H, 2 × ArH major and minor), 7.28–7.14 (m, 12 H, 12× ArH major and minor), 7.14-7.08 (m, 1 H, ArH*), 7.05-7.00 (m, 1 H, ArH minor), 6.24 (d, J = 15.8 Hz, 1 H, CH=CH*), 6.13 (d, J = 15.8 Hz, 1 H, CH=CH minor), 5.96 (dt, J = 15.8, 7.0 Hz, 1 H, CH=C H^*), 5.92 (dt, J = 15.3, 6.9 Hz, 1 H, CH=CH minor), 2.58 (ddd, J = 15.7, 10.9, 5.1 Hz, 1 H, CHH minor), 2.41 (ddd, J

= 16.5, 12.2, 4.4 Hz, 1 H, CH*H**), 2.33 (ddd, *J* = 15.9, 10.9, 5.3 Hz, 1 H, CH*H minor*), 2.21 (ddd, *J* = 13.3, 13.3, 4.6 Hz, 1 H, CH*H**), $2.16-2.00 \text{ (m, 4 H, 4} \times \text{CHH major and minor)}, 1.50-1.04 \text{ (m, 1 H, }$ CH*H minor*), 1.38–1.24 (m, 1 H, CH*H**), 0.88–0.72 (m, 2 H, $2 \times$ CH*H major* and *minor*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 168.8 (C), 145.9 (C), 137.4 (C), 136.7 (2 × CH), 134.4 (CH), 130.9 (CH), 130.5 (CH), 130.0 (CH), 129.2 (CH), 129.0 (2×CH) 128.5 $(2 \times CH)$, 128.3 (t, J = 230.3 Hz, CF₂), 127.3 (C), 127.0 (CH), 126.0 (2× CH), 125.9 (CH), 125.1 (C), 123.3 (CH), 89.4 (t, J = 27.8 Hz, C), 32.5 (CH₂), 31.5 (CH₂), 26.1 (CH₂) ppm. Owing to low signal intensity, the *minor* isomer could not be detected by ¹³C NMR spectroscopy. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -80.9$ (d, J = 218.5 Hz, 1 F, CF*F**), -81.0 (d, *J* = 218.5 Hz, 1 F, CF*F minor*), -82.2 (d, J = 210.2 Hz, 1 F, CF F^*), -82.3 (d, J = 218.8 Hz, 1 F, CFF minor) ppm. MS: m/z (%) = 437 (9) [M + H]⁺, 436 (17) [M]⁺, 327 (52), 307 (11), 287 (35), 259 (22), 133 (26), 130 (10), 129

(42), 115 (36), 91 (35), 77 (9) cm⁻¹. HRMS (ESI-TOF): calcd. for

 $C_{26}H_{22}F_2O_2SNa [M + Na]^+ 459.1206$; found 459.1202.

E/Z Mixture of 3-[Difluoro(phenylsulfanyl)methyl]-3-(4-tolylpent-4enyl)isobenzofuran-1(3H)-one (8c): According to general procedure E, the reaction of 8a (1 g, 2.6 mmol), 4-methylstyrene (1.6 mL, 12 mmol), and Grubbs' 2nd generation catalyst (64 mg, 75 µmol) in dry CH₂Cl₂ (20 mL) gave 8c (E/Z = 5:1; 872 mg, 63% yield) as a colorless viscous oil after purification by column chromatography (SiO₂, 100% hexanes to 10% EtOAc in hexanes). FTIR (neat): \tilde{v} = 1779, 1601, 1513, 1467, 1287, 969 cm⁻¹. ¹H NMR (500 MHz, $CDCl_3$, major isomer marked *): $\delta = 7.85$ (ddd, J = 7.6, 1.0, 1.0 Hz, 1 H, ArH*), 7.68 (d, J = 8.1 Hz, 1 H, ArH minor), 7.63–7.55 (m, 2 H, $2 \times$ ArH major and minor), 7.54–7.48 (m, 2 H, $2 \times$ ArH major and minor), 7.47–7.43 (m, 2 H, $2 \times$ ArH major and minor), 7.43– 7.30 (m, 4 H, 4× ArH major and minor), 7.34–7.23 (m, 2 H, 2× ArH major and minor), 7.21-7.13 (m, 4 H, 4× ArH major and minor), 7.13-7.06 (m, 2 H, 2× ArH*), 7.05-7.02 (m, 2 H, 2× ArH minor), 7.02–6.95 (m, 4 H, $4 \times$ ArH major and minor), 6.19 (d, J = 15.8 Hz, 1 H, CH=C H^*), 6.08 (d, J = 15.8 Hz, 1 H, CH=CH*minor*), 5.98–5.80 (m, 2 H, $2 \times$ CH=CH*), 2.60–2.50 (m, 1 H, CHH*), 2.45–2.32 (m, 2 H, 2× CHH major and minor), 2.28–2.15 (m, 7 H, CHH^{*}, $2 \times$ CH₃ major and minor), 2.14–1.98 (m, 2 H, 2× CHH*), 1.98–1.85 (m, 2 H, 2× CHH minor), 1.38–1.20 (m, 2 H, $2 \times$ CHH major and minor), 0.88–0.70 (m, 2 H, $2 \times$ CHH major and minor) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 168.8 (C), 145.9 (C), 136.7 (C), 136.7 (2 × CH), 134.6 (C), 134.4 (CH), 130.7 (CH), 130.4 (CH), 130.0 (CH), 129.1 (2× CH), 128.9 (2× CH), 128.3 (t, J = 287.8 Hz, CF₂), 128.1 (CH), 127.3 (C), 125.8 (3× CH), 125.1 (C), 123.3 (CH), 89.4 (t, J = 27.4 Hz, C), 32.4 (CH₂), 31.4 (CH₂), 22.2 (CH₂), 21.1 (CH₃) ppm. Owing to low signal intensity, the minor isomer could not be detected by ¹³C NMR spectroscopy. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -80.8$ (d, J = 212.0 Hz, 1 F*), -80.9 (d, J = 210.4 Hz, 1 F minor), -82.2 (d, J = 212.0 Hz, 1 F*), -82.3 (d, J = 210.4 Hz, 1 F minor) ppm. MS: m/z (%) = 451 (16) $[M + H]^+$, 450 (33) $[M]^+$, 341 (34), 301 (50), 145 (23), 144 (100), 131 (83), 129 (70), 115 (15), 105 (23), 91 (20), 77 (10). HRMS (ESI-TOF): calcd. for C₂₇H₂₄F₂O₂SNa [M + Na]⁺ 473.1363; found 473.1357.

ElZ Mixture of 3-[Difluoro(phenylsulfanyl)methyl]-3-[(3-meth-oxyphenyl)pent-4-enyl]isobenzofuran-1(*3H*)-one (8d): According to general procedure E, the reaction of 8a (936 g, 2.6 mmol), 3-meth-oxystyrene (1.6 mL, 12 mmol), and Grubbs' 2nd generation catalyst (64 mg, 75 μ mol) in dry CH₂Cl₂ (20 mL) gave 8d (*E*/*Z* = 5:1; 817 mg, 67% yield) as a colorless viscous oil after purification by column chromatography (SiO₂, 100% hexanes to 10% EtOAc in hexanes). FTIR (CHCl₃): $\tilde{v} = 1790$, 1500, 1580, 1468, 1288, 1265, 1156, 968 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, *major* isomer marked

FULL PAPER

*): $\delta = 8.00-7.86$ (m, 2 H, 2× ArH major and minor), 7.74–7.65 (m, 2 H, $2 \times$ ArH major and minor), 7.65–7.44 (m, 8 H, $8 \times$ ArH *major* and *minor*), 7.44–7.36 (m, 2 H, $2 \times$ ArH *major* and *minor*), 7.36–7.27 (m, 4 H, $4 \times$ ArH major and minor), 7.23–7.07 (m, 2 H, $2 \times$ ArH major and minor), 6.93–6.85 (m, 2 H, $2 \times$ ArH major and minor), 6.85-6.78 (m, 2 H, 2× ArH major and minor), 6.78-6.60 (m, 2 H, $2 \times$ ArH major and minor), 6.28 (d, J = 15.8 Hz, 1 H, CH=CH*), 6.18 (d, J = 15.8 Hz, 1 H, CH=CH minor), 6.10–5.92 (m, 2 H, $2 \times$ CH=CH major and minor), 3.79 (s, 3 H, OCH₃*), 3.74 (s, 3 H, OCH₃ minor), 2.54–2.52 (m, 1 H, CHH minor), 2.51– 2.47 (m, 2 H, 2× CHH major and minor), 2.47–2.00 (m, 5 H, 3× CHH^* , 2× CHH minor), 1.49–1.30 (m, 2 H, 2× CHH major and minor), 0.99–0.79 (m, 2 H, $2 \times$ CHH major and minor) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 168.9 (C), 159.8 (C), 145.9 (C), 138.9 (C), 136.8 (2× CH), 134.5 (CH), 130.8 (CH), 130.5 (CH), 130.1 (CH), 129.6 (CH), 129.5 (CH), 129.0 (2 × CH), 128.3 (t, J = 287.0 Hz, CF₂), 127.3 (C), 125.9 (CH), 125.0 (C), 123.4 (CH), 118.7 (CH), 112.8 (CH), 111.3 (CH), 89.0 (t, J = 27.0 Hz, C), 55.2 (OCH₃), 32.5 (CH₂), 31.5 (CH₂), 21.1 (CH₂) ppm. Owing to low signal intensity, the minor isomer could not be detected by ¹³C NMR spectroscopy. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -80.8$ (d, J = 213.2 Hz, 1 F*), -80.9 (d, J = 210.9 Hz, 1 F minor), -82.2 (d, J = 213.2 Hz, 1 F*), -82.3 (d, J = 210.9 Hz, 1 F minor) ppm. MS: m/z (%) = 467 (19) [M + H]⁺, 466 (50) [M]⁺, 317 (20), 161 (29), 160 (100), 147 (95), 129 (27), 121 (15), 115 (9), 91 (20), 77 (8). HRMS (ESI-TOF): calcd. for $C_{27}H_{24}F_2O_3SNa [M + Na]^+$ 489.1312; found 489.1309.

(E)-Methyl 6-{1-[Difluoro(phenylsulfanyl)methyl]-3-oxo-1,3-dihydroisobenzofuran-1-yl}hex-2-enoate (8e): According to general procedure E, the reaction of 8a (936 mg, 2.6 mmol), methyl acrylate (1.1 mL, 12 mmol), and Grubbs' 2nd generation catalyst (64 mg, 75 µmol) in dry CH₂Cl₂ (20 mL) gave 8e (989 mg, 79% yield) as a white solid after purification by column chromatography (SiO₂, 100% hexanes to 10% EtOAc in hexanes) [m.p. 85-86 °C (CH₂Cl₂/ hexanes)]. FTIR (CHCl₃): \tilde{v} = 1781, 1717, 1659, 1468, 1288, 1051, 982 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.95 (d, J = 7.6 Hz, 1 H, ArH), 7.71 (ddd, J = 7.5, 7.5, 1.3 Hz, 1 H, ArH), 7.63 (ddd, J = 7.5, 7.5, 0.8 Hz, 1 H, ArH), 7.53 (d, J = 7.7 Hz, 1 H, ArH), 7.48 $(d, J = 7.1 \text{ Hz}, 2 \text{ H}, 2 \times \text{ArH}), 7.43-7.36 \text{ (m, 1 H, ArH)}, 7.35-7.28$ (m, 2 H, $2 \times$ ArH), 6.79 (d, J = 15.6, 6.9 Hz, 1 H, CH=CH), 5.74 $(dt, J = 15.7, 1.5 Hz, 1 H, CH=CH), 3.70 (s, 3 H, OCH_3), 2.44$ (ddd, J = 14.3, 12.1, 4.4 Hz, 1 H, CHH), 2.33–2.08 (m, 3 H, 3× CHH), 1.45-1.30 (m, 1 H, CHH), 1.95-0.83 (m, 1 H, CHH) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 168.6 (C), 166.7 (C), 147.5 (CH), 145.6 (C), 136.7 (2× CH), 134.6 (CH), 130.6 (CH), 130.1 (CH), 129.0 (2 × CH), 128.2 (t, J = 296.4 Hz, CF₂), 127.2 (C), 126.0 (CH), 125.0 (C), 123.3 (CH), 121.8 (CH), 89.2 (t, J = 28.0 Hz, C), 51.4 (OCH₃), 31.6 (CH₂), 31.4 (CH₂), 21.0 (CH₂) ppm. ¹⁹F NMR $(376 \text{ MHz}, \text{ CDCl}_3): \delta = -80.9 \text{ (d, } J = 214.9 \text{ Hz}, 1 \text{ F, CF}\text{F}\text{)}, -82.3$ (d, J = 214.9 Hz, 1 F, CFF) ppm. MS: m/z (%) = 419 (4) [M + H]⁺, 418 (3) [M]⁺, 385 (15), 359 (21), 358 (70), 329 (17), 288 (21), 286 (18), 227 (22), 182 (20), 181 (100), 180 (13), 159 (51), 131 (12), 103 (7), 77 (7). HRMS (ESI-TOF): calcd. for C₂₂H₂₀F₂O₄SNa [M + Na]⁺ 441.0948; found 441.0947.

General Procedure F for the Preparation of γ -gem-Difluoromethylenated Spiro- γ -butyrolactones 5a-m

6,6-Difluoro-7-methyl-1-oxaspiro[4.4]nonan-2-one (5a): Argon was bubbled through a solution of **3a** (451 mg, 1.5 mmol) in dry toluene (50 mL) for 30 min, and a mixture of Bu₃SnH (0.95 mL, 3 mmol) and AIBN (37 mg, 0.2 mmol) in dry toluene (8 mL) was added dropwise at reflux over 1 h. The resulting reaction mixture was heated at reflux for 8 h and then evaporated to dryness to give a

crude product, which was firstly purified by column chromatography (SiO₂, hexanes and then CH_2Cl_2) to remove organotin byproducts. A colorless oil was obtained, which was then purified again by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) to give 5aA (less polar; 135 mg, 35% yield, which contains 1% of **5aB** as determined by ¹H NMR spectroscopy) as a colorless liquid and 5aB (more polar; 127 mg, 33% yield) as a colorless liquid. Compound 5aA: FTIR (CHCl₃): \tilde{v} = 1781, 1459, 1252, 1219, 1184, 1118, 1049, 1021, 993, 927 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 2.73–2.58 (m, 1 H, CHHCO), 2.58– 2.35 (m, 3 H, CHHCO and 2× CHH), 2.07–1.89 (m, 3 H, 3× CHH), 1.89–1.83 (m, 1 H, CHH), 1.37–1.25 (m, 1 H, CHH), 1.02 (d, J = 6.9 Hz, 3 H, CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 175.7 (CO), 127.2 (dd, J = 264.5, 249.4 Hz, CF₂), 89.5 (dd, J = 32.4, 21.3 Hz, C), 36.0 (t, J = 21.4 Hz, CH), 32.2 (d, J = 4.0 Hz, CH₂), 28.5 (CH₂), 25.6 (d, J = 9 Hz, CH₂), 24.8 (d, J = 3.1 Hz, CH₂), 10.8 (d, J = 7.3 Hz, CH₃) ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -125.2$ (dd, J = 230.3, 27.7 Hz, 1 F), -128.6 (dd, J =230.3, 3.8 Hz, 1 F, CFF) ppm. MS: m/z (%) = 191 (8) [M + H]⁺, 181 (55), 180 (33), 178 (13), 169 (7), 167 (21), 151 (14), 133 (14), 131 (39), 129 (11), 115 (13), 106 (10), 105 (100), 91 (37), 79 (31), 77 (51), 67 (12). HRMS (ESI-TOF): calcd. for C₉H₁₂F₂O₂Na [M + Na]⁺ 213.0703; found 213.0700. Compound **5aB**: FTIR (CHCl₃): $\tilde{v} = 1782, 1459, 1252, 1218, 1184, 1118, 1049, 1021, 993, 927 \text{ cm}^{-1}.$ ¹H NMR (500 MHz, CDCl₃): δ = 2.67–2.56 (m, 1 H, CHHCO), 2.52-2.42 (m, 2 H, CHHCO and CHH), 2.38-2.24 (m, 1 H, CH), 2.07-1.94 (m, 3 H, 3 × CHH), 1.84-1.73 (m, 1 H, CHH), 1.59-1.49 (m, 1 H, CHH), 1.02 (dd, J = 7.3, 2.1 Hz, 3 H, CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 175.6 (CO), 127.2 (dd, J = 265.6, 250.4 Hz, CF₂), 89.5 (dd, J = 31.8, 20.3 Hz, C), 38.0 (dd, J = 21.1, 24.6 Hz, CH), 33.0 (d, J = 3.3 Hz, CH₂), 28.2 (CH₂), 27.4 (t, J = 4.1 Hz, CH₂), 26.0 (d, J = 4.3 Hz, CH₂), 14.5 (dd, J = 4.9, 7.4 Hz, CH₃) ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ = -102.6 (dd, J = 236.0, 1.41 Hz, 1 F), -126.5 (d, J = 236.0 Hz, 1 F) ppm. MS: m/z $(\%) = 191 (9) [M + H]^+, 171 (5), 151 (69), 123 (8), 111 (33), 95 (4),$ 83 (22), 65 (3), 55 (32). HRMS (ESI-TOF): calcd. for $C_9H_{12}F_2O_2Na [M + Na]^+ 213.0703$; found 213.0693.

7-Benzyl-6,6-difluoro-1-oxaspiro[4.4]nonan-2-one (5b): According to general procedure F, radical cyclization of **3b** (528 mg, 1.5 mmol) and purification by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) gave 5bA (less polar; 184 mg, 48% yield, which contains 1% of **5bB** as determined by ¹H NMR spectroscopy) as a white solid [m.p. 75-76 °C (CH₂Cl₂/hexanes)] and 5bB (more polar; 136 mg, 35% yield) as a white solid [m.p. 72-73 °C (CH₂Cl₂/hexanes)]. Compound **5bA**: FTIR (CHCl₃): \tilde{v} = 1784, 1497, 1456, 1346, 1275, 1224, 1182, 1152, 1089, 1072, 1012, 936 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.26–7.17 (m, 2 H, 2× ArH), 7.16–7.09 (m, 3 H, $3 \times$ ArH), 2.97 (dd, J = 13.8, 5.1 Hz, 1 H, CH), 2.83–2.37 (m, 5 H, 5× CHH), 2.08–1.75 (m, 4 H, 4× CHH), 1.48–1.35 (m, 1 H, CHH) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 175.6 (CO), 138.9 (C), 128.7 (2× CH), 128.4 (2× CH), 127.0 (dd, J = 265.6, 249.6 Hz, CF₂), 126.3 (CH), 89.5 (dd, J = 32.4, 21.3 Hz, C), 42.9 (t, J = 20.9 Hz, CH), 33.0 (d, J = 6.1 Hz, CH₂), 31.9 (d, J = 4.1 Hz, CH₂), 28.5 (CH₂), 24.7 (d, J = 3.4 Hz, CH₂), 24.0 (d, J = 8.7 Hz, CH₂) ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -125.2$ (dd, J = 230.3, 27.7 Hz, 1 F), -128.6 (dd, J =230.3, 3.8 Hz, 1 F) ppm. MS: m/z (%) = 267 (14) [M + H]⁺, 266 (80) [M]⁺, 247 (8), 246 (26), 227 (13), 226 (66), 209 (1), 208 (5), 167 (85), 166 (42), 117 (72), 115 (72), 115 (33), 111 (10), 109 (5), 91 (100), 77 (16), 65 (28), 50 (10). HRMS (ESI-TOF): calcd. for C₁₅H₁₆F₂O₂Na [M + Na]⁺ 289.1016; found 289.1030. Compound **5bB**: FTIR (CHCl₃): $\tilde{v} = 1787, 1497, 1455, 1254, 1189, 1141, 1096,$ 1060, 989 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.26–7.17 (m, 2

Pages: 16

Synthesis of gem-Difluoromethylenated Spiro-γ-butyrolactones

H, $2 \times$ ArH), 7.16–7.09 (m, 3 H, $3 \times$ ArH), 3.09–2.94 (m, 1 H, CH), 2.72–2.41 (m, 5 H, 5× CHH), 2.09–1.47 (m, 2 H, 2× CHH), 1.84-1.73 (m, 2 H, 2 × CH*H*), 1.72-1.59 (m, 1 H, CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 175.6 (CO), 139.1 (C), 128.8 (2× CH), 128.5 (2 × CH), 127.0 (dd, J = 266.4, 251.6 Hz, CF₂), 126.3 (CH), 89.5 (dd, J = 31.3, 20.0 Hz, C), 44.8 (dd, J = 23.3, 19.6 Hz, CH), 35.4 (dd, J = 6.5, 4.5 Hz, CH₂), 32.9 (d, J = 3.0 Hz, CH₂), 28.2 (CH₂), 26.0 (d, J = 4.3 Hz, CH₂), 25.6 (d, J = 3.6 Hz, CH₂) ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -100.9$ (dd, J = 235.9, 22.6 Hz, 1 F, CFF), -124.9 (d, J = 235.9 Hz, 1 F, CFF) ppm. MS: m/z (%) = 267 (19) [M + H]⁺, 266 (66) [M]⁺, 247 (6), 246 (38), 227 (11), 226 (79), 209 (2), 208 (3), 167 (91), 166 (38), 117 (68), 115 (40), 111 (9), 109 (4), 91 (100), 77 (16), 65 (28), 50 (11). HRMS (ESI-TOF): calcd. for $C_{15}H_{16}F_2O_2Na [M + Na]^+$ 289.1016; found 289.1013.

6,6-Difluoro-7-(4-methylbenzyl)-1-oxaspiro[4.4]nonan-2-one (5c): According to general procedure F, radical cyclization of 3c (396 mg, 1 mmol) and purification by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) gave 5cA (less polar; 135 mg, 46% yield, which contains 4% of 5cB as determined by ¹H NMR spectroscopy) as a white solid [m.p. 61–62 °C (CH₂Cl₂/ hexanes)] and 5cB (more polar; 104 mg, 35% yield, which contains 4% of 5cA as determined by ¹H NMR spectroscopy) as a white solid [m.p. 59-60 °C (CH₂Cl₂/hexanes)]. Compound 5cA: FTIR $(CHCl_3)$: $\tilde{v} = 1784, 1516, 1459, 1346, 1183, 1155, 1083, 1013,$ 934 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.90–7.80 (m, 4 H, 4× ArH), 2.87 (dd, J = 13.5, 5.1 Hz, 1 H, CH), 2.75–2.35 (m, 5 H, 5× CHH), 2.20 (s, 3 H, CH₃), 2.04–1.75 (m, 4 H, $4 \times$ CHH), 1.45– 1.30 (m, 1 H, CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 175.6 (CO), 135.8 (2 \times C), 129.1 (2 \times CH), 128.6 (2 \times CH), 127.0 (dd, J = 268.5, 252.3 Hz, CF₂), 89.5 (dd, J = 32.1, 20.9 Hz, C), 42.9 (t, J = 20.9 Hz, CH), 32.6 (d, J = 6.3 Hz, CH), 31.9 (d, J = 3.9 Hz, CH₂), 28.5 (CH₂), 24.7 (d, J = 3.3 Hz, CH₂), 24.0 (d, J = 8.4 Hz, CH₂), 20.9 (CH₃) ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -123.2$ (dd, J = 231.0, 27.7 Hz, 1 F, CFF), -128.6 (dd, J = 231.0 Hz, 1 F, CFF)CFF) ppm. MS: m/z (%) = 281 (12) [M + H]⁺, 280 (43) [M]⁺, 260 (4), 240 (10), 181 (21), 180 (8), 131 (43), 106 (12), 105 (100), 91 (12), 77 (27). HRMS (ESI-TOF): calcd. for C₁₆H₁₈F₂O₂Na [M + Na]⁺ 303.1173; found 303.1172. Compound **5cB**: FTIR (CHCl₃): $\tilde{v} = 1783, 1515, 1459, 1253, 1188, 1142, 1091, 1056, 990 \text{ cm}^{-1}$. ¹H NMR (500 MHz, CDCl₃): δ = 7.90–7.80 (m, 4 H, 4× ArH), 2.97 (d, J = 9.0 Hz, 1 H, CH), 2.70–2.57 (m, 1 H, CHH), 2.56–2.40 (m, 4 H, 4× CHH), 2.24 (s, 3 H, CH₃), 2.10–1.93 (m, 2 H, 2× CHH), 1.83–1.72 (m, 2 H, 2× CH*H*), 1.71–1.54 (m, 1 H, CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 175.5 (CO), 135.9 (C), 135.8 (C), 129.1 (2 × CH), 128.7 (2 × CH), 127.3 (dd, J = 266.5, 251.8 Hz, CF_2), 89.4 (dd, J = 31.0, 19.8 Hz, C), 44.8 (dd, J = 23.0, 19.6 Hz, CH), 34.8 (dd, J = 6.5, 3.8 Hz, CH₂), 32.9 (d, J = 3.0 Hz, CH₂), 28.2 (CH₂), 26.1 (d, J = 4.3 Hz, CH₂), 25.5 (t, J = 3.8 Hz, CH₂), 20.9 (CH₃) ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ = -101.2 (dd, J = 235.7, 22.1 Hz, 1 F), -124.9 (d, J = 235.7 Hz, 1 F) ppm. MS: m/z (%) = 281 (8) [M + H]⁺, 280 (49) [M]⁺, 261 (3), 241 (12), 240 (37), 181 (31), 180 (13), 131 (53), 106 (9), 105 (100), 91 (15), 77 (30). HRMS (ESI-TOF): calcd. for $C_{16}H_{18}F_2O_2Na [M + Na]^+ 303.1173$; found 303.1172.

6,6-Difluoro-7-(naphthalen-2-ylmethyl)-1-oxaspiro[4.4]nonan-2-one (5d): According to general procedure F, radical cyclization of 3d (608 mg, 1.4 mmol) and purification by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) gave 5dA (less polar; 199 mg, 44% yield) as a white solid [m.p. 106-117 °C (CH₂Cl₂/ hexanes)] and 5dB (more polar; 148 mg, 32% yield) as a white solid [m.p. 105–106 °C (CH₂Cl₂/hexanes)]. Compound **5dA**: FTIR $(CHCl_3)$: $\tilde{v} = 1784, 1509, 1459, 1346, 1188, 1140, 1085, 1014,$

990 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.87–7.73 (m, 3 H, 3× ArH), 7.65 (s, 1 H, ArH), 7.53–7.38 (m, 2 H, 2× ArH), 7.34 (dd, J = 8.4, 1.4 Hz, 1 H, ArH), 3.22 (dd, J = 13.7, 4.9 Hz, 1 H, CH), 3.03–2.84 (m, 1 H, CH*H*), 2.84–2.60 (m, 3 H, 3× CH*H*), 2.60–2.45 (m, 1 H, CHH), 2.13–1.85 (m, 4 H, 4× CHH), 1.62–1.43 (m, 1 H, CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 175.5 (CO), 136.4 (C), 133.5 (C), 132.2 (C), 128.1 (CH), 127.6 (CH), 127.4 (CH), 127.1 (CH), 127.0 (dd, J = 262.1, 247.9 Hz, CF₂), 127.0 (CH), 126.1 (CH), 125.4 (CH), 89.6 (dd, J = 32.3, 21.1 Hz, C), 42.8 (t, J =10.2 Hz, CH), 33.2 (d, J = 6.0 Hz, CH₂), 32.0 (d, J = 4.1 Hz, CH₂), 28.5 (CH₂), 24.7 (d, J = 3.3 Hz, CH₂), 24.0 (d, J = 8.5 Hz, CH₂) ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -121.6$ (dd, J = 231.0, 28.2 Hz, 1 F), -125.5 (d, J = 231.0 Hz, 1 F) ppm. MS: m/z (%) = 317 (5) [M + H]⁺, 316 (33) [M]⁺, 310 (20), 292 (44), 265 (4), 205 (12), 181 (13), 179 (40), 165 (48), 141 (100), 115 (30), 91 (12), 77 (13), 55 (13). HRMS (ESI-TOF): calcd. for $C_{19}H_{18}F_2O_2Na$ [M + Na]⁺ 339.1173; found 339.1175. Compound **5dB**: FTIR (CHCl₃): $\tilde{v} = 1784, 1509, 1459, 1188, 1140, 1085, 1056, 990 \text{ cm}^{-1}$. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.87-7.73 \text{ (m, 3 H, 3 × ArH)}, 7.66 \text{ (s, 1 H, })$ ArH), 7.53–7.40 (m, 2 H, $2 \times$ ArH), 7.34 (d, J = 8.2 Hz, 1 H, ArH), $3.26 (dd, J = 13.4, 4.2 Hz, 1 H, CH), 3.88-2.65 (m, 3 H, 3 \times CHH),$ 2.64–2.50 (m, 2 H, 2× CHH), 2.18–2.00 (m, 2 H, 2× CHH), 2.93– 1.70 (m, 3 H, 3× CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 175.5 (CO), 136.5 (C), 133.5 (C), 132.2 (C), 128.1 (CH), 127.6 (CH), 127.5 (CH), 127.3 (d, J = 266.6 Hz, CF₂), 127.3 (CH), 127.1 (CH), 126.1 (CH), 125.4 (CH), 89.6 (dd, J = 31.5, 20.3 Hz, C), 44.7 (dd, J = 23.3, 19.8 Hz, CH), 35.5 (dd, J = 6.1, 4.1 Hz, CH₂), 32.8 (d, J = 2.8 Hz, CH₂), 28.2 (CH₂), 25.9 (d, J = 3.6 Hz, CH₂), 25.6 (t, J = 3.6 Hz, CH₂) ppm. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = -99.2$ (dd, J = 236.2, 23.5 Hz, 1 F), -123.4 (d, J = 236.2 Hz, 1 F) ppm. MS: m/z (%) = 317 (8) [M + H]⁺, 316 (31) [M]⁺, 293 (15), 292 (67), 264 (8), 219 (10), 205 (16), 204 (21), 191 (9), 180 (17), 179 (57), 167 (75), 165 (54), 152 (30), 141 (100), 129 (18), 115 (23), 105 (14), 95 (18), 77 (21), 67 (16), 55 (11). HRMS (ESI-TOF): calcd. for $C_{19}H_{18}F_2O_2Na [M + Na]^+ 339.1173$; found 339.1173.

2,2-Difluoro-3-methyl-3' H-spiro[cyclopentane-1,1'-isobenzofuran]-3'-one (5e): According to general procedure F, radical cyclization of 3e (522 mg, 1.5 mmol) and purification by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) gave a 1:3 mixture of diastereoisomers [determined by ¹⁹F NMR spectroscopy (376 MHz)] of 5e (317 mg, 89% yield) as a colorless liquid: FTIR (neat): $\tilde{v} = 1777$, 1614, 1467, 1340, 1052, 986 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, major isomer marked *): $\delta = 7.90-7.83$ (m, 2) H, $2 \times$ ArH major and minor), 7.73–7.63 (m, 2 H, $2 \times$ ArH major and minor), 7.60–7.50 (m, 4 H, $4 \times$ ArH major and minor), 2.83– 2.65 (m, 1 H, CH, minor), 2.64-2.50 (m, 1 H, CH*), 2.48-2.39 (m, 1 H, CH*H minor*), 2.38–2.22 (m, 3 H, 2× CH*H** and CH*H minor*), 2.20-2.03 (m, 2 H, 2× CHH major and minor), 1.90-1.73 (m, 1 H, CHH*), 1.68–1.53 (m, 1 H, CHH minor), 1.21 (dd, J = 7.3, 2.1 Hz, 3 H, CH₃*), 1.14 (d, *J* = 6.9 Hz, 3 H, CH₃ *minor*) ppm. ¹³C NMR (125 MHz, CDCl₃, *major* isomer marked *): $\delta = 168.5$ (CO*), 168.5 (CO minor), 145.2 (C*), 145.0 (C minor), 134.2 (CH minor), 134.1 (CH*), 130.0 (2× CH major and minor), 127.6 (dd, J = 271.4, 248.1 Hz, CF₂*), 126.7 (dd, J = 268.1, 248.6 Hz, CF₂ minor), 126.7 $(2 \times C \text{ major and minor})$, 125.4 $(2 \times CH \text{ major and minor})$, 123.9 (d, J = 4.8 Hz, CH*), 123.9 (d, J = 6.4 Hz, CH minor), 90.6 (dd, J = 33.1, 21.8 Hz, C*), 90.0 (dd, J = 32.5, 22.1 Hz, C minor), 38.9 (dd, *J* = 24.0, 20.6 Hz, CH*), 37.1 (t, *J* = 21.1 Hz, CH minor), 33.2 (d, J = 3.1 Hz, CH₂*), 32.4 (d, J = 2.8 Hz, CH₂ minor), 28.3 (t, J= 3.9 Hz, CH_2^*), 25.9 (d, J = 8.9 Hz, CH_2 minor), 15.1 (t, J =6.4 Hz, CH₃*), 10.8 (d, J = 7.1 Hz, CH₃ minor) ppm. ¹⁹F NMR (376 MHz, CDCl₃, major isomer marked *): $\delta = -96.1$ (dd, J =236.9, 26.8 Hz, 1 F*), -124.6 (dd, J = 230.3, 28.2 Hz, 1 F minor),

FULL PAPER

-124.9 (d, J = 236.9 Hz, 1 F*), -127.2 (d, J = 230.3 Hz, 1 F minor) ppm. MS: m/z (%) = 239 (61) [M + H]⁺, 238 (21), 201 (16), 181 (9), 141 (3), 159 (100), 143 (3), 131 (21), 115 (7), 105 (13), 89 (14). HRMS (ESI-TOF): calcd. for C₁₃H₁₂F₂O₂Na [M + Na]⁺ 261.0703; found 261.0700.

3-Benzyl-2,2-difluoro-3'H-spiro[cyclopentane-1,1'-isobenzofuran]-3'-one (5f): According to general procedure F, radical cyclization of **3f** (635 mg, 1.5 mmol) and purification by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) gave a 1:1.6 mixture of diastereoisomers [determined by ¹⁹F NMR spectroscopy (376 MHz)] of 5f (388 mg, 82% yield) as a colorless liquid: FTIR (neat): $\tilde{v} = 1773$, 1615, 1467, 1347, 1042, 987 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, *major* isomer marked *): δ = 7.97 (d, J = 7.5 Hz, 1 H, ArH*), 7.94 (d, J = 7.7 Hz, 1 H, ArH* minor), 7.80–7.70 (m, $2 \text{ H}, 2 \times \text{ArH}$ major and minor), 7.68–7.57 (m, 4 H, 4 × ArH major and minor), 7.40–7.33 (m, 4 H, $4 \times$ ArH major and minor), 7.32– 7.20 (m, 6 H, 6 × ArH *major* and *minor*), 3.22 (dd, J = 13.5, 4.2 Hz, 1 H, CH*), 3.16 (dd, J = 13.6, 5.1 Hz, 1 H, CH minor), 3.13–2.98 (m, 1 H, CH*), 2.96–2.74 (m, 2 H, $2 \times CHH$ major and minor), 2.75 (dd, J = 13.5, 10.0 Hz, 1 H, CHH minor), 2.58-2.45 (m, 1 H, 1)CHH minor), 2.44-2.30 (m, 1 H, CHH*), 2.25-2.14 (m, 3 H, CHH major and 2× CHH minor), 2.14-2.06 (m, 1 H, CHH*), 2.06-1.95 (m, 1 H, CHH*), 1.85–1.73 (m, 1 H, CHH minor) ppm. ¹³C NMR (125 MHz, CDCl₃, *major* isomer marked *): $\delta = 168.6$ (CO*), 168.5 (CO minor), 145.0 (C*), 144.8 (C minor), 139.1 (C*), 138.8 (C minor), 134.2 (2 \times CH major and minor), 130.0 (2 \times CH major and minor), 128.9 (2 \times CH major and minor), 128.7 (2 \times CH major and minor), 128.5 ($4 \times$ CH major and minor), 126.4 (CH minor), 126.3 (CH^*) , 125.7 (CH^*) , 125.6 (CH minor), 127.2 (dd, J = 273.0), 249.3 Hz, CF₂*), 126.6 (dd, J = 269.4, 248.4 Hz, CF₂ minor), 127.1 (C*), 126.9 (C minor), 124.0 (d, J = 3.6 Hz, CH*), 123.9 (d, J =3.5 Hz, CH minor), 90.8 (dd, J = 33.0, 21.6 Hz, C*), 90.1 (dd, J = 32.0, 21.8 Hz, C minor), 45.8 (dd, J = 23.3, 19.0 Hz, CH*), 44.1 (dd, J = 20.5, 20.5 Hz, CH minor), 35.8 (t, J = 5.8 Hz, CH*), 33.2 (d, J = 3.0 Hz, CH*), 33.1 (d, J = 6.3 Hz, CH₂*), 32.1 (d, J = $3.1 \text{ Hz}, \text{CH}_2^*$), $26.4 (t, J = 3.5 \text{ Hz}, \text{CH}_2^*)$, $24.4 (d, J = 8.1 \text{ Hz}, \text{CH}_2)$ minor) ppm. ¹⁹F NMR (376 MHz, CDCl₃, major isomer marked *): $\delta = -94.6$ (dd, J = 238.8, 23.3 Hz, 1 F*), -122.7 (dd, J = 232.0, 27.5 Hz, 1 F minor), -124.8 (d, J = 238.8 Hz, 1 F*), -125.5 (d, J = 232.0 Hz, 1 F minor) ppm. MS: m/z (%) = 315 (69) [M + H]⁺, 314 (21) [M]⁺, 223 (4), 197 (41), 177 (9), 159 (12), 129 (7), 118 (100), 117 (20), 115 (8), 91 (31), 77 (13), 65 (10). HRMS (ESI-TOF): calcd. for $C_{19}H_{16}F_2O_2Na [M + Na]^+$ 337.1016; found 337.1017.

2,2-Difluoro-3-(4-methylbenzyl)-3'H-spiro[cyclopentane-1,1'-isobenzofuran]-3'-one (5g): According to general procedure F, radical cyclization of 3g (656 mg, 1.5 mmol) and purification by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) gave a 1:1.6 mixture of diastereoisomers [determined by ¹⁹F NMR spectroscopy (376 MHz)] of 5g (407 mg, 83% yield) as a colorless liquid. FTIR (neat): $\tilde{v} = 1779$, 1614, 1468, 1345, 1041, 983 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, *major* isomer marked *): δ = 7.83 (d, J = 7.6 Hz, 1 H, ArH*), 7.80 (d, J = 7.7 Hz, 1 H, ArH minor), 7.65–7.58 (m, 2 H, 2× ArH major and minor), 7.55–7.45 (m, 4 H, $4 \times$ ArH major and minor), 7.25–7.10 (m, 4 H, $4 \times$ ArH minor), 7.08–6.98 (m, 4 H, $4 \times \text{ArH}^*$), 3.05 (dd, J = 13.1, 3.7 Hz, 1 H, CHH*), 2.99 (dd, J = 13.5, 5.0 Hz, 1 H, CHH minor), 2.98–2.83 (m, 1 H, CH*), 2.80-2.62 (m, 2 H, CHH major and CH minor), 2.59 (dd, J = 13.5, 9.9 Hz, 1 H, CHH minor), 2.45-2.33 (m, 1 H, CHH minor), 2.30–2.18 (m, 7 H, CHH*, $2 \times$ CH₃ major and minor), 2.12-2.01 (m, 3 H, CHH major and 2× CHH minor), 2.01-1.93 (m, 1 H, CHH*), 1.93-1.80 (m, 1 H, CHH*), 1.72-1.58 (m, 1 H, CHH minor) ppm. ¹³C NMR (125 MHz, CDCl₃, major isomer marked *): $\delta = 168.6$ (CO*), 168.4 (CO minor), 145.0 (C*), 144.7

(C minor), 135.9 (CH*), 135.8 (CH minor), 135.8 (CH*), 135.7 (CH minor), 134.2 (C minor), 134.1 (C*), 130.1 ($2 \times$ CH major and minor), 129.2 ($4 \times$ CH major and minor), 128.7 ($4 \times$ CH major and *minor*), 127.2 (dd, J = 272.1, 249.3 Hz, CF_2^*), 127.0 (C *minor*), 126.8 (C*), 126.6 (dd, J = 270.0, 249.0 Hz, CF₂ minor), 125.6 (CH*), 125.5 (CH minor), 123.9 (d, J = 4.5 Hz, CH*), 123.8 (d, J = 4.3 Hz, CH minor), 90.8 (dd, J = 32.9, 21.6 Hz, C*), 90.2 (dd, J = 37.5, 25.0 Hz, C minor), 45.8 (dd, J = 23.3, 19.1 Hz, CH*), 44.1 (dd, J = 20.4, 20.4 Hz, CH minor), 35.3 (dd, J = 5.6, 5.6 Hz, CH₂*),33.1 (d, J = 2.9 Hz, CH*), 32.6 (d, J = 6.1 Hz, CH minor), 32.1 (d, J = 2.5 Hz, CH₂ minor), 26.3 (dd, J = 3.3, 3.3 Hz, CH₂*), 24.3 (d, $J = 8.1 \text{ Hz}, \text{ CH}_2 \text{ minor}$, 20.9 (2× CH₃ minor) ppm. ¹⁹F NMR (376 MHz, CDCl₃, *major* isomer marked *): $\delta = -94.7$ (dd, J =238.6, 26.7 Hz, 1 F*), -122.6 (dd, J = 230.9, 27.4 Hz, 1 F minor), -123.7 (d, J = 238.6 Hz, 1 F*), -125.4 (d, J = 230.9 Hz, 1 F minor) ppm. MS: m/z (%) = 329 (67) [M + H]⁺, 328 (54) [M]⁺, 197 (21), 133 (15), 132 (100), 117 (15), 105 (66), 103 (18), 91 (8), 77 (28). HRMS (ESI-TOF): calcd. for $C_{20}H_{18}F_2O_2Na [M + Na]^+ 351.1173$; found 351.1176.

2,2-Difluoro-3-(3-methoxybenzyl)-3'H-spiro[cyclopentane-1,1'-isobenzofuran]-3'-one (5h): According to general procedure F, radical cyclization of 3h (635 mg, 1.5 mmol) and purification by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) gave a 1:1.6 mixture of diastereoisomers [determined by ¹⁹F NMR spectroscopy (376 MHz)] of 5h (489 mg, 85% yield) as a colorless liquid. FTIR (neat): $\tilde{v} = 1778, 1601, 1585, 1491, 1467, 1262, 1041,$ 987 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, *major* isomer marked *): δ = 7.88-7.77 (m, 2 H, 2 × ArH major and minor), 7.68-7.58 (m, 2 H, $2 \times$ ArH major and minor), 7.57–7.45 (m, 4 H, $4 \times$ ArH major and minor), 7.20-7.02 (m, 2 H, 2× ArH major and minor), 6.80-6.61 (m, 6 H, 6 \times ArH major and minor), 3.72 (s, 6 H, 2 \times OCH₃ major and minor), 3.14-2.98 (m, 2 H, $2 \times$ ArH major and minor), 2.98-2.85 (m, 1 H, CH*), 2.85-2.64 (m, 2 H, CHH* and CH minor), 2.60 (dd, J = 13.5, 10.3 Hz, 1 H, CHH minor), 2.46–2.32 (m, 1 H, CHH minor), 2.32-2.18 (m, 1 H, CHH*), 2.14-1.81 (m, 5 H, $3 \times$ CHH* and $2 \times$ CHH minor), 1.75–1.58 (m, 1 H, CHH minor) ppm. ¹³C NMR (100 MHz, CDCl₃, major isomer marked *): $\delta = 168.6$ (CO*), 168.5 (CO minor), 160.0 (2× C major and minor), 144.9 (C*), 144.7 (C minor), 140.6 (C*), 140.3 (C minor), 134.3 (CH minor), 134.2 (CH*), 130.1 (2× CH major and minor), 129.4 (2× CH major and minor), 127.1 (dd, J = 272.0, 249.0 Hz, CF₂*), 126.5 (dd, *J* = 270.0, 249.0 Hz, CF₂ minor), 126.9 (C minor), 126.7 (C*), 125.6 (CH*), 125.6 (CH minor), 124.0 (d, J = 5.0 Hz, CH*), 123.9 (d, J = 4.0 Hz, CH minor), 121.1 (CH*), 121.0 (CH minor), 114.5 (CH*), 114.2 (CH minor), 111.7 (2× CH major and minor), 90.3 (dd, J = 33.0, 22.0 Hz, C*), 90.1 (dd, J = 32.0, 22.0 Hz, C minor), 55.1 (2 × OCH₃ major and minor), 45.6 (dd, J = 24.0, 19.0 Hz, CH*), 43.9 (dd, J = 20.0, 20.0 Hz, CH minor), 35.8 (dd, $J = 6.0, 6.0 \text{ Hz}, 2 \times \text{ CH}$ major and minor), 33.1 (d, J = 4.0 Hz, CH*), 32.0 (d, *J* = 3.0 Hz, CH₂ minor), 26.3 (d, *J* = 3.0 Hz, CH₂*), 24.3 (d, J = 8.0 Hz, CH₂ minor) ppm. ¹⁹F NMR (376 MHz, CDCl₃, *major* isomer marked *): $\delta = -94.6$ (dd, J = 238.2, 27.1 Hz, 1 F*), -122.7 (dd, J = 230.0, 27.5 Hz, 1 F minor), -123.8 (d, J = 238.2 Hz, 1 F*), -125.6 (d, J = 230.0 Hz, 1 F minor) ppm. MS: m/z (%) = 345 (69) [M + H]⁺, 344 (21) [M]⁺, 287 (9), 178 (8), 149 (19), 148 (10), 123 (50), 91 (13) cm⁻¹. HRMS (ESI-TOF): calcd. for $C_{20}H_{18}F_2O_3Na [M + Na]^+$ 367.1122; found 367.1120.

2,2-Difluoro-3-methyl-3'*H***-spiro[cyclohexane-1,1'-isobenzofuran]-3'-one (5i):** According to general procedure F, radical cyclization of **8a** (528 mg, 1.5 mmol) and purification by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) gave **5iA** (less polar; 184 mg, 48% yield) as a white solid [m.p. 104–105 °C (CH₂Cl₂/ hexanes)] and **5iB** (more polar; 136 mg, 35% yield, which contains

Synthesis of gem-Difluoromethylenated Spiro- γ -butyrolactones

1% of 5iA as determined by ¹H NMR spectroscopy) as a white solid [m.p. 102–103 °C (CH₂Cl₂/hexanes)]. Compound 5iA: FTIR (CHCl₃): $\tilde{v} = 1773$, 1467, 1272, 1226, 1087, 1013, 960 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.92 (d, J = 7.6 Hz, 1 H, ArH), 7.72 (dd, J = 7.4, 7.4 Hz, 1 H, ArH), 7.66–7.54 (m, 2 H, 2× ArH), 2.54-2.35 (m, 1 H, CH), 2.34-2.20 (m, 1 H, CHH), 2.02-1.71 (m, 4 H, $4 \times$ CHH), 1.66–1.45 (m, 1 H, CHH), 1.11 (d, J = 6.8 Hz, 3 H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 169.1 (CO), 147.5 (C), 134.2 (CH), 130.0 (CH), 126.5 (C), 125.7 (CH), 123.5 (d, J = 5.0 Hz, CH), 121.4 (dd, J = 256.0, 244.0 Hz, CF₂), 85.5 (dd, J =34.0, 34.0 Hz, C), 35.5 (dd, J = 21.4, 21.4 Hz, CH), 34.4 (d, J = $3.0 \text{ Hz}, \text{CH}_2$), $30.4 \text{ (d, } J = 8.0 \text{ Hz}, \text{CH}_2$), 20.5 (CH_2), 12.2 (t, J = 10.2 Hz)4.0 Hz, CH₃) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -118.1 (d, J = 247.8 Hz, 1 F), -124.6 (dd, J = 247.8, 28.3 Hz, 1 F) ppm. MS: m/z (%) = 253 (68) [M + H]⁺, 252 (63) [M]⁺, 212 (10), 160 (15), 159 (100), 146 (53), 131 (31), 104 (10), 103 (19). HRMS (ESI-TOF): calcd. for $C_{14}H_{14}F_2O_2Na [M + Na]^+$ 275.0860; found 275.0854. Compound **5iB**: FTIR (CHCl₃): $\tilde{v} = 1773$, 1468, 1272, 1087, 1013, 960 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.91 (d, J = 7.6 Hz, 1 H, ArH), 7.69 (ddd, J = 7.4, 7.4, 1.1 Hz, 1 H, ArH), 7.63 (ddd, J = 7.1, 0.9, 0.9 Hz, 1 H, ArH), 7.58 (ddd, J = 7.5, 1.0, 1.0 Hz, 1 H, ArH), 2.50-2.37 (m, 1 H, CHH), 2.20-2.09 (m, 1 H, CHH), 2.08-1.93 (m, 3 H, 3 × CHH), 1.80–1.63 (m, 2 H, 2 × CHH), 1.25 (d, J = 6.8 Hz, 3 H, CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 169.0 (CO), 147.8 (C), 134.0 (CH), 130.0 (CH), 126.6 (C), 125.8 (CH), 123.6 (d, J = 4.0 Hz, CH), 121.1 (dd, J = 257.3, 242.5 Hz, CF₂), 86.1 (dd, J = 31.0, 22.9 Hz, C), 36.4 (dd, J = 21.8, 21.8 Hz, CH), 34.7 (2 × CH₂), 28.9 (d, J = 5.8 Hz, CH₂), 17.3 (CH₂), 12.9 (dd, J= 7.8, 3.4 Hz, CH₃) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -100.0 to -112.0 (br s, 1 F), -114.0 to -121.0 (br d, J = 205.7 Hz, 1 F) ppm. MS: m/z (%) = 253 (41) [M + H]⁺, 252 (65) [M]⁺, 160 (13), 159 (100), 146 (69), 131 (36), 105 (12), 103 (23), 77 (8). HRMS (ESI-TOF): calcd. for $C_{14}H_{14}F_2O_2Na [M + Na]^+$ 275.0860; found 275.0865.

2,2-Difluoro-3-benzyl-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-3'one (5j): According to general procedure F, radical cyclization of 8b (658 mg, 1.5 mmol) and purification by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) gave 5jA (less polar; 335 mg, 68% yield) as a white solid [m.p. 107-108 °C (CH₂Cl₂/ hexanes)] and 5jB (more polar; 113 mg, 23% yield) as a white solid [m.p. 109-110 °C (CH₂Cl₂/hexanes)]. Compound 5jA: FTIR $(CHCl_3)$: $\tilde{v} = 1773$, 1496, 1468, 1271, 1081, 1024, 1004, 967 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.92 (d, J = 7.7 Hz, 1 H, ArH), 7.72 (ddd, J = 7.5, 7.5, 1.0 Hz, 1 H, ArH), 7.63 (dd, J = 7.7, 2.4 Hz, 1 H, ArH), 7.60 (ddd, J = 7.5, 7.5, 0.8 Hz, 1 H, ArH), 7.35–7.28 (m, 2 H, $2 \times$ ArH), 7.26–7.18 (m, 3 H, $3 \times$ ArH), 3.19 (dd, J =3.1, 2.9 Hz, 1 H, CHH), 2.65–2.46 (m, 1 H, CHH), 2.48 (dd, J = 13.3, 10.6 Hz, 1 H, CHH), 2.35-2.20 (m, 1 H, CHH), 1.93-1.84 (m, 1 H, CHH), 1.84–1.68 (m, 3 H, 3× CHH), 1.50–1.38 (m, 1 H, CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 169.0 (CO), 147.4 (C), 138.9 (C), 134.2 (CH), 130.1 (CH), 129.2 (2 × CH), 128.4 (2 × CH), 126.5 (C), 126.3 (CH), 125.7 (CH), 123.5 (d, J = 27.9 Hz, CH), 121.3 (dd, J = 256.6, 245.0 Hz, CF₂), 85.4 (dd, J = 33.0, 23.5 Hz, C), 42.4 (dd, J = 21.3, 19.8 Hz, CH), 34.6 (d, J = 3.6 Hz, CH₂), 33.1 (d, J = 5.8 Hz, CH₂), 27.1 (d, J = 6.9 Hz, CH₂), 20.3 (CH₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -117.5 (d, J = 247.6 Hz, 1 F), -122.0 (dd, J = 247.6, 27.8 Hz, 1 F) ppm. MS: m/z (%) = 329 (94) $[M + H]^+$, 328 (100) $[M]^+$, 310 (24), 308 (27), 270 (24), 199 (22), 172 (28), 169 (27), 159 (21), 147 (22), 91 (38). HRMS (ESI-TOF): calcd. for $C_{20}H_{18}F_2O_2Na [M + Na]^+$ 351.1173; found 351.1178. Compound 5jB: FTIR (CHCl₃): \tilde{v} = 1773, 1496, 1468, 1270, 1081, 1025, 1004, 967 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.95 (ddd, J = 8.4, 0.8, 0.8 Hz, 1 H, ArH), 7.72 (ddd, J = 7.6, J)

7.6, 1.1 Hz, 1 H, ArH), 7.65 (ddd, *J* = 7.6, 0.8, 0.8 Hz, 1 H, ArH), 7.61 (ddd, J = 7.5, 7.5, 0.2 Hz, 1 H, ArH), 7.35–7.28 (m, 2 H, 2× ArH), 7.25–7.18 (m, 3 H, $3 \times$ ArH), 3.11 (dd, J = 14.1, 3.3 Hz, 1 H, CH*H*), 3.00 (dd, J = 11.6, 11.6 Hz, 1 H, CH*H*), 2.60–2.45 (m, 1 H, CH), 2.28–2.15 (m, 1 H, CH*H*), 2.14–1.98 (m, 2 H, 2× CH*H*), 1.80–1.65 (m, 3 H, 3 × CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 169.0 (CO), 147.8 (C), 139.8 (C), 134.2 (CH), 130.1 (CH), 129.2 (2 × CH), 128.5 (2 × CH), 126.7 (C), 126.3 (CH), 125.9 (CH), 123.8 (d, J = 3.3 Hz, CH), 120.9 (dd, J = 258.4, 242.8 Hz, CF₂), 85.4 (dd, J = 31.9, 23.0 Hz, C), 43.9 (dd, J = 20.8, 20.8 Hz, CH), 34.8 $(d, J = 2.6 \text{ Hz}, \text{CH}_2), 32.5 (d, J = 5.0 \text{ Hz}, \text{CH}_2), 24.7 (d, J = 5.0 \text{ Hz},$ CH₂), 17.1 (CH₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -100.0$ to -109.0 (br s, 1 F), -114.0 to -119.0 (br d, J = 251.9 Hz, 1 F) ppm. MS: m/z (%) = 329 (50) [M + H]⁺, 328 (100) [M]⁺, 308 (21), 270 (13), 199 (16), 172 (18), 169 (16), 159 (18), 147 (19), 131 (14), 129 (16), 91 (30), 111 (9), 109 (4), 91 (100), 77 (16), 65 (28), 50 (11). $C_{20}H_{18}F_2O_2Na [M + Na]^+$ 351.1173; found 351.1170.

2,2-Difluoro-3-(4-methylbenzyl)-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-3'-one (5k): According to general procedure F, radical cyclization of 8c (680 mg, 1.5 mmol) and purification by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) gave 5kA (less polar; 323 mg, 63% yield) as a white solid [m.p. 106-107 °C (CH2Cl2/hexanes)] and 5kB (more polar; 123 mg, 24% yield) as a white solid [m.p. 105-107 °C (CH2Cl2/hexanes)]. Compound 5kA: FTIR (CHCl₃): \tilde{v} = 1773, 1601, 1515, 1468, 1289, 1251, 1172, 1059, 975 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.81 (d, J = 7.5 Hz, 1 H, ArH), 7.65–7.57 (m, 1 H, ArH), 7.56–7.44 (m, 2 H, 2× ArH), 7.06–6.95 (m, 4 H, 4× ArH), 3.05 (dd, J = 12.7, 2.1 Hz, 1 H, CHH), 2.54-2.29 (m, 2 H, CH, CHH), 2.28-2.06 (m, 4 H, CH₃, CH*H*), 1.83–1.53 (m, 4 H, 4× CH*H*), 1.41–1.24 (m, 1 H, CH*H*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 169.0 (CO), 147.3 (C), 135.7 (2 × C), 134.2 (CH), 130.0 (CH), 129.1 (4 × CH), 126.4 (C), 125.6 (CH), 123.5 (d, J = 4.0 Hz, CH), 121.3 (dd, J = 257.0, 245.0 Hz, CF₂), 85.4 (dd, J = 33.0, 23.0 Hz, C), 42.5 (dd, J = 20.0, 20.0 Hz, CH), 34.5 (d, J = 3.0 Hz, CH₂), 32.5 (CH₂), 27.0 $(d, J = 7.0 \text{ Hz}, \text{CH}_2), 21.3 (\text{CH}_3), 20.2 (\text{CH}_2) \text{ ppm}.$ ¹⁹F NMR $(376 \text{ MHz}, \text{CDCl}_3): \delta = -117.5 \text{ (d, } J = 247.6 \text{ Hz}, 1 \text{ F}), -122.0 \text{ (dd,}$ J = 247.6, 27.8 Hz, 1 F ppm. MS: m/z (%) = 343 (34) [M + H]⁺, 342 (95) [M]⁺, 322 (56), 302 (19), 199 (20), 106 (24), 105 (100), 103 (22), 79 (15), 77 (21). HRMS (ESI-TOF): calcd. for C₂₁H₂₀F₂O₂Na [M + Na]⁺ 365.1329; found 365.1323. Compound 5kB: FTIR (CHCl₃): \tilde{v} = 1773, 1601, 1515, 1468, 1289, 1251, 1117, 1086, 1058, 975 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, J = 7.7 Hz, 1 H, ArH), 7.71 (ddd, J = 7.8, 7.8, 1.0 Hz, 1 H, ArH), 7.67–7.55 (m, 2 H, 2× ArH), 7.16–7.05 (m, 4 H, 4× ArH), 3.06 (dd, J = 14.1, 3.2 Hz, 1 H, ArCHH), 2.95 (dd, J = 11.5, 11.5 Hz, 1 H, ArCHH), 2.57-2.42 (m, 1 H, CH), 2.33 (s, 3 H, CH₃), 2.26-2.14 (m, 1 H, CHH), 2.13–1.95 (m, 2 H, $2 \times$ CHH), 1.84–1.63 (m, 3 H, $3 \times$ CHH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 169.0 (CO), 147.8 (C), 136.7 (C), 135.8 (C), 134.2 (CH), 130.1 (CH), 129.2 (2×CH), 129.1 (2 × CH), 126.6 (C), 125.9 (CH), 123.7 (d, J = 4.0 Hz, CH), 121.0 (dd, J = 258.0, 243.0 Hz, CF₂), 86.0 (dd, J = 23.0, 23.0 Hz, C), 44.0 (dd, J = 21.0, 21.0 Hz, CH), 34.8 (CH₂), 32.0 (d, J =4.0 Hz, CH₂), 24.7 (d, J = 4.0 Hz, CH₂), 21.0 (CH₃), 17.1 (CH₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -101.0$ to -109 (br s, 1 F), -114.0 to -118.0 (br d, J = 251.9 Hz, 1 F) ppm. MS: m/z (%) = 343 (24) [M + H]⁺, 342 (94) [M]⁺, 322 (53), 199 (19), 106 (24), 105 (100), 77 (25). HRMS (ESI-TOF): calcd. for C₂₁H₂₀F₂O₂Na [M + Na]⁺ 365.1329; found 365.1329.

2,2-Difluoro-3-(3-methoxybenzyl)-3'*H*-spiro[cyclohexane-1,1'-isobenzofuran]-3'-one (51): According to general procedure F, radical cyclization of 8d (702 mg, 1.5 mmol) and purification by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) FULL PAPER

Pages: 16

gave 51A (less polar; 344 mg, 64% yield) as a colorless viscous oil and 51B (more polar; 102 mg, 19% yield) as a colorless viscous oil. Compound **5**IA: FTIR (CHCl₃): $\tilde{v} = 1778, 1601, 1467, 1264, 1079,$ 1024, 1004, 965 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 7.92 (d, J = 7.6 Hz, 1 H, ArH), 7.72 (ddd, J = 7.6, 7.6, 1.5 Hz, 1 H, ArH), 7.63 (dd, *J* = 7.6, 2.3 Hz, 1 H, ArH), 7.60 (ddd, *J* = 7.7, 7.7, 0.7 Hz, 1 H, ArH), 7.23 (dd, J = 7.8, 7.8 Hz, 1 H, ArH), 6.83–6.70 (m, 3 H, $3 \times$ ArH), 3.82 (s, 3 H, OCH₃), 3.16 (dd, J = 13.3, 3.2 Hz, 1 H, CH*H*), 2.65–2.48 (m, 1 H, CH), 2.45 (dd, *J* = 13.2, 10.8 Hz, 1 H, CHH), 2.85–2.20 (m, 1 H, CHH), 1.93–1.84 (m, 1 H, CHH), 1.84– 1.67 (m, 3 H, 3× CH*H*), 1.50–1.40 (m, 1 H, CH*H*) ppm. ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3)$: $\delta = 169.0 (\text{CO}), 159.7 (\text{C}), 147.4 (\text{C}), 140.5 (\text{$ 134.2 (CH), 130.1 (CH), 129.4 (CH), 126.5 (C), 125.7 (CH), 123.5 (d, J = 3.8 Hz, CH), 121.7 (CH), 121.3 (dd, J = 256.5, 244.5 Hz,CF₂), 114.8 (CH), 111.8 (CH), 85.5 (dd, *J* = 33.1, 23.1 Hz, C), 55.2 (CH₃), 42.4 (dd, *J* = 19.8, 19.8 Hz, CH), 34.6 (d, *J* = 3.3 Hz, CH₂), 33.2 (dd, J = 3.1, 3.1 Hz, CH₂), 27.2 (d, J = 6.9 Hz, CH₂), 20.3 (CH₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -123.2$ (dd, J =231.0, 27.7 Hz, 1 F), -128.6 (dd, J = 231.0 Hz, 1 F) ppm. MS: m/z $(\%) = 359(30) [M + H]^+, 358(100) [M]^+, 199(15), 122(36), 91(11).$ HRMS (ESI-TOF): calcd. for $C_{21}H_{20}F_2O_3Na [M + Na]^+ 381.1278$; found 381.1279. Compound **5IB**: FTIR (CHCl₃): $\tilde{v} = 1779$, 1601, 1585, 1489, 1467, 1264, 1079, 1004, 965 cm⁻¹. ¹H NMR (500 MHz, $CDCl_3$): δ = 7.94 (ddd, J = 7.6, 0.9, 0.9 Hz, 1 H, ArH), 7.72 (ddd, J = 7.3, 7.3, 1.1 Hz, 1 H, ArH), 7.65 (ddd, J = 7.8, 0.9, 0.9 Hz, 1 H, ArH), 7.61 (ddd, J = 7.5, 0.9, 0.9 Hz, 1 H, ArH) 7.23 (dd, J = 7.8, 7.8 Hz, 1 H, ArH), 6.84–6.73 (m, 3 H, 3× ArH), 3.81 (s, 3 H, OCH₃), 3.09 (dd, *J* = 14.0, 3.1 Hz, 1 H, CH*H*), 2.98 (dd, *J* = 11.7, 11.7 Hz, 1 H, CHH), 2.63-2.45 (m, 1 H, CH), 2.30-2.13 (m, 1 H, CHH), 2.12–1.75 (m, 2 H, $2 \times$ CHH), 1.88–1.63 (m, 3 H, $3 \times$ *CHH*) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 168.9 (CO), 159.8 (C), 147.7 (C), 141.4 (C), 134.2 (CH), 130.1 (CH), 129.5 (CH), 126.6 (C), 125.9 (CH), 123.7 (d, J = 4.1 Hz, CH), 121.5 (CH), 120.9 (dd, J = 257.9, 242.9 Hz, CF₂), 115.0 (CH), 111.6 (CH), 85.4 (dd, *J* = 31.8, 23.0 Hz, C), 55.2 (CH₃), 43.7 (dd, *J* = 20.8, 20.8 Hz, CH), 34.8 (d, J = 2.0 Hz, CH₂), 32.5 (dd, J = 7.1, 2.9 Hz, CH₂), 24.8 (d, J = 4.6 Hz, CH₂), 17.0 (CH₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -100.0 to -109.0 (br s, 1 F), -114.0 to -118.0 (dd, J = 253.1 Hz, 1 F) ppm. MS: m/z (%) = 359 (29) [M + H]⁺, 358 (100) [M]⁺, 199 (14), 122 (44), 121 (11), 91 (11). HRMS (ESI-TOF): calcd. for $C_{21}H_{20}F_2O_3Na [M + Na]^+$ 381.1278; found 381.1275.

Methyl 2-(2,2-Difluoro-3'-oxo-3'H-spiro[cyclohexane-1,1'-isobenzofuran]-3-yl)acetate (5m): According to general procedure F, radical cyclization of 8e (629 mg, 1.5 mmol) and purification by column chromatography (SiO₂, 15% CH₂Cl₂ and 2% EtOAc in hexanes) gave a 1:3 mixture of diastereomers [determined by ¹⁹F NMR spectroscopy (376 MHz)] of 5m (428 mg, 92% yield) as a white solid, m.p. 109–110 °C (CH₂Cl₂/hexanes). FTIR (CHCl₃): \tilde{v} = 1774, 1736, 1614, 1601, 1467, 1439, 1291, 1257, 1172, 1085, 1067, 978 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, *major* isomer marked *): $\delta = 7.95-7.85$ (m, 2 H, $2 \times$ ArH major and minor), 7.75–7.68 (m, 2 H, $2 \times$ ArH major and minor), 7.68-7.55 (m, 4 H, 4× ArH major and minor), 3.70 (s, 6 H, $2 \times \text{OCH}_3$ major and minor), 2.99–2.82 (m, 2 H, $2 \times$ CH major and minor), 2.81–2.71 (m, 3 H, CHH major and $2\times$ CHH minor), 2.35-2.14 (m, 3 H, $2 \times$ CHH major and CHH minor), 2.11–1.80 (m, 6 H, $3 \times$ CHH major and $3 \times$ CHH minor), 1.80– 1.71 (m, 3 H, CHH major and $2 \times$ CHH minor), 1.60–1.45 (m, 1 H, CHH*) ppm.¹³C NMR (125 MHz, CDCl₃, major isomer marked *): δ = 172.4 (CO minor), 171.8 (CO*), 168.7 (CO*), 168.6 (CO minor), 147.3 (C minor), 146.9 (C*), 134.2 (2 × CH major and minor), 130.1 (2× CH major and minor), 126.4 (2× C major and minor), 125.8 (CH minor), 125.7 (d, J = 1.4 Hz, CH*), 123.6 (d, J = 3.6 Hz, CH minor), 123.4 (d, J = 4.3 Hz, CH*), 120.7 (dd, J =

256.5, 244.0 Hz, CF₂*), 120.3 (dd, J = 257.6, 243.0 Hz, CF₂ minor), 85.5 (dd, J = 31.9, 22.9 Hz, C minor), 84.9 (dd, J = 32.9, 23.0 Hz, C*), 51.8 (2 × CH₃ major and minor), 38.1 (dd, J = 24.0, 20.3 Hz, CH minor), 37.7 (dd, J = 20.5, 20.5 Hz, CH*), 34.4 (d, J = 3.0 Hz, 2 × CH₂ major and minor), 32.7 (CH₂*), 31.7 (d, J = 7.8 Hz, CH₂ minor), 28.1 (d, J = 6.8 Hz, CH₂*), 26.3 (d, J = 4.8 Hz, CH₂ minor), 20.1 (CH₂*), 17.0 (CH₂ minor) ppm. ¹⁹F NMR (376 MHz, CDCl₃, major isomer marked *): $\delta = -104.0$ to -110.0 (br s, 1 F minor), -115.0 to -117.5 (br d, J = 252.3 Hz, 1 F minor), -117.3 (d, J =249.3 Hz, 1 F*), -121.6 (dd, J = 249.3, 31.2 Hz, 1 F*) ppm. MS: m/z (%) = 311 (20) [M + H]⁺, 310 (100) [M]⁺, 279 (25), 278 (54), 270 (27), 258 (22), 233 (21), 199 (24), 172 (40), 144 (17) cm⁻¹. HRMS (ESI-TOF): calcd. for C₁₆H₁₆F₂O₄Na [M + Na]⁺ 333.0914; found 333.0914.

Supporting Information (see footnote on the first page of this article): Copies of ¹H and ¹³C NMR spectra for all reported compounds.

Acknowledgments

The authors acknowledge financial support from the Thailand Research Fund (BRG5380019), the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative, Thailand, and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Thailand.

- For reviews, see: a) L. Ojima (Ed.), Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell, Oxford, UK, 2009;
 b) J.-P. Bégué, D. Bonnet-Delpon, Bioorganic and Medicinal Chemistry of Fluorine, John Wiley & Sons, New York, 2008; c)
 K. Miller, C. Fach, F. Diederich, Science 2007, 317, 1881–1886;
 d) P. Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, Germany, 2004; e) T. Hiyama, Organofluorine Compounds: Chemistry and Applications, Springer, Berlin, 2000.
- For recent examples on difluoromethylation and difluoro [2] methylenation, see: a) Q. Zhou, A. Ruffoni, R. Gianatassio, Y. Fujiwara, E. Sella, D. Shabat, P. S. Barran, Angew. Chem. 2013, 125, 4041; Angew. Chem. Int. Ed. 2013, 52, 3949-3952; b) P. S. Fier, J. F. Hartwig, Angew. Chem. 2013, 125, 2146; Angew. Chem. Int. Ed. 2013, 52, 2092-2095; c) P. W. Chia, D. Bello, A. M. Z. Slawin, D. Ó. Hagan, Chem. Commun. 2013, 49, 2189-2191; d) V. V. Levin, A. A. Zemtsov, M. I. Struchkova, D. Dilman, Org. Lett. 2013, 15, 917-919; e) T. Iida, R. Hashimoto, K. Aikawa, S. Ito, K. Mikami, Angew. Chem. 2012, 124, 9673; Angew. Chem. Int. Ed. 2012, 51, 9535-9538; f) X. Shen, W. Zhang, C. Ni, Y. Gu, J. Hu, J. Am. Chem. Soc. 2012, 134, 16999-17002; g) T. Poisson, M.-C. Belhomme, X. Pannecoucke, J. Org. Chem. 2012, 77, 9277-9285; h) P. G. Wilson, J. M. Percy, J. M. Redmond, A. W. McCarter, J. Org. Chem. 2012, 77, 6384-6393; i) Y. H. Lim, Q. Ong, H. A. Duong, T. M. Nguyen, C. W. Johannes, Org. Lett. 2012, 14, 5676-5679; j) V. S. Kubyshkin, P. K. Mykhailiuk, S. Afonin, A. S. Ulrich, I. V. Komarov, Org. Lett. 2012, 14, 5254-5257; k) K. Fujikawa, A. Kobayashi, H. Amii, Synthesis 2012, 44, 3015-3018; 1) E. Yang, M. R. Reese, J. M. Humphrey, Org. Lett. 2012, 14, 3944-3947; m) F. Wang, W. Zhang, J. Zhu, H. Li, K.-W. Huang, J. Hu, Chem. Commun. 2011, 47, 2411-2413; n) L. Kiss, E. Forró, S. Fustero, F. Fülöp, Eur. J. Org. Chem. 2011, 4993-5001; o) Y. Zhao, W. Huang, J. Zheng, J. Hu, Org. Lett. 2011, 13, 5342-5345; p) K. Fujikawa, Y. Fujioka, A. Kobayashi, H. Amii, Org. Lett. 2011, 13, 5560-5563; q) F.-L. Qing, F. Zheng, Synlett 2011, 1052-1072; r) E. K. Raja, D. A. Klumpp, Tetrahedron Lett. 2011, 52, 5170-5172; s) J. Liu, J. Hu, Chem. Eur. J. 2010, 16, 11443-11454; t) R. Surmont, G. Verniest, J. W. Thuring, P. T. Holte, F. Deroose, N. De Kimpe, Org. Biomol. Chem. 2010, 8, 4514-4517; u) J. Wu, S. Cao, N. Liu, L. Shen, J. Yu,

Synthesis of *gem*-Difluoromethylenated Spiro-γ-butyrolactones

J. Zhang, H. Li, X. Qian, Org. Biomol. Chem. 2010, 8, 2386–2391; v) G. Fourrière, N. V. Hijfte, J. Lalot, G. Dutech, B. Fragnet, G. Coadou, J.-C. Quirion, E. Leclerc, Tetrahedron 2010, 66, 3963–3972; w) L. Zhu, Y. Li, Y. Zhao, J. Hu, Tetrahedron Lett. 2010, 51, 6150–6152; x) G. Verniest, R. Surmont, E. V. Hende, A. Deweweire, F. Deroose, J. W. Thuring, N. De Kimpe, J. Org. Chem. 2008, 73, 5458–5461; y) S. Arimitsu, B. Fernández, C. del Pozo, S. Fustero, G. B. Hammond, J. Org. Chem. 2008, 73, 2656–2661; z) Y.-Y. Qin, X.-L. Qiu, Y.-Y. Yang, W.-D. Meng, F.-L. Qing, J. Org. Chem. 2005, 70, 9040–9043.

- [3] a) V. Pharikronburee, T. Punirun, D. Soorukram, C. Kuhakarn, P. Tuchinda, V. Reutrakul, M. Pohmakotr, Org. Biomol. Chem. 2013, 11, 2022–2033; b) K. Boonkitpattarakul, D. Soorukram, P. Tuchinda, V. Reutrakul, M. Pohmakotr, J. Fluorine Chem. 2011, 132, 987–990; c) G. K. S. Prakash, J. Hu, Acc. Chem. Res. 2007, 40, 921–930 and references cited; d) S. Mizuta, N. Shibata, S. Ogawa, H. Fujimoto, S. Nakamura, T. Toru, Chem. Commun. 2006, 2575–2577; e) M. Pohmakotr, K. Boonkitpattarakul, W. Ieawsuwan, S. Jarussophon, N. Duangdee, P. Tuchinda, V. Reutrakul, Tetrahedron 2006, 62, 5973–5985; f) G. K. S. Prakash, J. Hu, Y. Wang, G. A. Olah, J. Fluorine Chem. 2005, 126, 529–534; g) G. K. S. Prakash, J. Hu, G. A. Olah, J. Org. Chem. 2003, 68, 4457–4463.
- [4] a) T. Punirun, K. Peewasan, C. Kuhakarn, D. Soorukram, P. Tuchinda, V. Reutrakul, P. Kongsaeree, S. Prabpai, M. Pohmakotr, Org. Lett. 2012, 14, 1820–1823; b) T. Bootwicha, D. Panichakul, C. Kuhakarn, S. Prabpai, P. Kongsaeree, P. Tuchinda, V. Reutrakul, M. Pohmakotr, J. Org. Chem. 2009, 74, 3798–3805; c) Y. Li, J. Hu, Angew. Chem. 2007, 119, 2541; Angew. Chem. Int. Ed. 2007, 46, 2489–2492; d) M. Pohmakotr, D. Panichakul, P. Tuchinda, V. Reutrakul, Tetrahedron 2007, 63, 9429–9436; e) Y. Li, J. Hu, Angew. Chem. 2005, 117, 6032; Angew. Chem. Int. Ed. 2005, 44, 5882–5886.
- [5] For examples, see: a) H.-L. Teng, H. Huang, C.-J. Wang, Chem. Eur. J. 2012, 18, 12614–12618; b) J. Sperry, Z. E. Wilson, D. C. K. Rathwell, M. A. Brimble, Nat. Prod. Rep. 2010, 27, 1117–1137; c) J. Huyet, G. M. Pinon, M. R. Fay, J. Fagart, M.-E. Rafestin-Oblin, Mol. Pharmacol. 2007, 72, 563–571; d) P. Tuchinda, B. Munyoo, M. Pohmakotr, P. Thinapong, S. So-

phasan, T. Santisuk, V. Reutrakul, J. Nat. Prod. 2006, 69, 1728–1733; e) C. Marti, E. M. Carreira, Eur. J. Org. Chem. 2003, 2209–2219; f) T.-S. Wu, M.-S. Kao, P.-L. Wu, F.-W. Lin, L.-S. Shi, C.-M. Teng, Phytochemistry 1999, 52, 901–905; g) M. Nukina, H. Hirota, Biosci. Biotechnol. Biochem. 1992, 56, 1158–1159; h) D. F. Wiemer, L. K. Wolfe, W. Fenical, S. A. Strobel, J. Clardy, Tetrahedron Lett. 1990, 31, 1973–1976; i) E. Rodriguez, G. H. N. Towers, J. C. Mitchell, Phytochemistry 1976, 15, 1573–1580.

- [6] For recent spirolactone syntheses, see: a) P. R. Sridhar, K. Seshadri, G. M. Reddy, Chem. Commun. 2012, 48, 756-758; b) T.-L. Liu, Z.-L. He, H.-Y. Tao, C.-J. Wang, Chem. Eur. J. 2012, 18, 8042-8046; c) C. A. Leverett, V. C. Purohit, A. G. Johnson, R. L. Davis, D. J. Tantillo, D. Romo, J. Am. Chem. Soc. 2012, 134, 13348–13356; d) J. Hierold, D. W. Lupton, Org. Lett. 2012, 14, 3412-3415; e) R. L. Davis, C. A. Leverett, D. Romo, D. J. Tantillo, J. Org. Chem. 2011, 76, 7167-7174; f) J. Li, L. Li, Y. Si, X. Jiang, L. Guo, Y. Che, Org. Lett. 2011, 13, 2670-2673; g) Z. Yang, P. T. Jolicia, J. F. Gauuan, B. F. Molino, J. Org. Chem. 2009, 74, 9546-9549; h) E. Pavlakos, T. Georgiou, M. Tofi, T. Montagon, G. Vassilikogiannakis, Org. Lett. 2009, 11, 4556-4559; i) M. N. Villalobos, J. L. Wood, Tetrahedron Lett. 2009, 50, 6450-6453; j) R. H. Pouwer, H. Schill, C. M. Williams, P. V. Bernhardt, Eur. J. Org. Chem. 2007, 4699-4705; k) A. Chanu, I. Safir, R. Basak, A. Chiaroni, S. Arseniyadis, Org. Lett. 2007, 9, 1351-1354; 1) T. J. Brockson, F. Coelho, J.-P. Deprés, A. E. Greene, M. E. Freie De Lima, O. Hamelin, B. Hartmann, A. M. Kanazawa, Y. Wang, J. Am. Chem. Soc. **2002**, *124*, 15313–15325.
- [7] G. Lhommet, S. Fréville, V. Thuy, H. Petit, J.-P. Célérier, Synth. Commun. 1996, 26, 3897–3901.
- [8] H. G. Richey Jr., J. P. DeStephano, J. Org. Chem. 1990, 55, 3281–3286.
- [9] CCDC-953365 (for 5dA) and -953366 (for 5iA) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Received: July 4, 2013 Published Online: ■

Eur. J. Org. Chem. 0000, 0-0

Da

Bu₃SnH

AIBN

toluene reflux

Organofluorine Compounds

- A. Chatupheeraphat, D. Soorukram, C. Kuhakarn, P. Tuchinda, V. Reutrakul,
- C. Pakawatchai, S. Saithong,
- M. Pohmakotr* 1-16

Synthesis of *gem*-Difluoromethylenated Spiro- γ -butyrolactones by Employing PhSCF₂Si(CH₃)₃ as a *gem*-Difluoromethylenating Agent

Keywords: Lactones / Difluoromethylenation / Cyclization / Fluorine

for the synthesis of gem-difluoromethylenated spiro- γ -butyrolactones.

