A Concise and Flexible Synthesis of the Core Structure of Pinnaic Acid

Sung-Hyun Yang, Vittorio Caprio*

Department of Chemistry, University of Auckland, 23 Symonds St., Auckland, New Zealand Fax +64(9)3737422; E-mail: v.caprio@auckland.ac.nz Received 25 January 2007

Abstract: An efficient and flexible approach to the core structure of pinnaic acid has been developed that centres on the microwave-induced 1,3-dipolar cycloaddition of a novel spirocyclic nitrone **5** with alkene **7**. The application of this nitrone to the synthesis of a diverse set of C5-substituted analogues of pinnaic acid is also demonstrated.

Key words: pinnaic acid, nitrones, cycloadditions, isoxazolidine, oxidative ring opening

Pinnaic acid **1** is a spirobicyclic alkaloid extracted, along with tauropinnaic acid (**2**), from the Okinawan bivalve *Pinna muricata* by Uemura and co-workers in 1996.¹ The unusual 6-azaspiro[4.5]undecane core of this alkaloid is also present in the spiroquinolizidine alkaloid halichlorine (**3**), isolated by the same research group from the black marine sponge *Halichondria okadai* (Figure 1).² Pinnaic acid is an inhibitor of cytosolic phospholipase A_2 (cPLA₂; IC₅₀ 0.2 mM), an enzyme that plays a key role in the biosynthesis of inflammatory mediators and as such is an interesting lead in the search for novel anti-inflammatory treatments.³

pinnaic acid (1) R = OHtauropinnaic acid (2) $R = NHCH_2CH_2SO_3H$

Figure 1

The intriguing core structure and therapeutic potential of pinnaic acid has stimulated the development of a number of total syntheses of this target and synthetic routes to the azaspirodecane core structure.^{4,5} In an effort to develop a synthetic strategy that could be applied to the synthesis of all members of the 6-azaspiro[4.5]decane family of alkaloids and analogues, in racemic fashion, we have investigated an approach to core structure **4** that centres on the use of spirocyclic nitrone **5** as a key intermediate.

SYNLETT 2007, No. 8, pp 1219–1222 Advanced online publication: 18.04.2007 DOI: 10.1055/s-2007-977446; Art ID: D02607ST © Georg Thieme Verlag Stuttgart · New York Nitrones exhibit a diverse reactivity profile^{6,7} and we envisioned that **5** could be used to provide access to both the core structure of halichlorine and a diverse set of C5-substituted analogues of compounds **1–3**. It was planned to access core structure **4** by reductive cleavage of cyclo-adduct **6** formed by 1,3-dipolar cycloaddition of alkene **7** with nitrone **5**. We envisioned that **5** could be accessed by oxidative cleavage of known isoxazolidine **8** (Scheme 1).⁸

Multigram quantities of isoxazolidine **8** were synthesised in five steps from 1,5-dibromopentane utilizing the synthetic route developed by Gossinger et al.⁸ After some experimentation it was discovered that oxidative cleavage of **8** to give nitrone **5** could be effected in high yield by dropwise addition of a solution of MCPBA in dichloromethane at 0 °C over a period of seven hours (Equation 1).^{9,10} While nitrone **5** decomposes over a period of two days at room temperature it may be stored for up to five months in a freezer.

Equation 1 Reagents and conditions: (a) MCPBA, dropwise, CH_2Cl_2 , 0 °C to r.t., 20 h, 89%.

The reactivity and synthetic utility of nitrone **5** was probed by investigating the 1,3-dipolar cycloaddition of this molecule with a small number of diverse dipolarophiles and attempted reductive ring opening of the resulting cycloadducts. The results of this study are summarised
 Table 1
 1,3-Dipolar Cycloadditions of Nitrone 5 with Dipolarophiles 9a-d and Reductive Cleavage of the Resulting Cycloadducts 10a-d

		Rode Total	Zn, 5	50% AcOH _(aq) reflux 3 h	OH R 11a-d	OH			
Entry	Alkene 9 ^a	R	Solvent	Temp (°C)	Time (h)	10 °	Yield (%) ^d	11 ^c	Yield (%) ^d
1	9a	Ph	PhMe	110	13	10a	62	11a	76
2	9b	CO ₂ Et	CH_2Cl_2	25	48	10b	90	11b	70
3	9c	CH ₂ CH ₂ OBz	PhMe	110	14	10c	60	11c	81
4	9d ^b	OEt	EtOH	40	55	10d	80	11d	0

^a Unless otherwise stated, cycloadditions were carried out using 3 equiv of dipolarophile.

^b Cycloaddition was carried out using 17 equiv of dipolarophile.

^c Relative stereochemistry determined by 2D-NOESY studies performed on azaspirodecanes 11a-d.

^d Isolated and chromatographically pure products.

in Table 1. The reaction conditions specified for the cycloadditions are those resulting in optimum yields of products. Nitrone **5** undergoes regio- and stereoselective 1,3-dipolar cycloaddition with a range of dipolarophiles and compounds **10a**–**d** were the sole products isolated as single diastereomers in good to high yield. Nitrone **5** is reactive towards both electron-poor and electron-rich alkenes and undergoes cycloaddition with ethyl acrylate (**9b**) and ethyl vinyl ether (**9d**) at relatively low temperature.

Reductive cleavage of the cycloadducts **10a**–c proceeded under standard conditions, utilizing zinc powder in acetic acid under reflux, to give the C5-substituted azaspiro[4.5]decanes **11a**–c. Isoxazolidine **10d** decomposed under these reaction conditions and the expected aldehyde, arising from hydrolysis of hemiacetal **11d**, was not isolated. Reductive cleavage of isoxazolidine **10d** could only be effected by hydrogenation in the presence of Pd(OH)₂ in methanol¹¹ and, under these conditions, overreduction occurred to give the diol **12** in moderate yield (Equation 2).

Equation 2 Reagents and conditions: (a) H_2 , 20 mol% Pd(OH)₂, MeOH, r.t., 48 h, 44%.

The stereochemistry of cycloaddition was most conveniently determined by NOE studies performed on the reduction products **11a–c** and **12** owing to overlapping of crucial signals in the ¹H NMR spectra of isoxazolidines **10a–d**. Unfortunately, these studies did not allow us to assign *exo/endo*-stereochemistry to the cycloadducts. Strong NOE's observed between the C5-proton and those at C13 and C14 indicated that cycloaddition occurred

Synlett 2007, No. 8, 1219–1222 © Thieme Stuttgart · New York

from the α -face of nitrone **5** to ultimately yield azaspiro[4.5]decanes **11a–c** and **12** with unnatural stereochemistry at C5 (Figure 2). This stereoselectivity is similar to that obtained during the nucleophilic addition of silyl enol ethers^{5a} and allylsilanes¹² to spirocyclic iminium species comparable in structure to **5**. While the relative stereochemistry of the azaspiro[4.5]decanes obtained is not that desired this short study reveals that nitrone **5** has the potential to act as the synthetic gateway to a diverse set of C5-substituted, azaspirodecane-based analogues of pinnaic acid and halichlorine.

Figure 2 Selected NOE observed in azaspiro[4.5]decanes 11a-c and 12.

The reduction of imines/iminium ions¹³ and spiro-2,3,4,5tetrahydropyridine *N*-oxides,¹⁴ similar to **5** proceeds via hydride delivery from the α -face and we reasoned that oxidative cleavage of cycloadducts **10a–d** followed by reduction of the resulting nitrones would yield 5-substituted azaspirodecanes with the desired relative stereochemistry. The strategy was initially attempted on isoxazolidine **10a**. Oxidation of **10a** with MCPBA gave nitrone **13** which underwent stereoselective reduction with NaBH₄^{14,15} to give hydroxylamine **14** as a single diastereomer. Further reduction, with aqueous TiCl₃ in MeOH¹⁶ gave the C5-epimer of **11a**; azaspiro[4.5]decane **15** (Scheme 2).

Epimerisation was confirmed by analysis of the 2D-NOESY spectrum of **14**. While NOE cross-peaks between the C5-proton and those at C13/C14 were absent, strong NOE were observed between the axial proton at C5, the C10-protons and the axial C7-proton (Figure 3).

Scheme 2 Reagents and conditions: (a) MCPBA, CH_2Cl_2 , 0 °C, 1 h, 90%; (b) NaBH₄, MeOH, 0 °C, 20 min, 90%; (c) 20% $TiCl_{3(aq)}$, H₂O, MeOH, r.t., 2 h, 95%.

Figure 3 Selected NOE observed in azaspiro[4.5]decane 14.

With multigram quantities of nitrone **5** in hand and proven methodology for the synthesis of 5-substituted azaspirodecanes in place we next embarked on a synthesis of core structure **4** utilising key dipolarophile **7**.¹⁷ Alkene **7** was synthesised by quenching of the Grignard reagent derived from crotyl chloride (**16**) with carbon dioxide¹⁸ followed by esterification of the resulting acid (Equation 3).

Equation 3 *Reagents and conditions*: (a) (i) Mg, THF, r.t. to reflux, 3 h; (ii) CO₂, THF, 51%; (iii) BnOH, DCC, DMAP, r.t., 12 h, 98%.

1,3-Dipolar cycloaddition of alkene **7** with nitrone **5** proceeded poorly under conventional thermal conditions using a variety of solvents and temperatures. It has been shown that the rate and yield of nitrone cycloadditions can be much enhanced under microwave irradiation¹⁹ and irradiation of a mixture of a three-fold excess of **7** and **5** in a microwave reactor for one hour resulted in clean cycloaddition to give isoxazolidine **17** as a separable mixture of two diastereomers in 80% yield (Equation 4).²⁰ In this case NOE data obtained for these diastereomers confirmed that cycloaddition occurred from the α -face of nitrone **5** and proceeded with complete *exo*-selectivity.

The diastereomeric mixture **17** was then further elaborated to the pinnaic acid core structure (Scheme 3). Oxidative ring opening of **17** followed by reduction of the

Equation 4 *Reagents and conditions*: (a) MW, toluene, 165 °C, 1 h, 80%.

resulting nitrone gave azaspirodecane **18**. Selective protection of the primary hydroxy group in **18** and treatment of the resulting silyl ether **19** with two equivalents of MsCl in triethylamine led to the formation of a readily seperable 17:3 mixture of the desired $E-\alpha,\beta$ -unsaturated ester **20a** and the Z-isomer **20b**.

Scheme 3 Reagents and conditions: (a) (i) MCPBA, CH_2CI_2 , 0 °C to r.t., 1 h, 83%; (ii) NaBH₄, MeOH, 0 °C, 20 min, 68%; (iii) 20% $TiCI_{3(aq)}$, MeOH, r.t., 2 h, 94%; (b) TBDPSCl, DMAP, Et_3N , CH_2CI_2 , r.t., 3 h, quant.; (c) 2 equiv MsCl, Et_3N , CH_2CI_2 , r.t., 2 h, 60%.

In conclusion, a concise stereoselective synthesis of the core structure of pinnaic acid has been developed utilising a novel, spirocyclic nitrone **5**. Furthermore, we have demonstrated the use of this nitrone to access a small but diverse array of C5-substituted analogues of pinnaic acid/halichlorine with both natural and unnatural stereochemistry at this position. Current efforts are directed towards the further elaboration of **20a** and the application of our synthetic strategy to the synthesis of the more challenging spiroquinolizidine core of halichlorine.

Acknowledgment

The authors wish to thank The University of Auckland Doctoral Scholarship Fund (S.H.Y) and The University of Auckland Research Committee for financial support of this project.

References and Notes

- Chou, T.; Otani, Y.; Shikano, M.; Yazawa, K.; Uemura, D. *Tetrahedron Lett.* **1996**, *37*, 3871.
- (2) (a) Kuramoto, M.; Tong, C.; Yamada, K.; Chiba, T.; Hayashi, Y.; Uemura, D. *Tetrahedron Lett.* **1996**, *37*, 3867.
 (b) Arimoto, A.; Hayakawa, I.; Uemura, D. *Tetrahedron Lett.* **1998**, *39*, 861.
- (3) (a) Nevalainen, T. J.; Haapamäki, M. M.; Grönroos, J. M. Biochim. Biophys. Acta 2000, 1488, 83. (b) Reid, R. C. Curr. Med. Chem. 2005, 12, 3011. (c) Gomez-Paloma, L.; Monti, M. C.; Terracciano, S.; Casapullo, A.; Riccio, R. Curr. Org. Chem. 2005, 9, 1419.
- (4) For a review of synthetic approaches to pinnaic acid and halichlorine developed up to 2005, see: Clive, D. L. J.; Yu, M.; Wang, J.; Yeh, V. S. C.; Kang, S. *Chem. Rev.* 2005, 105, 4483.
- (5) Synthetic approaches not covered in ref. 4: (a) Roulland, E.; Chiaroni, A.; Husson, H.-P. *Tetrahedron Lett.* 2005, 46, 4065. (b) Andrade, R. B.; Martin, S. F. *Org. Lett.* 2005, 7, 5733. (c) Sinclair, A.; Arini, L. G.; Rejzek, M.; Szeto, P.; Stockman, R. A. *Synlett* 2006, 2321.
- (6) For reviews covering cycloadditions of nitrones, see:
 (a) Tufariello, J. J. Acc. Chem. Res. 1979, 12, 396.
 (b) Confalone, P. N.; Huie, E. M. Org. React. 1988, 36, 1.
 (c) Fredrickson, M. Tetrahedron 1997, 53, 403. (d) De March, P.; Figueredo, M.; Font, J. Heterocycles 1999, 50, 1213. (e) Koumbis, A. E.; Gallos, J. E. Curr. Org. Chem. 2003, 7, 585.
- (7) For reviews covering nucleophilic additions to nitrones, see: (a) Lombardo, M.; Trombini, C. *Synthesis* 2000, 759.
 (b) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. *Synlett* 2000, 442. (c) Lombardo, M.; Trombini, C. *Curr. Org. Chem.* 2002, *6*, 695.
- (8) Gössinger, E.; Imhof, R.; Wehrli, H. *Helv. Chim. Acta* **1975**, *58*, 96.
- (9) LeBel, N. A.; Post, M. E.; Hwang, D. J. Org. Chem. 1979, 44, 1819.
- (10) A solution of MCPBA (70%, 5.70 g, 33.0 mmol) in CH_2Cl_2 (130 mL) was added to a solution of isoxazolidine 8 (3.80 g, 22.7 mmol) in CH₂Cl₂ at 0 °C over 7 h. After the addition was complete the mixture was warmed to r.t. and stirred for a further 20 h. Then, sat. aq Na₂S₂O₃ (60 mL) and sat. NaHCO₃ (60 mL) were added and the mixture extracted with CH_2Cl_2 (3 × 30 mL). The combined organic extracts were dried over anhyd MgSO₄, concentrated and purified by column chromatography on silica gel using CH2Cl2-MeOH (9.5:0.5) as eluent to give nitrone **5** as a yellow solid (3.72 g,89%); mp 70–73 °C. IR (neat): 3410, 2961, 1642 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.30-2.10$ (m, 10 H), 2.45-2.52 (m, 2 H), 2.70-2.85 (m, 1 H), 3.65-3.80 (m, 2 H), 7.34 (t, 1 H, J = 4.0 Hz). ¹³C NMR (75 MHz, CDCl₃): $\delta = 15.4$, 24.0, 26.3, 28.3, 37.0, 38.5, 52.7, 61.1, 76.5, 142.0. HRMS (EI): m/z calcd for $[C_{10}H_{17}NO_2]^+$: 183.1253; found: 183.1259.

- (11) DeShong, P.; Leginus, J. M. J. Am. Chem. Soc. 1983, 105,
- 1686.
 (12) Koviach, J. L.; Forsyth, C. J. *Tetrahedron Lett.* **1999**, *40*, 8529.
- (13) (a) Arimoto, H.; Asano, S.; Uemura, D. *Tetrahedron Lett.* **1999**, *40*, 3583. (b) Matsumura, Y.; Aoyagi, S.; Kibayashi, C. *Org. Lett.* **2003**, *5*, 3249. (c) Hayakawa, I.; Arimoto, H.; Uemura, D. *Heterocycles* **2003**, *59*, 441. (d) Hayakawa, I.; Arimoto, H.; Uemura, D. *Chem. Commun.* **2004**, 1222. (e) Matsumara, Y.; Aoyagi, S.; Kibayashi, C. *Org. Lett.* **2004**, *6*, 965.
- (14) Zhang, H.-L.; Zhao, G.; Ding, Y.; Wu, B. J. Org. Chem. 2005, 70, 4954.
- (15) Ali, S. A. Tetrahedron Lett. 1993, 34, 5325.
- (16) Yamada, K.; Kishikawa, K.; Yamamoto, M. J. Org. Chem. 1987, 52, 2327.
- (17) Taniguchi, M.; Koga, K.; Yamada, S. *Chem. Pharm. Bull.* 1972, 20, 1438.
- (18) Andreana, P. R.; McLellan, P. S.; Chen, Y.; Wang, R. G. Org. Lett. 2002, 4, 3875.
- (19) (a) Diaz-Ortiz, A.; Diez-Barra, E.; de la Hoz, A.; Moreno, A.; Gómez-Escalonilla, M. J.; Loupy, A. *Heterocycles* 1996, 43, 1021. (b) Cheng, Q.; Zhang, W.; Tagami, Y.; Oritani, T. J. Chem. Soc., Perkin Trans. 1 2001, 452. (c) Enderlin, G.; Taillefumier, C.; Dideirjean, C.; Chapleur, Y. Tetrahedron: Asymmetry 2005, 16, 2459.
- (20) A 10 mL microwave reaction vessel was charged with ester 7 (0.62 g, 3.27 mmol), nitrone 5 (0.30 g, 1.63 mmol) and toluene (5 mL). The vial was sealed with a cap containing a silicon septum, loaded into the cavity of a focussed microwave oven (Discover[®] CEM, 250 W) and heated for 1 h at 165 °C. The reaction mixture was cooled to r.t., concentrated and purified by column chromatography on silica gel using EtOAc-hexane (3:7) as eluent to give isoxazolidine **17** as two diastereomers as colourless oils (0.48 g, 80%; dr = 1:1; diastereomers unassigned).

Diastereomer A: IR (neat): 3443, 2958, 1728 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.25$ (d, 3 H, J = 7.1 Hz), 1.30–1.63 (m, 8 H), 1.64–1.93 (m, 3 H), 1.94–2.08 (m, 2 H), 2.09–2.12 (m, 2 H), 2.66 (dq, 1 H, J = 7.9, 7.1 Hz), 3.45 (d, 1 H, J = 5.8 Hz), 3.56–3.65 (m, 2 H), 4.12 (td, 1 H, J = 7.9, 5.7 Hz), 5.11 (d, 2 H, J = 7.4 Hz), 7.30–7.38 (m, 5 H). ¹³C NMR (75 MHz, CDCl₃): δ = 14.5, 19.2, 21.2, 26.4, 27.8, 30.2, 38.2, 40.0, 45.3, 45.4, 57.8, 65.4, 66.1, 69.2, 76.0, 128.0, 128.1, 128.5, 135.9, 174.3. HRMS (EI): *m*/*z* = calcd for [C₂₂H₃₁NO₄]⁺: 373.2253; found: 373.2253. **Diastereomer B**: IR (neat): 3448, 2958, 2931, 1727 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.11$ (d, 3 H, J = 7.0 Hz), 1.23-1.68 (m, 10 H), 1.69-1.96 (m, 2 H), 1.97-2.08 (m, 2 H), 2.09–2.15 (m, 2 H), 2.70 (dq, 1 H, J = 8.5, 7.1 Hz), 3.45 (d, 1 H, J = 6.3 Hz), 3.54–3.64 (m, 2 H), 4.20 (td, 1 H, *J* = 8.5, 6.0 Hz), 5.14 (d, 2 H, *J* = 4.9 Hz), 7.29–7.36 (m, 5 H). ¹³C NMR (75 MHz, CDCl₃): δ = 12.7, 19.2, 21.1, 26.4, 27.7, 29.6, 38.0, 39.1, 45.2, 45.4, 57.9, 65.4, 66.0, 69.1, 76.3,127.9, 128.0, 128.4, 136.1, 174.5. HRMS (EI): m/z calcd for [C₂₂H₃₁NO₄]⁺: 373.2253; found: 373.2256.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.