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Abstract—Seventeen biarylcarboxybenzamide derivatives were prepared for the study of their agonistic/antagonistic activities to the
vanilloid receptor (VR1) in rat DRG neurons. The replacement of the piperazine moiety of the lead compound 1 with phenyl ring
showed quite enhanced antagonistic activity. Among the prepared derivatives, N-(4-tert-butylphenyl)-4-pyridine-2-yl-benzamide
(2, IC50 = 31 nM) and N-(4-tert-butylphenyl)-4-(3-methylpyridine-2-yl)benzamide (3g, IC50 = 31 nM), showed 5-fold higher
antagonistic activity than 1 in 45Ca2+-influx assay.
� 2004 Elsevier Ltd. All rights reserved.
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Figure 1.
Vanilloid receptor (VR1) is a nonselective cation chan-
nel placed in the plasma membrane of peripheral sen-
sory neurons,1,2 which has been regarded as a new
target for the treatment of pain.3 The agonists desensi-
tize the peripheral sensory neurons by influx of cations,
especially Ca2+, into neuronal cell, which leads to an
analgesic effect.4 However, their initial excitatory side
effects, such as initial irritation, hypothermia, broncho-
constriction, and hypertension, derived from its inherent
mechanism, make it hard to develop them as systemic
analgesics.5 In order to avoid the side effects from ago-
nist, competitive antagonists have been pursued as novel
analgesic drugs. So far, several synthetic and semi-syn-
thetic antagonists were introduced and their pharmaco-
logical potential for pain treatment were evaluated.6,7

Recently Purdue Pharma research group disclosed
4-(2-pyridyl)piperazine-1-carboxybenzamides (1) as po-
tent VR1 antagonists (Fig. 1).8 In this letter, we report
the synthesis and functional assay on VR1 receptor of
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biarylcarboxybenzamide derivatives, based on molecu-
lar modeling studies.
3

As part of our program to develop novel VR1 antago-
nists as potent analgesics, we attempted to replace the
piperazine moiety of 1 with phenyl ring based on the
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Scheme 1. Reagents and conditions: (a) (i) R1X, Pd(PPh3)4, MeCN,

0.4 M NaHCO3, reflux, 5 h, 40–70%; (ii) NaClO2, NaH2PO4Æ2H2O,

CH3CH@C(CH3)2, tert-BuOH, H2O, rt, 2 h, 80–90%; (iii) 4-R2PhNH2,

EDC, DMAP, Et3N, CH2Cl2, rt, 2 h, 70–80%; (iv) CH3I, NaH, THF,

0 �C, 92%.

Figure 2. Stereoviews of the preferred three-dimensional conformations. (a) Energy-minimized conformation of 1 (5.113 kcal/mol); (b) energy-

minimized conformation of 2 (6.786 kcal/mol).
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molecular modeling studies of 1 and 2. As shown in
Figure 2, the energy-minimized conformation of 1
(5.113 kcal/mol) is very similar to that of biarylcarb-
oxybenzamide 2 (6.876 kcal/mol).9 The chair-like con-
formation of the piperazine in 1 maintains the
molecular linear form, which is quite overlapped with
that of 2. Based on the similarity of the two conforma-
tions, we presumed that the biarylcarboxybenzamide
analogues (3) could retain the antagonistic activity on
VR1. Seventeen biarylcarboxybenzamide derivatives
were easily prepared in three steps (2, 3a–o) or four steps
(3p) from 4 (Scheme 1). The Suzuki coupling of 4 with
various aryl halides gave the corresponding 4-arylbenz-
aldehydes.10 Oxidation of the aldehydes 5 with NaClO2,
followed by the coupling with the corresponding aniline
derivatives in the presence of EDC afforded 2 and
3a–o.11 Compound 3p was prepared by N-methylation
of 2 in basic condition. The agonistic or antagonistic
activities of the prepared derivatives12 on VR1 receptor
were evaluated by the 45Ca2+-influx assay, previously re-
ported by using neonatal rat cultured spinal sensory
neurons.13 As shown in Table 1, the phenyl-substituted
analogue 3a still retained antagonistic activity
(IC50 = 3.6 lM), but less than 1 (IC50 = 0.15 lM).
Among the pyridine derivatives, 2-pyridine analogue 2
(IC50 = 0.031 lM) showed the highest antagonistic
activity, which is five times higher than that of the lead
compound 1. However, 3-pyridine analogue (3b,
IC50 = 1.3 lM), and 4-pyridine analogue (3c, IC50 =
0.28 lM) showed lower activities, implying the ortho-N
of pyridine is quite important for the binding with recep-
tor, which is in accordance with the previous reports.8 In
the case of two-nitrogen possessing six-membered
heterocycle series, 2-pyrimidine analogue (3d,
IC50 = 0.06 lM), exhibited superior potency to 5-pyrim-



Table 1. In vitro biological activity of the derivatives by 45Ca2+-influx

assay in rat DRG (Dorsal root ganglion) neurons

R

O

N
H
3

No. R 45Ca2+-influx activity (lM)a

Agonist (IC50) Antagonist (IC50)

1 — NE 0.15

3a NE 3.6

2
N

NE 0.031

3b
N

NE 1.3

3c
N

NE 0.28

3d
N

N
NE 0.06

3e
N

N
NE 1.0

3f
N

N
NE 10>

3g

N

CH3
NE 0.031

3h

N

CF3
NE 0.14

3i

N

Cl
NE 0.055

3j

N

NO2
NE 0.06

NE: not effective at 30 lM.
a EC50 (the concentration of derivative necessary to produce 50% of the

maximal response) and IC50 values (the concentration of derivative

necessary to reduce the response to 0.5 lM capsaicin by 50%) were

estimated with at least three replicates at each concentration. Each

compound was tested in two independent experiments. Antagonist

data were fitted with a sigmoidal function.

Figure 3. Reversible antagonistic effects of 2 (MK-180) on the

capsaicin receptor.

Figure 4. Comparison of the channel activity of capsaicin (1lM) to 2

(0.3lM) in the presence of capsaicin (1lM). CTL is control activity

before the application of capsaicin.
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idine analogue (3f, IC50 > 10 lM) and 2-pyrazine ana-
logue (3e, IC50 = 1.0 lM). Most of 3-substituted-2-pyri-
dine analogues (3g–j) showed higher antagonistic
activities than 1 except 3h. The electron-donating group
(CH3, 3g, IC50 = 0.031 lM) exhibited higher antagonis-
tic activity than that of the electron-withdrawing groups
(3h, CF3, IC50 = 0.14 lM; 3i, Cl, IC50 = 0.055 lM; 3j,
NO2, IC50 = 0.06 lM). Based on the cumulative in vitro
antagonistic activity results, the general tendency could
be summarized as follows: (1) The ortho-N plays an inte-
gral role in antagonistic activity, but di-ortho-N2 cannot
give additive effect; (2) the antagonistic potency is in the
order of ortho-N > para-N > meta-N; (3) There is some
space at the 3-position of 2-pyridine group around the
binding site, and the electron-donating groups seem
more favorable for binding, compared to electron-with-
drawing groups. In a series of aniline amide analogues
(2, 3k–o) in Table 2, the bulky and hydrophobic substi-
tuted analogues, 2 (tert-butyl, IC50 = 0.031 lM) and 3n
(iso-propyl, IC50 = 0.038 lM) gave higher antagonistic
activities than relatively smaller or polar group ana-
logues, 3k (H, IC50 > 10 lM), 3l (4-CH3, IC50 =
2.3 lM), 3m (3,4-di-CH3, IC50 = 2.0 lM), and 3n (4-
CF3, IC50 = 7.9 lM), implying that the hydrophobic
interaction contributes to efficient binding. In particular,
N–CH3 analogue 3p (IC50 > 10 lM), exhibited dramatic
loss of activity. This might support the hypothesis that
the hydrogen bonding of N–H is essential for the favor-
able binding with VR1. One of the best antagonistic
analogues, 2 (MK-180) was chosen for the confirmation
of its VR1 antagonism via the inhibition of the capsai-
cin-induced agonist action on patch-clamped rat DRG
neurons. As shown in Figure 3, the application of capsa-
icin (1 lM) greatly activated the capsaicin receptors in
inside-out membrane patches. However, 2 (0.3 lM) al-
most inhibited the channel activity, evoked by capsaicin
(1 lM). After 2 was removed by washing, capsaicin
(1 lM) reactivated the channel activity, suggesting that
2 clearly antagonizes the capsaicin at the VR1 in a
reversible manner. Figure 4 shows the magnitude of
inhibition by 2 (0.3 lM) in the presence of capsaicin
(1 lM).



Table 2. In vitro biological activity of the derivatives by 45Ca2+-influx

assay in rat DRG neurons

O

N

R1

3N

R3

R2

No. R1 R2 R3
45Ca2+-influx activity (lM)a

Agonist (IC50) Antagonist (IC50)

1 — — — NE 0.15

3k H H H NE 10>

3l CH3 H H NE 2.3

3m CH3 CH3 H NE 2.0

3n CF3 H H NE 7.9

3o iso-propyl H H NE 0.038

2 tert-butyl H H NE 0.031

3p tert-butyl H CH3 NE 10>

NE: not effective at 30 lM.
a EC50 and IC50 values were estimated by the same method described in

Table 1.
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In conclusion, 17 diarylcarboxybenzamides were pre-
pared and their biological activities were evaluated.
Quite highly enhanced antagonistic activities were ob-
served by the replacement of piperazine moiety of the
lead compound 1 with phenyl ring. Among them,
N-(4-tert-butylphenyl)-4-pyridine-2-yl-benzamide (2,
MK-180) and N-(4-tert-butylphenyl)-4-(3-methylpyri-
dine-2-yl)benzamide (3g) showed the best antagonistic
activities. We believe this pharmacophore information
would be very useful to design more potent antagonistic
scaffolds for the development of potential analgesics.
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