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The Mukaiyama aldol reaction is an important and valua-
ble carbon–carbon bond-forming reaction, and its enantiose-
lective metal-catalyzed version has attracted much atten-
tion.[1] By using chiral Lewis acids, enantiomerically en-
riched alcohols are accessible that frequently occur in natu-
ral or bioactive compounds.[2] By applying the concept of vi-
nylogy,[3] d-hydroxy a,b-unsaturated carbonyl compounds
can be prepared in a highly stereoselective manner.[4] The
vinylogous Mukaiyama aldol reaction (VMAR), which in-
volves the use of O-silylated dienolates, is of particular in-
terest in that respect, and much progress has been made in
controlling its regio- and stereoselectivity.[5,6]

As part of our ongoing studies on the use of sulfoximines
in metal catalysis,[7] we recently reported that C1-symmetric
amino sulfoximines 1 and oxazolinyl sulfoximines 2 were ef-
fective ligands in asymmetric copper catalyses.[8–10]

We now describe the use of sulfoximine 1 a in copper-cat-
alyzed VMARs between various cyclic dienol silanes and

ketonic electrophiles. In contrast to the large number of
studies with aldehydes as carbonylic substrates,[11] reports on
reactions with ketones are relatively rare,[13] and only a few
of those include pyruvates as starting materials.[12b, c,13] Pre-
sumably the additional demand for diastereoselectivity in
the simultaneous formation of two stereogenic centers (in-
cluding one with a fully substituted carbon) in conjunction
with the general requirement of top-level regio- and enan-
tioselectivities have posed additional challenges, which have
not allowed rapid progress in this area.

For the initial adjustment of the reaction conditions, com-
mercially available 2-(trimethylsilyloxy)furan (TMSOF, 3 a)
and methyl pyruvate (4 a) were chosen as starting materials
(Scheme 1). After a brief optimization, we found that with a

catalyst loading of 10 mol%, a Cu ACHTUNGTRENNUNG(OTf)2 to sulfoximine 1 a
ratio of 1:1 and 2,2,2-trifluoroethanol (1.2 equiv) as additive
in dry diethyl ether, g-butenolide 5 a could be obtained in
88 % yield after only 5 h at room temperature. No a-substi-
tution product was observed, and both the de and ee values
were remarkably high (94 and 95 %, respectively). At a tem-
perature of �68 8C neither the yield (88 %) nor the stereose-
lectivities (95% de, 94 % ee) were significantly affected, but
the reaction time had to be extended (to 16 h) to achieve a
high conversion.

To evaluate the substrate scope of the VMAR, the appli-ACHTUNGTRENNUNGcability of various cyclic dienol silanes 3 in combination
with other ketonic substrates 4 was examined. All catalyses
were performed under the reaction conditions summarized

[a] M. Frings, Dr. I. Atodiresei, Dr. J. Runsink, Prof. Dr. G. Raabe,
Prof. Dr. C. Bolm
Institut f�r Organische Chemie der RWTH Aachen University
Landoltweg 1, 52056 Aachen (Germany)
Fax: (+49) 241-8092391
E-mail : carsten.bolm@oc.rwth-aachen.de

Supporting information for this article is available on the WWW
under http://dx.doi.org/10.1002/chem.200802359.

Scheme 1. Synthesis of g-butenolide 5a by VMAR with TMSOF (3 a)
and methyl pyruvate (4 a).
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above (unless otherwise noted). The results are presented in
Table 1.

Most substrate combinations afforded Mukaiyama aldol
products 5 with excellent stereoselectivities in high yields.
The best result was achieved in the reaction between a-ke-
toester 3 a (TMSOF) and 3-methyl-2-oxobutyrate (4 i),
which gave 5 i with a de and an ee of 99 % in essentially
quantitative yield (99%) (Table 1, entry 9). a-Substitution
products were not observed. In most cases it was possible to
isolate the major diastereomer of 5 by column chromatogra-
phy or preparative HPLC to give a diastereomerically pure
product.[14] Increasing the steric bulk at the ester functionali-
ty of 4 (Table 1, compare entries 1, 6, 12, and 13) had almost
no effect on the stereoselectivity (93–98 % ee). Only the
yields were slightly lower in the reactions with the isopropyl
or benzyl esters (84% yield for both compared to 88 % and
92 % yield for the methyl and the ethyl ester, respectively).

The catalysis was more sensitive with respect to the ke-
tonic substituent of 4. Thus, when activated methyl 3,3,3-tri-
fluoropyruvate (4 d) was used in combination with TMSOF
(3 a, entry 4), product 5 d was isolated in good yield (75 %)
but, albeit the diastereoselectivity was high, the ee of the
major isomer was low (4 %). Decreasing the reaction tem-

perature to 0 8C or �30 8C had no beneficial effect on the
enantioselectivity. Control experiments showed that a rapid

uncatalyzed background reac-
tion (leading to the racemate)
could be responsible for this
result. g-Butenolide 5 b
(entry 2), formed from phenyl-
pyruvic acid methyl ester (4 b)
and TMSOF (3 a), was obtained
in low yield (20 %) but very
good stereoselectivity (92 % de
and 93 % ee). A considerable
amount of the corresponding
furan-2 ACHTUNGTRENNUNG(5 H)-one was formed as
a by-product. With 4-nitrophe-
nylglyoxylate (4 j) as substrate,
the product had a comparably
moderate de (85 %, entry 10),
and noteworthy, the syn prod-
uct, which was formed as a
minor diastereomer, had a
higher ee than the (major) anti
product (95 and 91 % ee, re-
spectively). Ketodiester 4 k also
reacted well with TMSOF (3 a)
affording 5 k in high yield
(entry 11), but the ee was low
(28 %). Also in this case the un-
catalyzed background reaction
was fast as shown by a reaction
in the absence of the catalyst.

Changing the nucleophile in
the reaction with 4 c from 3 a to
cyclic dienol silane 3 b
(entry 14) led to the g-product
5 n in moderate yield (38 %).

While the diastereoselectivity was low (16 % de), the enan-
tioselectivity was respectable (92 % ee). Use of 3 c having a
sulfur (instead of an oxygen as in 3 a) in the heterocyclic
ring system had a strong influence on the reaction as well
(entry 15). While at room temperature the product 5 o was
isolated in only trace amounts, performing the catalysis at
�15 8C led to 5 o in moderate yield (52%). Although the de
was rather low (7 %), the ee values of 80 and 82 % were ac-
ceptable for both diastereomers.

Interestingly, pyruvic aldehyde dimethyl acetal (4 n) could
also be applied (Table 1, entry 16), and from its reaction
with TMSOF (3 a) the product 5 p was obtained in very
good yield (87 %) with excellent stereoselectivity (99 % de
and 94 % ee). This is most noteworthy because of the
masked aldehyde functionality in 5 p, which offers possibili-
ties for further transformations.

To determine the relative and absolute stereochemistry of
the products, a representative example, g-butenolide 5 i, was
analyzed by various experimental and theoretical tech-
niques. First, the relative stereochemistry of 5 i was elucidat-
ed by a combination of NMR spectroscopy and quantum-

Table 1. Effect of the substrates in reactions between 3 and 4 to give 5.[a]

Entry Dienol silane Electro-
phile

R1 R2 Prod. Yield
[%][b]

de [%][c] ee [%][d]

1 3 a 4 a Me Me 5a 88 94 (94) 95/n.d.
2 3 a 4 b Me Bn 5b 20 92 (92) 93/n.d.
3 3 a 4 c Me Ph 5c 99 94 (99) 97/70
4 3 a 4 d Me CF3 5d 75 92 (99) 4/3
5 3 a 4 e Me Et 5e 79 98 (99) 97/n.d.
6 3 a 4 f Et Me 5 f 92 96 (96) 96/n.d.
7 3 a 4 g Et Ph 5g 95 96 (99) 98/n.d.
8 3 a 4 h Et CH2Bn 5h 91 99 (99) 98/n.d.
9 3 a 4 i Et iPr 5 i 99 99 (99) 99/n.d.
10 3 a 4 j Et 4-NO2-Ph 5j 96 85 (99) 91/95
11 3 a 4 k Et C(O)OEt 5k 91 — 28
12 3 a 4 l iPr Me 5 l 84 94 (99) 98/n.d.
13 3 a 4 m Bn Me 5m 84 96 (96) 95/n.d.
14 3 b 4 c Me Ph 5n 38 16 (99)[e] 92/50
15 3 c 4 a Me Me 5o 52 7 (7) 82/80
16 3 a 4 n — — 5p 87 99 (99) 94

[a] Reaction conditions for entries 1—14 and 16: Cyclic dienol silane 3 (0.22 mmol), electrophile 4 (0.2 mmol),
Cu ACHTUNGTRENNUNG(OTf)2 (10 mol %), amino sulfoximine 1a (10 mol %), CF3CH2OH (0.24 mmol), Et2O (2 mL), RT, 2–6 h; for
entry 15: as before, but at �15 8C, overnight. [b] Yield of all stereoisomers after column chromatography.
[c] Determined by 1H NMR analysis of the crude reaction mixture; in parentheses, de (referring to the anti :syn
ratio) of the product after column chromatography. [d] Determined by CSP-HPLC; given for anti and syn iso-
mers. [e] Diastereomers were separated by preparative HPLC.
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chemical calculations. With both (racemic) diastereomers,
anti-5 i and syn-5 i, NOE effects were observed between the
olefinic proton (C=OCHCH) and the CH proton of the iso-
propyl group. To compare their intensities, NOE ratios (of
0.8 and 0.4) were calculated by dividing these NOE values
by those observed between the two olefinic protons (C=

OCHCH) of each compound. To assign the experimentally
found NOE values to the corresponding diastereomers,
quantum-chemical geometry optimizations were performed
at various levels of theory.[14,15] A comparison of the energet-
ically lowest conformers of both diastereomers obtained at
the highest theoretical level (for graphics see the Supporting
Information) revealed that in anti-5 i the calculated distance
between the olefinic and the isopropylic proton is smaller
(2.386 �) than in syn-5 i (4.815 �). Consequently, the value
of 0.8 of the NOE ratio (revealing a stronger interaction be-
tween the two protons) was assigned to anti-5 i, whereas the
value of 0.4 was ascribed to syn-5 i.

The relative stereochemistry of anti-5 i was confirmed by
single-crystal X-ray analysis (of a racemic sample).[16] The
molecular structure in the solid state (Figure 1) is visually
indistinguishable from the most stable structure predicted
for this stereoisomer at the MP2/6-31+G** level.

The NOE ratio was used to identify the enantiomerically
pure product, which was obtained in the catalysis with a
copper complex bearing (S)-1 a as the anti-5 i diastereomer.
Its absolute configuration was then assigned by a compari-
son of the experimental and calculated CD spectra (shown
in Figure 2 a and b, respectively).[14,18]

Both calculated CD spectra showed a strong negative
Cotton effect with a minimum between 220 and 240 nm fol-
lowed by a weaker positive one with a maximum between
200 and 220 nm. The calculated negative Cotton effect was
assigned to the positive one observed at 213 nm, and the cal-
culated positive one to the observed weakly negative band
with a minimum at about 185 nm. Thus the absolute config-
uration of anti-5 i stemming from the catalysis with the
copper complex bearing the (S)-configured sulfoximine [(S)-
1 a] is most likely opposite to that initially assumed in the
calculations, and, therefore R,R.

In summary, we have developed a copper-catalyzed vinyl-
ogous Mukaiyama aldol reaction that provides products
with high diastereo- and enantioselectivities. The relative
and absolute stereochemistry of a representative product
was rigorously assigned by experimental and theoretical
means.
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