

www.elsevier.nl/locate/ica

Inorganica Chimica Acta 291 (1999) 60-65

Inorganica Chimica Acta

Synthesis of gold ferrocenyl substituted ylides and methanides: crystal structure of [FcCH(AuPPh₃)PPh₃]ClO₄ [Fc = $(\eta^5-C_5H_5)Fe(\eta^5-C_5H_4)$]

Eva M. Barranco, M. Concepción Gimeno, Antonio Laguna *

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain

Received 22 September 1998

Abstract

The treatment of $[FcCH_2NMe_3]I$ with tertiary or ditertiary phosphines gives the phosphonium salts $[FcCH_2PR_3]I$ (PR₃ = PPh₃, PPh₂Me) or $[FcCH_2PPh_2CH_2PPh_2]I$. The reaction of $[FcCH_2PR_3]ClO_4$ with $[Au(acac)(PPh_3)]$ gives the ylide complexes $[FcCH(AuPPh_3)PR_3]ClO_4$. The compound $[FcCH_2PPh_2CH_2PPh_2]OTf$ reacts with several gold(I) complexes to give $[FcCH_2PPh_2CH_2PPh_2(AuC_6F_5)]OTf$ or $[FcCH_2PPh_2CH_2PPh_2(AuPPh_3)](OTf)_2$. The reaction of $[FcCH_2PPh_2CH_2PPh_2CH_2PPh_2CH_2PPh_2(AuPPh_3)](OTf)_2$. The reaction of $[FcCH_2PPh_2CH_2PPh_2CH_2PPh_2CH_2PPh_2C(AuPPh_3)](OTf)_2$. Characteristic set is the methanide type species $[FcCH_2PPh_2C(AuPPh_3)]_2PPh_2(AuPPh_3$

Keywords: Gold complexes; Ferrocenyl complexes; Methanide complexes; Ylide complexes

1. Introduction

Ferrocene derivatives containing phosphorus groups have been the object of great attention in recent years [1]. Amongst them, the chemistry of 1,1'-bis(diphenylphosphino)ferrocene and its metal complexes has been extensively developed [2]. However, other derivatives in which the phosphorus atom is not directly bonded to the cyclopentadienyl ring are far less studied. The synthesis of the phosphonium salts [FcCH₂PR₃]I [3] or the mixed phosphonium–phosphine salt [FcCH₂PPh₂]I [4] was reported some years ago. However, the coordination chemistry of these compounds has not been studied and only some sodium or potassium methanide complexes have been described.

Here we report on the reactivity of these phosphonium salts with several gold complexes. Thus, some ylide or methanide derivatives are synthesised and the crystal structure of the compound [FcCH(AuPPh₃)-PPh₃]ClO₄ is described. Ylide [5] and methanide [6] complexes of gold have been previously reported and reviewed but no examples with ferrocene moieties have been described.

2. Experimental

2.1. General procedure

Infrared spectra were recorded in the range 4000–200 cm⁻¹ on a Perkin–Elmer 883 spectrophotometer using Nujol mulls between polyethylene sheets. Conductivities were measured in ca. 5×10^{-4} mol dm⁻³ solutions with a Philips 9509 conductimeter. C, H and S analyses were carried out with a Perkin–Elmer 2400 microanalyzer. Mass spectra were recorded on a VG Autospec, with the liquid secondary ion mass spectrometry (LSIMS) technique, using nitrobenzyl alcohol as the matrix. NMR spectra were recorded on a Varian Unity 300 spectrometer and a Bruker ARX 300 spectrometer in CDCl₃. Chemical shifts are cited relative to SiMe₄ (¹H, external) and 85% H₃PO₄ (³¹P, external).

^{*} Corresponding author. Tel.: + 34-976-761185; fax: + 34-976-761187.

E-mail address: alaguna@posta.unizar.es (A. Laguna)

2.2. Preparation of the compounds

The compounds $[FcCH_2PR_3]I$ (PR₃ = PPh₃, PPh₂Me) [3], $[FcCH_2PPh_2CH_2PPh_2]I$ [4], $[Au(acac)(PPh_3)]$ [7], [O(AuPPh_3)_3]ClO₄ [8], [AuCl(tht)] [9] and $[Au(C_6F_5)-(tht)]$ [10] were prepared by published procedures. [Au(OTf)(PR_3)] was obtained by reaction of equimolar amounts of $[AuCl(PPh_3)]$ [11] and Ag(OTf).

2.2.1. $[FcCH_2PR_3]ClO_4$ (PR₃ = PPh₃ (1), PPh₂Me (2)) To a dichloromethane solution (30 ml) of [FcCH₂PPh₃]I (0.353 g, 0.6 mmol) or [FcCH₂PPh₂Me]I (0.315 g, 0.6 mmol) was added Ag(ClO₄) (0.124 g, 0.6 mmol). The mixture was stirred for 2 h and then the solid AgI formed was filtered. The solution was concentrated to ca. 5 ml and diethyl ether (20 ml) was added to yield yellow solids of 1 or 2. Compound 1, yield 86%. Anal. Calc. for C₂₉H₂₆ClFeO₄P: C, 62.11; H, 4.67. Found: C, 61.87; H, 4.37%. $\Lambda_{\rm M}$ 130 Ω^{-1} cm² mol⁻¹. ¹H NMR, δ: 3.90 (m, 2H, C₅H₄), 4.06 (m, 2H, C₅H₄), 4.30 (s, 5H, C₅H₅), 4.61 [d, 2H, CH₂, J(PH) 12.3 Hz], 7.2–7.6 (m, br, 15H, Ph). ${}^{31}P{}^{1}H{}$ NMR, δ : 19.8 (s) ppm. Compound 2, yield 87%. Anal. Calc. for C₂₄H₂₄ClFeO₄P: C, 57.80; H, 4.85. Found: C, 57.34; H, 4.68%. $\Lambda_{\rm M}$ 135.5 Ω^{-1} cm² mol⁻¹. ¹H NMR, δ : 2.37 (m, br, 3H, PMe), 4.07-4.24 (m, br, 11H, FcCH₂), 7.64-7.74 (m, 10H, Ph). ${}^{31}P{}^{1}H{}$ NMR, δ : 19.6 (s) ppm.

2.2.2. $[FcCH_2PPh_2CH_2PPh_2]X (X = ClO_4 (3a), OTf (3b))$

To a solution of [FcCH₂PR₂CH₂PPh₂]I (0.710 g, 1 mmol) in dichloromethane (30 ml) was added $Ag(ClO_4)$ (0.207 g, 1 mmol) or Ag(OTf) (0.026 g, 0.1 mmol) and the mixture was stirred for 2 h. Then the solid AgI was filtered and the solution concentrated to ca. 5 ml. Addition of diethyl ether (20 ml) gave a yellow solid of 3a or 3b. Compound 3a: yield 95%. Anal. Calc. for C₃₆H₃₃ClFeO₄P₂: C, 63.32; H, 4.87. Found: C, 62.98; H, 4.55%. $\Lambda_{\rm M}$ 140 Ω^{-1} cm² mol⁻¹. ¹H NMR, δ : 3.66 [d, 2H, CH₂, J(PH) 13.91 Hz], 3.85 (m, 2H, C₅H₄), 3.96 (m, 2H, C₅H₄), 4.23 (s, 5H, C₅H₅), 4.41 [d, 2H, CH₂, J(PH) 11.53 Hz], 7.2–7.6 (m, br, 20H, Ph). ${}^{31}P{}^{1}H$ NMR, δ : 21.6 [d, 1P, C–P–C, J(PP) 50 Hz], –27.3 (d, 1P, C–P). **3b**: yield Compound 78%. Anal. Calc. for C₃₇H₃₃F₃FeO₃P₂S: C, 60.67; H, 4.54; S, 4.38. Found: C, 60.36; H, 4.55; S, 4.39%. $\Lambda_{\rm M}$ 120 Ω^{-1} cm² mol⁻¹. ¹H NMR, δ: 3.84 [d, 2H, CH₂, J(PH) 14.4 Hz], 4.0 (m, 2H, C₅H₄), 4.05 (m, 2H, C₅H₄), 4.19 (s, 5H, C₅H₅), 4.49 [d, 2H, CH₂, J(PH) 12.1 Hz], 7.2–7.6 (m, br, 20H, Ph). ³¹P{¹H} NMR, δ : 23.3 [d, 1P, C–P–C, J(PP) 62.9 Hz], -28.2 (d, 1P, C-P).

2.2.3. $[FcCH(AuPPh_3)PR_3]ClO_4 (PR_3 = PPh_3 (4), PPh_2Me (5))$

To a solution of $[FcCH_2PPh_3]ClO_4$ (0.056 g, 0.1 mmol) or $[FcCH_2PPh_2Me]ClO_4$ (0.050 g, 0.1 mmol) in

dichloromethane (20 ml) was added [Au(acac)(PPh₃)] (0.059 g, 0.1 mmol) and the solution was stirred for 2 h. Evaporation of the solvent to ca. 5 ml and addition of diethyl ether (20 ml) afforded yellow solids of 4 or 5. Complex 4, yield 66%. Anal. Calc. for C47H40Au-ClFeO₄P₂: C, 55.39; H, 3.95. Found: C, 54.89; H, 3.88%. $\Lambda_{\rm M}$ 119.6 $\Omega^{-1}~{\rm cm^2}~{\rm mol^{-1}}.$ ¹H NMR, δ : 3.82 (m, 2H, C₅H₄), 4.0 (m, 2H, C₅H₄), 4.06 (s, 5H, C₅H₅), 4.3 (m, 1H, CH), 7.2–7.6 (m, br, 30H, Ph). ${}^{31}P{}^{1}H{}$ NMR, δ : 23.8 (m, 1P, CHPPh₃), 39.9 (m, 1P, AuPPh₃) ppm. Complex 5, yield 71%. Anal. Calc. for C42H38Au-ClFeO₄P₂: C, 52.71; H, 4.00. Found: C, 53.11; H, 4.39%. $\Lambda_{\rm M}$ 156 Ω^{-1} cm² mol⁻¹. ¹H NMR, δ : 2.27 [d, 3H, J(PH) 12.61 Hz, PMe], 4.04 (m, 2H, C₅H₄), 4.06 (m, 2H, C₅H₄), 4.07 (s, 5H, C₅H₅), 4.18 [d, 1H, CH, J(PH) 12.0 Hz], 7.2–7.8 (m, br, 25H, Ph). ${}^{31}P{}^{1}H{}$ NMR, δ : 21.6 [d, 1P, J(PP) 9.2 Hz, CHPPh₂Me), 40.7 (d, 1P, AuPPh₃) ppm.

2.2.4. [$FcCH_2PPh_2CH_2PPh_2(AuX)$]OTf (X = Cl (6), C_6F_5 (7))

To a solution of [FcCH₂PPh₂CH₂PPh₂]OTf (0.073 g, 0.1 mmol) in dichloromethane (20 ml) was added [Au-Cl(tht)] (0.032 g, 0.1 mmol) or $[Au(C_6F_5)(tht)]$ (0.045 g, 0.1 mmol) and the mixture was stirred for 1 h. Evaporation of the solvent to ca. 5 ml and addition of diethyl ether (15 ml) gave complexes 6 or 7 as yellow solids. Complex 6, yield 72%. Anal. Calc. for C₃₇H₃₃AuClF₃-FeO₃P₂S: C, 46.05; H, 3.44; S, 3.32. Found: C, 45.89; H, 3.23; S, 3.56%. $\Lambda_{\rm M}$ 95.8 Ω^{-1} cm² mol⁻¹. ¹H NMR, δ : 3.92 (m, br, 2H, CH₂), 4.08 (m, br, 2H, CH₂), 4.26 (m, br, 9H, Fc), 7.3-7.9 (m, br, 20H, Ph). ³¹P{¹H} NMR, δ : 17.7 (m, br, 1P), 19.0 (m, br, 1P) ppm. Complex 7, yield 86%. Anal. Calc. for C43H33AuF8FeO3P2S: C, 47.10; H, 3.03; S, 2.92. Found: C, 47.43; H, 3.21; S, 3.26%. $\Lambda_{\rm M}$ 114 Ω^{-1} cm² mol⁻¹. ¹H NMR, δ : 3.89 (m, 2H, C₅H₄), 4.06 (m, 2H, C₅H₄), 4.22 (s, 5H, C₅H₅), 4.36 [d, 2H, CH₂, J(PH) 13.2 Hz], 4.41 [d, 2H, CH₂, J(PH) 12.3 Hz], 7.2–7.8 (m, br, 20H, Ph). ${}^{31}P{}^{1}H{}$ NMR, δ : 19.6 (m, 1P, C-P-C), 25.5 [d, 1P, P-Au, J(PP) 9 Hz] ppm. ¹⁹F NMR, δ : -116.7 (m, 2F, o-F), -157.4 [t, 1F, p-F, J(FF) 19.9 Hz], -162.1 (m, 2F, m-F).

2.2.5. $[FcCH_2PPh_2CH_2PPh_2Au(PPh_3)](OTf)_2$ (8)

To a solution of $[FcCH_2PR_2CH_2PPh_2]OTf$ (0.073 g, 0.1 mmol) in dichloromethane (20 ml) was added $[Au(OTf)(PPh_3)]$ (0.061 g, 0.1 mmol) and the mixture was stirred for 1 h. Concentration of the solution to ca. 5 ml and addition of diethyl ether afforded a yellow solid of **8**. Yield 95%. *Anal.* Calc. for $C_{56}H_{48}AuF_6FeO_6P_3S_2$: C, 50.16; H, 3.60; S, 4.78. Found: C, 49.62; H, 3.31; S, 4.87%. Λ_M 150 Ω^{-1} cm² mol⁻¹. ¹H NMR, δ : 4–5 ppm (br, overlapped, 9H, Fc + CH₂), 7–8 (m, br, 35H, Ph). ³¹P{¹H} NMR, ABX system, δ_X 20.0 (m, 1P, C–P–C), δ_A 31.0, δ_B 44.2 ppm (P–Au–P), *J*(AB) 326 Hz.

2.2.6. [*FcCH*₂*PPh*₂*C*(*AuPPh*₃)₂*PPh*₂*Au*(*PPh*₃)](*ClO*₄)₂ (9)

To a solution of $[FcCH_2PPh_2CH_2PPh_2]ClO_4$ (0.068 g, 0.1 mmol) in dichloromethane (20 ml) was added $[O(AuPPh_3)_3]ClO_4$ (0.149 g, 0.1 mmol) and the mixture was stirred for 2 h. Concentration of the solution to ca. 5 ml and addition of diethyl ether (10 ml) led to a yellow solid of **9**. Yield 86%. *Anal.* Calc. for $C_{90}H_{76}Au_3Cl_2FeO_8P_5$: C, 50.09; H, 3.55. Found: C, 49.87; H, 3.54%. Λ_M 199 Ω^{-1} cm² mol⁻¹. ¹H NMR, δ : 3.41 [d, 2H, CH₂, J(PH) 12.1 Hz, CH₂–P], 3.88 (s, 5H, C₅H₅), 3.98 (m, 2H, C₅H₄), 4.24 (m, 2H, C₅H₄), 7–8 (m, br, 65H, Ph). ³¹P{¹H} NMR, ABM₂X system, δ_A 45.6, δ_B 53.3 (P–Au–P), J(AB) 317 Hz, δ_M 36.2 (m, 2P, PPh₃), δ_X 28.3 (m, 1P, C–P–C) ppm.

2.3. X-ray structure determination of complex 4

Crystals of 4 were grown from dichloromethane/hexane. A yellow prism of $0.55 \times 0.25 \times 0.20$ mm was mounted in inert oil on a glass fibre. A total of 9910 intensities were registered using monochromated Mo Ka radiation ($\lambda = 0.71073$ Å, $2\theta_{max} = 50^{\circ}$) on a Siemens P4 four circle diffractometer; 7033 unique reflections $(R_{int} = 0.0848)$ and 6983 were used for all calculations. Cell constants were refined from setting angles of 60 reflections in the range $2\theta = 10-25^{\circ}$. An absorption correction based on Ψ -scans was applied, with transmission factors 0.760-0.941. The structure was solved by direct methods and all the atoms were refined anisotropically on F^2 using the program SHELXL-93 [12]. H atoms were included using a riding model. The final $wR(F^2)$ was 0.159 for all reflections, with a conventional R(F) of 0.0526, for 505 parameters. S = 1.035; max. $\Delta \rho = 1.674$ e Å⁻³. Further details are shown in Table 1.

3. Results and discussion

The reaction of [FcCH₂NMe₃]I with tertiary phosphines affords the previously synthesised phosphonium salts [FcCH₂PR₃]I (PR₃ = PPh₃, PPh₂Me). In order to react them with gold complexes we have changed the anion iodide to perchlorate by reacting [FcCH₂PR₃]I with AgClO₄ (Scheme 1). The new compounds [FcCH₂PR₃]ClO₄ (PR₃ = PPh₃ (1), PPh₂Me (2)) are air and moisture stable yellow solids that behave as 1:1 electrolytes in acetone solutions. Their IR spectra show the bands arising from the phosphine and ferrocenyl groups and those of the perchlorate anion around 1100 (vs, br) and 620 (m) cm⁻¹. In their ¹H NMR spectra appear two multiplets for the α and β protons of the substituted cyclopentadienyl group, a singlet for the protons of the unsubstituted Cp ring and a doublet for

Table 1 Details of data collection and structure refinement for complex **4**

Empirical formula	C ₄₇ H ₄₀ AuClFeO ₄ P ₂
Formula weight	1019
Space group	$P2_1/c$
$V(Å^3)$	4124.6(7)
Z	4
D_{calc} (g cm ⁻³)	1.641
a (Å)	10.9310(10)
$b(\mathbf{A})$	32.850(4)
c (Å)	11.8070(10)
β (°)	103.381(7)
T(K)	173
μ (Mo K α) (mm ⁻¹)	4.091
$R^{a}(F, F > 4\sigma(F))$	0.0526
$wR^{b}(F^{2}, \text{ all reflections})$	0.159

^a $R(F) = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|.$

^b
$$wR(F^2) = [\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma \{w(F_o^2)^2\}]^{0.5}.$$

the methylene protons. Compound **2** also shows a doublet for the phosphine methyl protons. The ${}^{31}P{}^{1}H{}$ NMR spectra present one singlet for the phosphorus atom.

We have also prepared the compound [FcCH₂PPh₂-CH₂PPh₂]X (X = ClO₄ (**3a**), OTf (**3b**)) by reaction of the previously known [FcCH₂PPh₂CH₂PPh₂]I with Ag(ClO₄) or Ag(OTf) (Scheme 1). Compound **3a** also shows in its IR spectrum the absorptions of the perchlorate anion at 1095 (vs, br) and 623 (m) cm⁻¹, whereas **3b** shows the absorptions of the triflate anion at 1265(vs, br) [v_{as} (SO₃)], 1223(s) [v_{s} (CF₃)], 1150(s) [v_{as} (CF₃)] and 1023(s) [v_{s} (SO₃)] cm⁻¹. The ¹H NMR spectrum presents two multiplets for the α and β protons of the unsubstituted Cp ring and a doublet for each methylene group. Surprisingly, no coupling with

Scheme 1. (i) PR_3 , (ii) $PPh_2CH_2PPh_2$, (iii) $Ag(ClO_4)$, (iv) $Ag(ClO_4)$ or Ag(OTf).

one of the phosphorus atoms is observed for the $P-CH_2-P$ group, but a doublet was also observed in the starting material [FcCH₂PPh₂CH₂PPh₂]I [4]. In the ³¹P{¹H} NMR spectrum two doublets for the two phosphorus atoms with coupling between them appear. The chemical shift is characteristic of a phosphonium phosphorus, ≈ 21 ppm, and uncoordinated phosphine ligand, ≈ -27 ppm.

The treatment of the phosphonium salts 1 or 2 with $[Au(acac)(PPh_3)]$ leads to complexes $[FcCH(AuPPh_3)-PR_3]ClO_4$ (PR₃ = PPh₃ (4), PPh₂Me (5)) originated by substitution of one proton of the methylene group by the isolobal fragment AuPPh₃⁺; acetylacetone is formed in the reaction (Eq. 1).

The use of acetylacetonato (acac) complexes has been previously reported in the synthesis of ylide and methanide gold derivatives [13-15]. Complexes 4 and 5 are air and moisture stable yellow solids that behave as 1:1 electrolytes in acetone solutions.

In the ¹H NMR spectrum of **4** and **5** the protons of the substituted cyclopentadienyl ring appear as two multiplets, the protons of the unsubstituted Cp ring appear as a singlet, whereas the CH proton appears as a doublet of doublets in complex **4** as a consequence of the coupling with both phosphorus atoms and as a doublet for complex **5**. The methyl protons in **5** appear also as a doublet. The ³¹P{¹H}</sup> NMR spectra show two doublets for the two different phosphorus environments with coupling between them.

In the liquid secondary positive-ion mass spectra the cationic molecular peaks appear at m/z = 919 (4, 15%) and 857 (5, 71%); the fragments arising from the loss of PPh₃ are also present at 657 (4, 90%) and 594 (5, 6%).

The molecular structure of complex **4** has been confirmed by an X-ray diffraction study and the cation is shown in Fig. 1. A selection of bond lengths and angles are collected in Table 2. The gold atom has a linear geometry with an almost ideal angle of $178.2(3)^{\circ}$. The Au–C distance is 2.089(9) Å and is of the same order as those found in other ylide or methanide complexes such as $[Au(C_6F_5)_2{\mu-(PPh_2)_2CH(AuC_6F_5)}](2.094(7) Å)[16]$. The Au–P bond distance of 2.274(3) Å is similar to complexes which have a carbon ligand *trans* to the phosphorus.

The cyclopentadienyl rings are staggered by 10° around the Cp···Cp axis defined by the torsion angle C(1)-centre-centre-C(8). The distances of the Fe atom to the centres of the rings are 1.651 and 1.659 Å which compare well with the values reported for other ferrocene

Fig. 1. Structure of the cation of complex 4 in the crystal showing the atom-numbering scheme. Radii are arbitrary. The Cp and Ph hydrogen atoms are omitted for clarity.

moieties, as do the Fe–C distances. In some gold or silver complexes with ferrocene derivatives as ligands, we have observed the presence of weak η^2 interactions between the metal centres and two of the carbons of the cyclopentadienyl ring [17,18]. In this complex, the Au…C(1) and Au…C(5) distances are around 3.5 Å and, thus, although very weak, point out the existence of possible bonding interaction.

We have also studied the reaction of compound **3b** with several gold complexes. First, the treatment of **3b** with [AuR(tht)] (tht = tetrahydrothiophene), which possesses the labile ligand tht, leads to the gold complexes [FcCH₂PPh₂CH₂PPh₂(AuR)]OTf (R = Cl (6), C₆F₅ (7)) by coordination of the gold centre to the phosphine phosphorus atom. Complexes 6 and 7 are yellow solids,

Table 2 Selected bond lengths (Å) and angles (°) for **4**

Au–C(11)	2.089(9)	Au–P(2)	2.274(3)
P(1)–C(41)	1.802(9)	P(1)–C(31)	1.807(9)
P(1)–C(21)	1.810(10)	P(1)–C(11)	1.811(8)
P(2)–C(71)	1.818(10)	P(2)–C(61)	1.821(11)
P(2)–C(51)	1.824(11)	C(1)-C(11)	1.503(13)
C(11)-Au-P(2)	178.2(3)	C(41)–P(1)–C(31)	108.7(4)
C(41)–P(1)–C(21)	110.6(4)	C(31)–P(1)–C(21)	105.4(4)
C(41)–P(1)–C(11)	111.7(4)	C(31)–P(1)–C(11)	111.0(4)
C(21)–P(1)–C(11)	109.4(5)	C(71)-P(2)-C(61)	106.0(5)
C(71)–P(2)–C(51)	107.2(5)	C(61)–P(2)–C(51)	105.4(5)
C(71)–P(2)–Au	112.5(4)	C(61)–P(2)–Au	113.4(3)
C(51)–P(2)–Au	111.9(4)	C(1)-C(11)-P(1)	110.9(6)
C(1)-C(11)-Au	119.9(6)	P(1)–C(11)–Au	108.3(4)
C(26)–C(21)–P(1)	120.9(8)	C(22)–C(21)–P(1)	118.4(9)
C(32)–C(31)–P(1)	124.0(8)	C(36)–C(31)–P(1)	116.3(7)
C(42)–C(41)–P(1)	121.8(7)	C(46)–C(41)–P(1)	119.2(7)
C(56)–C(51)–P(2)	118.4(9)	C(52)–C(51)–P(2)	122.9(8)
C(66)–C(61)–P(2)	123.4(9)	C(62)-C(61)-P(2)	118.5(8)
C(76)–C(71)–P(2)	118.7(8)	C(72)-C(71)-P(2)	122.8(8)

Scheme 2. (i) X = OTf, [AuCl(tht)] or [Au(C₆F₅)(tht)], (ii) X = OTf, [Au(OTf)(PPh₃)], (iii) $X = ClO_4$, [O(AuPPh₃)₃]ClO₄.

air and moisture stable that behave as 1:1 electrolytes in acetone solutions. Their IR spectra show the presence of the v(Au-Cl) band at 335 (m) cm⁻¹ and the bands assigned to a pentafluorophenyl group bonded to Au(I) at 1504 (s), 955 (s) and 793 (m) cm⁻¹. In the ¹H NMR spectra, the resonances of the methylene groups appear as doublets for complex 7, whereas in 6 there are broad singlets. The resonances of the ferrocene moiety appear as two multiplets and a singlet in the appropriate 2:2:5 ratio. The ³¹P{¹H} NMR spectra show two signals corresponding to two different phosphorus environments; for complex 7 the signals are better resolved and appear as doublets. The ¹⁹F spectrum of 7 presents three resonances for the *ortho, meta* and *para* fluorines of the pentafluorophenyl group.

In the positive liquid secondary ion mass spectra (LSIMS +) of complexes 6 and 7 the molecular peaks appear at m/z = 815 (6, 68%) and 947 (7, 100%).

The reaction of **3b** with [Au(OTf)(PPh₃)] leads to the dicationic complex [FcCH₂PPh₂CH₂PPh₂(AuPPh₃)]-(OTf)₂ (**8**) in high yield. Complex **8** is an air and moisture stable yellow solid that behaves as a 1:2 electrolyte in acetone solutions. Its ¹H NMR spectrum shows broad resonances (even when the experiment is carried out at low temperature) between 4 and 5 ppm which correspond to the methylene and ferrocenyl protons. The ³¹P{¹H} NMR spectrum presents an ABX system. The AB part corresponds to the PPh₂-Au-PPh₃ unit, with a large coupling constant of 326 Hz.

In the LSIMS + mass spectrum, the molecular peak appears at m/z = 1340 (7%), although with low intensity. However, the fragments at m/z = 1191 (12%) and 1041 (100%) due to the loss of one or two triflate anions are more intense.

Finally, we have synthesised a methanide gold derivative, [FcCH₂PPh₂C(AuPPh₃)₂PPh₂(AuPPh₃)](ClO₄)₂ (9), by reacting [FcCH₂PPh₂CH₂PPh₂]ClO₄ with [O- $(AuPPh_3)_3$ [ClO₄ (Scheme 2); the oxonium salt has already proved to be a good deprotonating agent in the synthesis of gold complexes. The most acidic methylene protons, which are those in between both phosphorus atoms, are removed and substituted by the isolobal fragment AuPPh₃⁺. Complex 9, with a different counterion, can also be obtained by treatment of 8 with two equivalents of [Au(acac)(PPh₃)]. Compound 9 is a paleyellow air and moisture stable solid that behaves as electrolyte 1:2 in acetone solutions. Its IR spectrum shows, in addition to the bands arising at the ferrocene and phenyl groups, the v(Au-C) vibration at 536 (w) cm⁻¹. In the ¹H NMR spectrum, the methylene protons appear as a doublet, the α and β protons of the C₅H₄ ring as multiplets and the C_5H_5 protons as a singlet. The ${}^{31}P{}^{1}H{}$ NMR spectrum presents an ABM₂X system. Again the AB part corresponds to the PPh₂-Au-PPh₃ unit. The signals of the B nuclei appear as multiplets because the coupling with M and/or X nuclei and the signals of M and X are multiplets. In the LSIMS + mass spectrum, the molecular peak does not appear but the fragment due to the loss of one ClO₄⁻ anion does at m/z = 2057 (12%) with coincident experimental and calculated isotopic distribution.

4. Supplementary material

Tables listing crystallographic data, positional and thermal parameters, and complete bond lengths and angles for complex **4** are available from the authors on request.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (No. PB97-1010-C02-01) and the Fonds der Chemischen Industrie for financial support.

References

- A. Togni, T. Hayashi (Eds.), Ferrocenes: Homogeneous Catalysis, Organic Synthesis and Materials Science, VCH, Weinheim, 1995.
- [2] K.S. Gan, T.S.A. Hor, in: A. Togni, T. Hayashi (Eds.), Ferrocenes: Homogeneous Catalysis, Organic Synthesis and Materials Science, VCH, Weinheim, 1995, Ch. 1 and Refs. therein.
- [3] P.L. Pauson, W.E. Watts. J. Chem. Soc. (1963) 2990.
- [4] H. Schmidbaur, U. Deschler, D. Seyferth, Z. Naturforsch., Teil B 37 (1982) 950.
- [5] A. Grohmann, H. Schmidbaur, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprenhensive Organometallic Chemistry II, vol. 3, Pergamon, Oxford, 1995, p. 1.

- [6] A. Laguna, M. Laguna, J. Organomet. Chem. 394 (1990) 743.
- [7] (a) D. Gibson, B.F.G. Johnson, J. Lewis, J. Chem. Soc., A (1970) 367. (b) J. Vicente, M.T. Chicote, Inorg. Synth. 32 (1998) 172.
- [8] A.N. Nesmeyanov, E.G. Perevalova, Yu.T. Struchkov, M.Yu. Antipin, K.I. Grandberg, V.P. Dyadchenko, J. Organomet. Chem. 201 (1980) 343.
- [9] R. Usón, A. Laguna, M. Laguna, Inorg. Synth. 26 (1989) 85.
- [10] R. Usón, A. Laguna, J. Vicente, J. Chem. Soc., Chem. Commun. (1976) 353.
- [11] R. Usón, A. Laguna, Inorg. Synth. 21 (1982) 71.
- [12] G.M. Sheldrick, SHELXL-93: Program for Crystal Structure Refinement, University of Göttingen, Germany, 1993.
- [13] J. Vicente, M.T. Chicote, M.C. Lagunas, Inorg. Chem. 32 (1993) 3748 and Refs. therein.
- [14] M.C. Gimeno, A. Laguna, M. Laguna, F. Sanmartín, P.G. Jones, Organometallics 12 (1993) 3984.
- [15] E.J. Fernández, M.C. Gimeno, P.G. Jones, A. Laguna, M. Laguna, J.M. López de Luzuriaga, J. Chem. Soc., Dalton Trans. (1992) 3365.
- [16] R. Usón, A. Laguna, M. Laguna, B. Manzano, P.G. Jones, G.M. Sheldrick, J. Chem. Soc., Dalton Trans. (1984) 839.
- [17] O. Crespo, M.C. Gimeno, P.G. Jones, A. Laguna, C. Sarroca, J. Chem. Soc., Chem. Commun. (1998) 1481.
- [18] M.J. Calhorda, M.C. Gimeno, P.G. Jones, A. Laguna, C. Sarroca, L. Veiros, Chem. Eur. J. 4 (1988) 2308.