Efficient Synthesis of Medium-Sized Cyclic Amines by Means of 2-Nitrobenzenesulfonamide

Toshiyuki Kan, Hideki Kobayashi, Tohru Fukuyama*
Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Fax +81(3)58028694; E-mail: fukuyama@mol.f.u-tokyo.ac.jp
Received 16 January 2002

Abstract

Construction of medium-sized cyclic amines using 2-nitrobenzenesulfonamides is described. Under either conventional alkylation or Mitsunobu reaction conditions, the cyclization reaction proceeded efficiently to give eight- to ten-membered rings.

Key words: medium-sized cyclic amines, macrocyclization, 2-nitrobenzenesulfonamide, alkylation, Mitsunobu reaction

The construction of medium-sized cyclic amines is an important task in organic synthesis, since such structural units often constitute the frameworks of a variety of medicinally important natural products. Although there are numerous reports on the construction of medium-sized cyclic amines, only a few have implemented direct cyclization with nitrogen nucleophiles. ${ }^{1,2}$ We have recently developed a novel methodology for transformation of primary amines to secondary amines using 2-nitrobenzenesulfonamides as an activating and a protecting group (Nsstrategy). ${ }^{3-8}$ Furthermore, during the course of the total synthesis of lipogrammistin-A, a macrocyclic polyamine, we found that Ns-strategy is effective for the construction of the 18 -membered ring (Scheme 1). ${ }^{9}$ We envisioned that this strategy may prove to be a general protocol for the construction of medium-sized cyclic amines. Herein we report novel syntheses of eight- to ten-membered cyclic amines from ω-bromoalcohol by means of 2-nitrobenzenesulfonamide strategy.
As shown in Table 1, the ring closure reactions using 2-nitrobenzenesulfonamide were investigated with nonbranched, simple substrates. Coupling between sulfonamide $\mathbf{1}$ and alcohol 2a-c was performed under Mitsunobu conditions to give predominantly mono-alkylated products $\mathbf{3 a} \mathbf{- c}$. Preliminary studies on the cyclization with 3ac, revealed that some what higher dilution conditions were necessary $(0.01 \mathrm{M})$ to obtain reasonable yields. Thus,
when acetonitrile solution of $\mathbf{3 a - c}$ was slowly added (2 h) via a syringe pump to a mixture of tetrabutylammonium iodide and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in acetonitrile at $60^{\circ} \mathrm{C}$, the cyclization proceeded smoothly to give the desired products $\mathbf{4 a - c}$ in good yields.

Table 1 Cyclization via Conventional Alkylation

${ }^{\text {a }}$ Alkylation conditions. PPh_{3}, DEAD, toluene-THF. ${ }^{12}$
${ }^{\mathrm{b}}$ Cyclization conditions. $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, n-\mathrm{Bu} u_{4} \mathrm{NI}, 60^{\circ} \mathrm{C} .{ }^{12,13}$

In order to perform the cyclization under Mitsunobu conditions, the precursors 6a-c were prepared from N -Bocnitrobenzensulfonamide $\mathbf{5}^{10}$ (Table 2). Upon treatment of 5 with bromide 2a-c with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF, the alkylation reaction proceeded smoothly to give N-Boc protected precursors. Subsequent acidic deprotection of the Boc group followed by basic methanolysis of trifluoroacetate with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol provided the cyclization precursors $\mathbf{6 a - c}$. Upon treatment of $\mathbf{6 a - c}$ with DEAD and triphe-

Scheme 1

[^0]nylphosphine in 0.01 M solution of toluene-THF at room temperature, the desired cyclization reaction proceeded smoothly to afford 4a-c in good yields.

Table 2 Cyclization via Mitsunobu Reaction

	Alkylation	 Cyclization 6a; $\mathrm{n}=1$ 6b; $\mathrm{n}=2$ 6 c ; $\mathrm{n}=3$	 4a; $n=1$ 4b; $n=2$ $4 \mathrm{c} ; \mathrm{n}=3$
Ring size	Bromide	Alkylation ${ }^{\text {a }}$ (yield \%)	Cyclization ${ }^{\text {b }}$ (yield \%)
8	2a	$\begin{gathered} \mathbf{6 a} \\ (66) \end{gathered}$	$\begin{gathered} \mathbf{4 a} \\ (59) \end{gathered}$
9	2b	$\begin{gathered} \mathbf{6 b} \\ (85) \end{gathered}$	$\begin{gathered} \mathbf{4 b} \\ (57) \end{gathered}$
10	2c	$\begin{gathered} \mathbf{6 c} \\ (62) \end{gathered}$	$\begin{gathered} \mathbf{4 c} \\ (62) \end{gathered}$

${ }^{\text {a }}$ Alkylation conditions: 1) $\mathrm{K}_{2} \mathrm{CO}_{3}, n-\mathrm{Bu}_{4} \mathrm{NI}$, DMF, $60^{\circ} \mathrm{C} .2$) TFA,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$. 3) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH. ${ }^{12}$
${ }^{\mathrm{b}}$ Cyclization conditions. PPh_{3}, DEAD, toluene-THF. ${ }^{12}$

In both protocols for the ring closures, the reactions proceeded successfully without using the branching effect. ${ }^{11}$ Thus, Ns-strategy proved to be a powerful protocol for the construction of medium-sized rings, overriding the inherent entropic disadvantage of the ring closure. Considering the mildness of the alkylation and the deprotection conditions, Ns-strategy would be compatible with a variety of functional groups. Furthermore, the fact that both alcohols and halides served as starting materials would allow preparation of a wide range of nitrogen heterocycles. Further application of this methodology to the total syntheses of complex natural products is currently under investigation in our laboratories.

References

(1) For recent syntheses of medium-sized cyclic amines, see: Ring-opening of bicyclic precursors: (a) Donohoe, T. J.; Raoof, A.; Linney, I. D.; Helliwell, M. Org. Lett. 2001, 3, 861. (b) Fatima, I.; Ramon, G. A.; Juan, C. C. Org. Lett. 2001, 3, 2957. (c) Cyclization of aminoalkenes: Bergmann, D. J.; Campi, E. M.; Jackson, W. R.; Patti, A. F.; Saylik, D. Tetrahedron Lett. 1999, 40, 5597. Ring-enlargement of sixmembered rings: (d) Moris-Varas, F.; Quian, X.-H.; Wong, C.-H. J. Am. Chem. Soc. 1996, 118, 7647. Others: (e) Kitano, T.; Shirai, N.; Motoi, M.; Sato, Y. J. Chem. Soc., Perkin Trans. 1 1992, 2851. (f) Shaw, R.; Anderson, M.; Gallagher, T. Synlett 1990, 584. (g) Shaw, R. W.; Gallagher, T. J. Chem. Soc. Perkin Trans. 1 1994, 3549.
(2) For recent synthesis of medium-sized cyclic amines based on ring-closing metathesis, see: (a) Meyers, A. I.; Downing, S. V.; Weiser, M. J. J. Org. Chem. 2001, 66, 1413. (b) Heinrich, M. R.; Steglich, W. Tetrahedron Lett. 2001, 42, 3287. (c) Fujiwara, T.; Kato, Y.; Takeda, T. Heterocycles 2000, 52, 147. (d) Paquette, L. A.; Leit, S. M. J. Am. Chem. Soc. 1999, 121, 8126. (e) Visser, M. S.; Heron, N. M.; Didiuk, M. T.; Sagal, J. F.; Hoveyda, A. H. J. Am. Chem.

Soc. 1996, 118, 4291. (f) Miller, S. J.; Kim, S.-H.; Chen, Z.R.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 2108.
(3) For a review on Ns-chemistry, see: Kan, T.; Fukuyama, T. J. Syn. Org. Chem., Jpn. 2001, 59, 779.
(4) Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373.
(5) Kurosawa, W.; Kan, T.; Fukuyama, T. Org. Synth., in press.
(6) Fukuyama, T.; Cheung, M.; Jow, C.-K.; Hidai, Y.; Kan, T. Tetrahedron Lett. 1997, 38, 5831.
(7) Hidai, Y.; Kan, T.; Fukuyama, T. Tetrahedron Lett. 1999, 40, 4711.
(8) Hidai, Y.; Kan, T.; Fukuyama, T. Chem. Pharm. Bull. 2000, 48, 1570.
(9) Fujiwara, A.; Kan, T.; Fukuyama, T. Synlett 2000, 1667.
(10) Fukuyama, T.; Cheung, M.; Kan, T. Synlett 1999, 1301.
(11) For a review of the substituent effect on the cyclization, see: Jung, M. E. Synlett 1999, 843.
(12) Experimental procedure for the introduction of Ns-amide and macrocyclization and spectral data for all new compounds are described below.
Representative Experimental Procedures. Synthesis of 3a: To a stirred solution of 2-nitrobenzenesulfonamide (3.20 g, 15.8 mmol), 7-bromo-1-heptanol (2a) ($1.00 \mathrm{~g}, 5.13$ $\mathrm{mmol})$, and $\mathrm{Ph}_{3} \mathrm{P}(1.80 \mathrm{~g}, 8.91 \mathrm{mmol})$ in toluene $(9 \mathrm{~mL})$ and THF (1.2 mL) was added DEAD ($4 \mathrm{~mL}, 8.80 \mathrm{mmol}, 40 \%$ in toluene) dropwise at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. The solution was stirred at $0^{\circ} \mathrm{C}$ for 5 min , then at room temperature for 2.5 h . After removal of the solvent under reduced pressure, the remaining residue was purified by flash chromatography, (9:1 hexane-EtOAc) on a silica gel column, to give $3 \mathbf{a}(1.36 \mathrm{~g}, 70 \%)$ as white powder. IR (film, cm^{-1}): 3346, 3096, 2933, 2857, 1539, 1440, 1414, 1360, $1341,1166,1125,1060,853,782 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 1.29(4 \mathrm{H}, \mathrm{m}), 1.33(2 \mathrm{H}, \mathrm{m}), 1.52(2 \mathrm{H}, \mathrm{m}), 1.81$ $(2 \mathrm{H}, \mathrm{m}), 3.10(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 3.37(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz})$, $5.23(1 \mathrm{H}, \mathrm{m}), 7.76(2 \mathrm{H}, \mathrm{m}), 7.87(1 \mathrm{H}, \mathrm{m}), 8.14(1 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 26.2,27.8,28.1,29.4,32.5$, $33.8,43.7,125.3,131.0,132.8,133.5,133.7,148.0$. FABMS: m/z $379\left(\mathrm{MH}^{+}\right)$; Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}$, 41.17; H, 5.05; N, 7.39. Found: C, 41.24; H, 5.04; N, 7.30. Spectral data for $\mathbf{3 b}$ (white powder): IR (film, cm^{-1}): 3346, 3099, 2930, 2856, 1592, 1539, 1440, 1414, 1360, 1342, $1165,1125,1061 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.26(6 \mathrm{H}$, m), $1.39(2 \mathrm{H}, \mathrm{m}), 1.53(2 \mathrm{H}, \mathrm{m}), 1.83(2 \mathrm{H}, \mathrm{m}), 3.10(2 \mathrm{H}, \mathrm{q}$, $J=6.8 \mathrm{~Hz}), 3.39(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 5.23(1 \mathrm{H}, \mathrm{m}), 7.75(2$ $\mathrm{H}, \mathrm{m}), 7.87(1 \mathrm{H}, \mathrm{m}), 8.15(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 26.4,28.0,28.6,28.9,29.6,32.7,34.0,43.9$, 125.4, 131.2, 132.8, 133.6, 133.8, 148.2. FAB-MS: m/z 393 $\left(\mathrm{MH}^{+}\right)$; HRMS (FAB): Found $393.0411\left(\mathrm{MH}^{+}\right)$, Calcd. $393.0413\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}, \mathrm{MH}^{+}\right)$.
Spectral data for $\mathbf{3 c}$ (white powder). IR (film, cm^{-1}): 3346, 3099, 2930, 2856, 1592, 1539, 1440, 1414, 1360, 1342, $1165,1125,1061 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.25(8 \mathrm{H}$, $\mathrm{m}), 1.40(2 \mathrm{H}, \mathrm{m}), 1.54(2 \mathrm{H}, \mathrm{m}), 1.83(2 \mathrm{H}, \mathrm{t}, J=4.0 \mathrm{~Hz})$, $3.10(2 \mathrm{H}, \mathrm{q}, J=3.4 \mathrm{~Hz}), 3.40(2 \mathrm{H}, \mathrm{t}, J=3.4 \mathrm{~Hz}), 5.22(1 \mathrm{H}$, $\mathrm{m}), 7.75(2 \mathrm{H}, \mathrm{m}), 7.87(1 \mathrm{H}, \mathrm{m}), 8.15(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 26.4,28.0,28.5,28.8,29.1,29.5,32.7$, $34.0,43.8,125.3,131.1,132.7,133.5,133.8,148.1$. FABMS : m/z $407\left(\mathrm{MH}^{+}\right)$; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}$, 44.23; H, 5.69; N, 6.88. Found: C, 44.46; H, 5.71; N, 6.64. Synthesis of 4a: To a stirred solution of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.10 \mathrm{~g}$, $6.45 \mathrm{mmol})$ and TBAI ($980 \mathrm{mg}, 2.65 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3.00$ mL) was added N-2-nitrobenzenesulfonyl-7-bromo-1aminoheptane (3a) ($500 \mathrm{mg}, 1.32 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(24.0$ mL) via syringe pump for 2 h at $60^{\circ} \mathrm{C}$, and stirred for additional 2 h at the same temperature. The reaction mixture was poured into water and extracted with EtOAc three times.

The combined organic layer was washed with brine, dried over MgSO_{4}, filtered, and evaporated. The residue was purified by flash chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ on a silica gel column to give $\mathbf{4 a}(245 \mathrm{mg}, 62 \%)$ as white powder. IR (film, $\left.\mathrm{cm}^{-1}\right): 2929,2857,1542,1456,1373,1344,1164,993 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.59(6 \mathrm{H}, \mathrm{m}), 1.69(4 \mathrm{H}, \mathrm{m})$, $3.25(4 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{m}), 7.61(2 \mathrm{H}, \mathrm{m}), 7.84$ $(1 \mathrm{H}, \mathrm{m}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 24.8,26.5,27.7$, 49.3, 123.9, 130.4, 131.4, 132.5, 133.3, 148.4. FAB-MS: $\mathrm{m} / \mathrm{z} 299\left(\mathrm{MH}^{+}\right)$; HRMS (FAB): Found 299.0981 $\left(\mathrm{MH}^{+}\right)$; Calcd $299.0995\left(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}, \mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 52.33 ; \mathrm{H}, 6.08 ; \mathrm{N}, 9.39$. Found: C, 52.29; H, 5.99; N, 9.35 .
Spectral data for $\mathbf{4 b}$ (white powder): IR (film, cm^{-1}): 2931, 2859, 1725, 1546, 1463, 1373, 1347, 1290, 1161, 1125, 851, $777,742 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.32(8 \mathrm{H}, \mathrm{m}), 1.57$ $(4 \mathrm{H}, \mathrm{m}), 3.25(4 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{m}), 7.68(2 \mathrm{H}$, m), $7.98(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 25.9$, 27.9, 28.1, 47.8, 124.4, 129.0, 130.9, 131.8, 133.6, 148.4. FAB-MS: $m / z 313\left(\mathrm{MH}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}$, 53.83; H, 6.45; N, 8.97. Found: C, 53.87; H, 6.29; N, 8.68. Spectral data for $\mathbf{4 c}$ (white powder): IR (film, cm^{-1}): 2928, $2855,1542,1463,1373,1346,1160,851 .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.32(10 \mathrm{H}, \mathrm{m}), 1.57(4 \mathrm{H}, \mathrm{m}), 3.29(4 \mathrm{H}, \mathrm{t}$, $J=8.0 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{m}), 7.67(2 \mathrm{H}, \mathrm{m}), 7.97(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 26.2,27.9,28.3,28.5,48.7$, 124.0, 130.6, 131.4, 133.2, 133.3, 148.3. FAB-MS: $m / z 327$ $\left(\mathrm{MH}^{+}\right)$; HRMS (FAB): Found $327.1311\left(\mathrm{MH}^{+}\right)$; Calcd. $327.1308\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}, \mathrm{MH}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 54.96 ; \mathrm{H}, 6.74 ; \mathrm{N}, 8.30$. Found: C, 55.19; H, 6.79; N, 8.58 .
Synthesis of 6a: To a stirred solution of N-Boc-2nitrobenzenesulfonamide (5) ($1.25 \mathrm{~g}, 4.14 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ ($2.50 \mathrm{~g}, 18.1 \mathrm{mmol}$) and tetra- n-butylammonium iodide (40 $\mathrm{mg}, 0.11 \mathrm{mmol}$) in DMF (7 mL) was added 7-bromo-1heptanol ($770 \mathrm{mg}, 3.98 \mathrm{mmol}$). The solution was stirred at 60 ${ }^{\circ} \mathrm{C}$ for 10 h and then poured into water. The mixture was extracted with EtOAc three times. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered, and evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and TFA (7 mL). After stirring for 1 h , the reaction mixture was concentrated. To the mixture in MeOH was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.00 \mathrm{~g}, 7.23 \mathrm{mmol})$, and stirred for 10 min . The reaction mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered, and evaporated. Recrystallization from ether-hexane afforded $\mathbf{6 a}(1.00 \mathrm{~g}$, 60%) as white powder. IR (film, cm^{-1}): 3343, 2933, 2859, 1543, 1413, 1364, 1339, 1165, 1126, 1059, 853, 783, 741. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.30(4 \mathrm{H}, \mathrm{m}), 1.50(2 \mathrm{H}, \mathrm{m})$,
$1.53(4 \mathrm{H}, \mathrm{m}), 3.09(2 \mathrm{H}, \mathrm{m}), 3.63(2 \mathrm{H}, \mathrm{m}), 5.25(1 \mathrm{H}, \mathrm{m})$, $7.75(2 \mathrm{H}, \mathrm{m}), 7.87(1 \mathrm{H}, \mathrm{m}), 8.14(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 25.5,26.4,28.8,29.5,32.5,43.8,62.9$, 125.4, 131.1, 132.8, 133.5, 133.8, 149.8. FAB-MS: $m / z 317$ $\left(\mathrm{MH}^{+}\right)$; HRMS (FAB): Found 317.1180 (MH ${ }^{+}$); Calcd $317.1177\left(\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{~S}, \mathrm{MH}^{+}\right)$.
Spectral data for $\mathbf{6 b}$ (white powder): IR (film, cm^{-1}): 3289 , 2931, 2856, 1540, 1418, 1362, 1338, 1163, 1126, 1058. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.27(8 \mathrm{H}, \mathrm{m}), 1.52(4 \mathrm{H}, \mathrm{m})$, $3.09(2 \mathrm{H}, \mathrm{m}), 3.62(2 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}, \mathrm{m}), 7.71(2 \mathrm{H}, \mathrm{m})$, $7.87(1 \mathrm{H}, \mathrm{m}), 8.14(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 25.5,26.3,28.9,29.1,29.5,32.6,43.8,62.9,125.3,131.1$, 132.7, 133.5, 133.8, 148.1. FAB-MS: $m / z 331\left(\mathrm{MH}^{+}\right)$; HRMS (FAB): Found $331.1327\left(\mathrm{MH}^{+}\right)$; Calcd 331.1329 $\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{~S}, \mathrm{MH}^{+}\right)$.
Spectral data for $\mathbf{6 c}$ (white powder): IR (film, cm^{-1}): 3287, 2926, 2853, 1541, 1360, 1333, 1163, 1126, 1062, 854, 780, 728. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.25(10 \mathrm{H}, \mathrm{m}), 1.53(4$ $\mathrm{H}, \mathrm{m}), 3.09(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 3.63(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz})$, $5.27(1 \mathrm{H}, \mathrm{m}), 7.74(2 \mathrm{H}, \mathrm{m}), 7.87(1 \mathrm{H}, \mathrm{m}), 8.14(1 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 25.6,26.4,28.9,29.2,29.3$, $29.5,32.7,43.8,63.0,125.3,131.1,132.7,133.5,133.8$, 148.0. FAB-MS: m/z $345\left(\mathrm{MH}^{+}\right)$; HR MS (FAB): Found $345.1407\left(\mathrm{MH}^{+}\right)$; Calcd $345.1414\left(\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{~S}, \mathrm{MH}^{+}\right)$.
Representative Experimental Procedure. Synthesis of 4a under Mitsunobu Conditions
To a stirred solution of $\mathrm{Ph}_{3} \mathrm{P}(463 \mathrm{mg}, 2.29 \mathrm{mmol})$ and N -(2-nitrobenzenesulfonyl)-7-hydroxy-1-aminoheptane(6a) (200 $\mathrm{mg}, 0.63 \mathrm{mmol}$) in toluene (48 mL) and THF (16 mL) was added DEAD ($1.05 \mathrm{~mL}, 2.31 \mathrm{mmol}, 40 \%$ in toluene) drop wise and stirred for 3 h . The reaction mixture was concentrated in vacuo, the residue was purified by flash chromatography ($1: 4, \mathrm{EtOAc}$-hexane) on a silica gel column to give $\mathbf{4 a}(112 \mathrm{mg}, 59 \%)$ as white powder.
(13) Attempted macrocyclization of N-tert-Butoxycarbonyl-7-iodo-1-aminoheptane (7) was failed to the desired reaction as shown in Scheme 2. Treatment of 7 with sodium hydride in DMF at room temperature, the starting material was completely recovered. Upon heating to $60^{\circ} \mathrm{C}$, the dehydroiodination reaction was proceeded to give $\mathbf{8}$.

Scheme 2

[^0]: Synlett 2002, No. 5, 0305 2002. Article Identifier:
 1437-2096,E;2002,0,05,0697,0699,ftx,en;Y01101st.pdf.
 © Georg Thieme Verlag Stuttgart • New York
 ISSN 0936-5214

