

Tetrahedron: Asymmetry 14 (2003) 3973-3986

TETRAHEDRON: ASYMMETRY

(-)-Daucic acid: Proof of D-*lyxo* configuration, synthesis of its D-*ribo*, D-*xylo*, L-*arabino* and L-*lyxo* analogs, and biosynthetic implications[☆]

Frieder W. Lichtenthaler,* Jürgen Klotz and Katsumi Nakamura

Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, D-64287 Darmstadt, Germany

Received 26 September 2003; accepted 14 October 2003

Abstract—The dimethyl esters of the 2,6-anhydro-3-deoxy-hept-2-enaric acids with D-xylo, D-lyxo, L-arabino, L-lyxo- and D-ribo-configuration were synthesized from D-galactose and D-mannose, respectively, and further characterized by their di-O-ace-tyl and di-O-benzoyl derivatives. Comparison of their physical data with those of *Daucus carota* derived products revealed (–)-daucic acid to have D-lyxo-configuration **46** rather than the previously assigned D-xylo stereochemistry **1**. Dimethyl daucate **43** could be converted by acid-induced ring contraction and dehydration into naturally occurring (+)-osbeckic acid **47**, thereby proving its (S)-configuration. Configurational identity in the pyranoid rings of (–)-daucic acid and KDO, together with available biosynthetic evidence on chelidonic acid **4**, a leaf closing factor, suggests a joint, KDO 8-P-based pathway for their biosynthesis in plants.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

(-)-Daucic acid, a seven-carbon sugar-dicarboxylic acid widely distributed across a range of plant families such as carrots (*Daucus carota*), wheat, sunflower, sugar beet, and tobacco, was first isolated from mature carrots in 1971² and shown later to be a 2,6-anhydro-3deoxy-D-hept-2-enaric acid of D-*xylo* configuration 1.³ The assignment of a dihydropyran structure was based on the oxidative conversion of its dimethyl ester into dimethyl chelidonate ($2\rightarrow 3$), its affiliation to the Dseries of sugars, i.e. configuration at C-6, convincingly followed from the high positive rotation of the furanoid rearrangement product 5 (+79.3 in CHCl₃) which correlated well with the equally high negative rotation of the synthetically prepared L-enantiomer (Scheme 1).³

Less conclusive were the configurational assignments at C-4 and C-5, as they were inferred from low resolution (60 MHz) ¹H NMR couplings for H-4 and H-5 in

0957-4166/\$ - see front matter $\ensuremath{\mathbb{C}}$ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2003.10.007

dimethyl daucate **2** and its di-*O*-acetyl derivative,³ and comparisons with NMR data of certain 3,4-unsaturated hexuronates^{4a} which on close inspection prove unreli-

Scheme 1. Reactions of *Daucus carota*-derived (–)-daucic acid leading to the structure of a 2,4-anhydro-2-deoxy-hept-2-enaric acid and, on the basis of 60 MHz ¹H NMR data, to the D-*xylo* configuration.³

^{*} Part 31 of the series 'Sugar-Derived Building Blocks'. For Part 30, see Ref. 1.

^{*} Corresponding author. Fax: +49-6151-166674; e-mail: lichtenthaler@chemie.tu-darmstadt.de

able.^{4b} In view of the proclivity of sugar-derived dihydropyrans to give complex, hardly predictable conformational equilibria between the respective half-chair forms, resulting in intricate coupling patterns with little bearing on the actual configuration, a verification of the stereochemistry at C-4 and C-5 of (–)-daucic acid appeared imperative.

These implications, together with the notion that daucic acid is a possible biosynthetic precursor of chelidonic acid **4**, a leaf-closing factor of *Cassia mimosoides*,⁵ prompted us to devise a stereocontrolled synthesis, practical enough to furnish sufficient amounts for biological studies. Accordingly, we report herein expedient syntheses of the daucic acids with D-*xylo*, D-*ribo*, L-*arabino*, L-*lyxo*, and D-*lyxo* configuration, from D-galactose and D-mannose, respectively, entailing assignment of the D-*lyxo* stereochemistry to the *Daucus carota*-derived product.⁶

2. Results and discussion

Our conceptual approach for developing a stereochemically unambiguous access to the D-*xylo*-heptenaric acid **2**—as well as the three alternate configurations conceivable for **2**—was based on the anomeric one-carbon homologation of suitable D-hexoses, subsequent oxidation at either terminus to the respective pyranoid C₇dicarboxylic acids, and controlled β -elimination into the pyranoid ring to be effected by the judicious choice of leaving groups.

2.1. D-xylo-Heptenarate 2

As outlined in Scheme 2, synthesis of 2 started from tri-O-acetyl-2-acetoxy-D-galactal 6, readily accessible from D-galactose in a three-step/one-pot procedure involving acetylation, treatment with HBr/HOAc^{7a} and dimethylamine-promoted elimination of HBr.7b,c The acetone-initiated photoaddition of formamide to 6, albeit complex,⁸ is α -selective to give heptonamide 7 as the major product (54%), which was then converted into methyl heptonate 8 by vigorous methanolysis. Oxidation of the primary hydroxyl was smoothly effected by oxygen in the presence of Adams catalyst to afford, after esterification with methanolic HCl, dimethyl heptarate 9. Despite of its 5-OH group being axial suggesting a preferential 5,6-elimination in the tri-O-acetyl derivative 10, exposure to NaOAc/Ac₂O at 70°C led to complex mixtures. The tribenzoate 11, however, when heated in NaOAc/Ac₂O at 100°C, preferentially displaced the axial 5-benzoyloxy group to afford the $\Delta^{5,6}$ unsaturated dibenzoate 15 in fair yield (59%). Acid de-O-benzoylation then led to the D-xylo-heptenarate 2.

An alternate possibility to generate 2 from dimethyl heptarate 9 comprised the introduction of a better leaving group at O-5, implemented by low temperaturebenzoylation of the equatorial hydroxyls and subsequent treatment with methanesulfonyl chloride (\rightarrow 12). Now, 5,6-dimination could cleanly be effected, either in

Scheme 2. Elaboration of D-*xylo*-heptenarates from D-galactose. *Reagents and conditions*: (a) HCONH₂, Me₂CO, hv, 3 days, rt, 54%;⁸ (b) 8% HCl/MeOH, reflux, 3 h, 86%; (c) Pt/O₂, water (pH 8), 70°C, 4 h; then HCl/MeOH, rt, 1 h, 56%; (d) BzCl, pyridine, -40°C, 2 h; then MsCl, -40°C to rt, 2 h, 58%; (e) Ac₂O, pyridine rt, 14 h, 85%; (f) BzCl, pyridine, rt, 12 h, 87%; (g) HCl satd MeOH, reflux, 14 h, 73%; (h) 0.1N NaOMe/MeOH, rt, 1 h, 77%; (i) NaOAc/Ac₂O, 100°C, 1 h, 59%.

12 by briefly heating in NaOAc/Ac₂O to afford the dibenzoate 15 (79%), or, more smoothly, in its de-*O*-benzoylation product 13 through exposure to NaOMe/MeOH, which directly provided the OH-free dimethyl D-*xylo*-heptenarate 2 (77%). Except for the di-*O*-acetyl 14 and di-*O*-benzoyl derivatives 15, all products of this reaction sequence were obtained in readily characterizable, crystalline form.

The melting point for **2** thus obtained proved to be close to that of the *Daucus carota*-derived product (cf. Table 1), yet its specific rotation, albeit similar in numerical value, was opposite in sign. The notion that the natural product could thus have the enantiomeric L-*xylo*-configuration, was clearly invalidated by the distinct differences in the ¹H NMR data of synthetic **2** and **15** as compared to those reported for the respective products of natural origin: chemical shifts for H-4, H-5 and H-6 are 0.3–0.6 ppm apart, and the $J_{3,4}$ and $J_{4,5}$ couplings have significantly different values (Table 1). Thus, a D-*xylo* or L-*xylo* configuration for natural (–)-daucic acid can unequivocally be dismissed.

Table 1. Relevant physicochemical data of dimethyl 2,6-anhydro-3-deoxy-hept-2-enarates of D-xylo, D-ribo, L-arabino and D-lyxo configuration and their diacetates as compared with those reported³ for the carrot-derived daucic acid derivatives

Compound		mp	$\left[\alpha\right]_{D}^{20a}$	1 H NMR (δ , Hz)							
		(°C)		4-H	5-H	6-H	$J_{3,4}$	$J_{3,5}$	$J_{4,5}$	$J_{5,6}$	solvent
(-)-dimethyl daucate ³		130-131	-102^{b}	4.51	4.30	4.66	3	1	?	2	CDCl ₃
diacetate ³		oil	?	- 5.73 -		4.82	2.3	?	?	1.8	$CDCl_3$
				5.63	5.85	4.35	2.6	1.5	4.4	1.8	C_6H_6
OR OR	2 R = H	133-135	+106	- 4.19 -		4.60	4.8	1.3	?	1.5	CDCl ₃
MeOOC O cooMe	$14 \mathrm{R} = \mathrm{Ac}$	syrup	+146	5.13	5.38	4.61	5.3	1.5	2.2	1.4	CDCl ₃
				5.20	5.57	4.41	5.3	1.5	2.2	1.0	$\mathrm{C_6H_6}$
MeOOC O COOMe D-ribo	22 R = H	syrup	+150.4	4.32	4.12	4.63	4.4	_	4.3	7.6	CDCl ₃
	23 R = Ac	syrup	+171.1	- 5.52 -		4.84	3.7	_	?	6.8	CDCl ₃
				5.62	5.71	4.74	3.8	0.7	4.2	6.3	C_6H_6
MeOOC O COOMe L-arabino	40 R = H	syrup	+30.0	4.25	4.19	4.73	4.3	0.9	2.2	5.4	CDCl ₃
	41 $R = Ac$	104-106	+72.1	5.14	5.44	5.06	5.4	1.5	2.1	2.2	CDCl ₃
				5.22	5.58	4.89	5.3	1.5	2.3	2.6	$\mathrm{C_6H_6}$
OR	43 R = H	128-129	-98.3	4.50	4.30	4.67	3.3	1.1	4.3	2.3	CDCl ₃
MeOOC O COOMe D-lyxo	44 R = Ac	syrup	-54.1	- 5.74 -		4.84	2.2	1.7	?	1.4	CDCl ₃
				5.56	5.81	4.27	2.3	1.7	4.5	1.7	C_6D_6

^{*a*}Rotations for OH-free diesters in acetone; for diacetates in CHCl₃. ^{*b*} $[\alpha]_D$ value at 24.5 °C.

2.2. Heptenarates of D-ribo and L-lyxo configuration

Of the remaining configurational possibilities for carrot-derived (-)-daucic acid-D-ribo, D-lyxo and D-arabino-the synthesis of the D-ribo-analog 22 was addressed next, taking advantage of the α-D-mannosylcyanide 16, readily accessible from D-mannose by acetylation⁹ and anomeric cyanation.¹⁰ Acid hydrolysis followed by esterification with methanol smoothly provided the mannosyl-C-carboxylate 17. As the Pt/O_2 oxidation of the primary hydroxyl group in 17 proved unusually capricious, its conversion into the 1,7-dicarboxylate was effected by TEMPO-catalyzed sodium hypochlorite oxidation—a reagent that had given excellent results in various other sugar oxidations¹¹—to provide, upon esterification with methanolic HCl, the dimethyl heptarate 18 in high yield. Subsequent protection of O-3 and O-4 by acetonation (\rightarrow 19), followed by mesylation ($\rightarrow 20$) set the stage for 5,6-elimination of methanesulfonate, which was simply realized by brief exposure to Al_2O_3 /lutidine at 40°C (\rightarrow 21). Finally, removal of the isopropylidene group in 21 with aqueous trifluoroacetic acid smoothly delivered the desired D*ribo*-heptenarate 22, and, after acetylation, its di-O-acetyl derivative 23. Both were obtained as syrups of distinctly high positive rotation in contrast to the substantially smaller negative value for the *Daucus carota*derived product. As distinct differences also prevail in the respective ¹H NMR data (cf. Table 1), D-*ribo* as well as L-*ribo* stereochemistry for natural (–)-daucic acid can also be eliminated.

The α -D-mannosyl-cyanide 16, unexpectedly, could also be used to generate the L-lyxo-heptenarates 29–31 (Scheme 3). Quite in contrast to its acidic hydrolysis leading to the C-mannosyl- α -carboxylate (16 \rightarrow 17), alkaline saponification-sodium methoxide/methanol for deacetylation (1 h, rt) and 12.5% aqueous sodium hydroxide (4 h, reflux) for nitrile hydrolysis-was accompanied by an unprecedented epimerization at the pseudo-anomeric C-2, to provide the C-mannosyl- β carboxylic acid 25 in high yield (90%). The subsequent oxidation and esterification $25 \rightarrow 26$ followed standard methodology, as did the introduction of a mesyl group at O-5 after prior protection of the 3,4-diol grouping $(26 \rightarrow 27 \rightarrow 28)$. Aluminum oxide/lutidine-induced 5,6elimination of mesylate in 28 proceeded smoothly (\rightarrow 29) and acid removal of the isopropylidene group gave the well-crystallizing dimethyl L-lyxo-heptenarate 30 with physicochemical data highly relevant to the configuration of daucic acid: melting point (127-128°C), ¹H NMR chemical shifts and coupling patterns

Scheme 3. D-Mannose-derived D-*ribo* and L-*lyxo* heptenarates. *Reagents and conditions*: (a) Ac_2O , pyridine,⁹ then Me_3SiCN , $BF_3 \cdot Et_2O$, CH_3NO_2 , $35^{\circ}C$, 2 h;¹⁰ (b) 25% aqueous HCl, 50°C, 24 h; then HCl satd MeOH, rt, 2 h, 85%; (c) TEMPO/NaOCl, H_2O/CH_2Cl_2 , 0°C, 20 h, then HCl/MeOH, rt, 2 h, 83%; (d) Me_2CO/H_2SO_4 , rt, 4 h, 75%; (e) MsCl, pyridine, 0°C, 3 h, 94%; (f) Basic Al_2O_3 , lutidine, 40°C, 30 min, 75%; (g) $CHCl_3$ -TFA-H₂O (50:10:1), rt, 1 h, 86%; (h) Ac_2O /pyridine, rt, 5 h, 90%; (i) BzCl, pyridine, rt, 12 h, 87%; (k) NaOMe/MeOH, 1 h, rt, then 12.5% aqueous NaOH, reflux, 4 h, 90%; (l) conc. HNO₃, 55°C, 1 h, then 8% HCl/MeOH, 67%.

(cf. Table 1, D-*lyxo* data) correlated exceedingly well with the carrot-derived dimethyl daucate, only the specific rotation (+96.7), albeit identical in magnitude, was of opposite sign. Similarly congruent proved to be the ¹H NMR data of the diacetate **31** and the natural dimethyl daucate derivative (Table 1). The conclusion to be drawn is obvious: the L-*lyxo*-heptenarate **30** and **31** are enantiomers to the respective carrot-derived products, that is, (–)-daucic acid must have D-*lyxo* configuration.

2.3. D-lyxo- and L-arabino-heptenarates

Finally to gain access to the D-lyxo configured (-)-daucic acid, we focused on a synthetic pathway starting from C- β -D-galactosyl-cyanide **32**, because it would also provide the respective L-arabino analogs by converting alternatively the 3-OH and the 5-OH in dimethyl heptarate **34** into displaceable leaving groups. The key intermediate **34** could straightforwardly be prepared by base hydrolysis of **32**, esterification (\rightarrow **33**) and TEMPO/NaOCl oxidation, the three steps being performable in an overall yield of 64% (Scheme 4).

For generation of L-arabino analogs of daucic acid, the protocol used for the successful conversion of 9 into 12 was evaluated first, comprising selective 3,4-di-O-benzoylation and mesylation at O-5. In the case of 34, however, this approach failed due to distinctly different OH groups reactitivites of 34 as compared to 9: Reaction of 34 with 2.1 molar equiv. of benzoyl chloride in pyridine at -40°C resulted in mixtures mainly consisting of the 3,5- and 4,5-dibenzoates. This course was somewhat unexpected, as the dimethyl heptarates 9 and 34 are 2-epimeric C-(galacturonyl)carboxylates in which the axial 5-OH would anticipated to be least reactive towards acylation. As an alternate, albeit less direct route to the desired 3,4-di-O-benzoyl-5-O-mesylheptarate 38, the *cis*-diol grouping in 34 was blocked by isopropylidenation (\rightarrow 35, the key intermediate for generation of the D-lyxo compounds, cf. below), followed by benzoylation (\rightarrow 36) and acid hydrolysis of the acetonide. The resulting 3-benzoate of 34-unlike 34 itself-could readily be mono-acylated at the 4-OH by low temperature benzoylation, the ensuing in situ mesylation delivering the appropriately blocked 38 in a tolerable overall yield of 40% for the five steps from 34. Introduction of the $\Delta^{5,6}$ -unsaturation towards the Larabino heptenarate was most readily effected in the de-O-benzoylated heptarate 39 to give 40, the actual L-arabino analog of dimethyl daucate, as a syrup; its diacetate 41, however, crystallized well. As anticipated, both, 40 and 41 had ¹H NMR data (cf. Table 1) distinctly different in chemical shifts and coupling patterns from those observed for the carrot-derived products.

The D-lyxo-heptenarates **42–45**, all derivatives of natural (–)-daucic acid, were also prepared from the 4,5-*O*isopropylidene-heptarate **35** by a similar sequence of reactions: mesylation (\rightarrow **37**) and Al₂O₃/lutidine-induced elimination gave **42**, in which the isopropylidene group was removed by exposure to aqueous trifluoroacetic acid (\rightarrow **43**).

In their physicochemical data, **43** and its di-*O*-acetyl derivative **44** are in nearly perfect agreement with those of the carrot-derived products, not only in sign and magnitude of rotation but, most notably, in the chemical shifts and coupling patterns (Table 1). The slight deviations in the coupling constants undoubtedly result from comparing ¹H NMR data obtained at different resolution (60³ versus 300 MHz) and, conceivably, different temperatures which affect the ⁵H₆ \rightleftharpoons ⁶H₅ equi-

Scheme 4. Dimethyl heptenarates of L-arabino and D-lyxo configuration from D-galactose. Reagents and conditions: (a) NaOAc, Ac₂O, 100°C, 2 h,^{12a} then Me₃SiCN, BF₃·Et₂O in CH₃NO₂, 35°C, 2 h,^{12b} 79%; (b) (i) NaOMe/MeOH, 2 h, rt, (ii) 6N NaOH, 4 h, reflux, (iii) HCl-satd MeOH, rt, 2 h, 85%; (c) TEMPO/NaOCl, H₂O/CH₂Cl₂, 0°C, 20 h, then satd HCl/MeOH, rt, 2 h, 76%; (d) Me₂CO, H₂SO₄, rt, 4 h, 76%; (e) BzCl, pyridine, rt, 12 h, 90%; (f) MsCl/pyridine, 0°C, 3 h, 85%; (g) 0.2N NaOMe/MeOH, 15 min, rt, 77%; (h) CHCl₃–TFA–water (50:10:1), rt, 1 h, 83%; (i) Ac₂O/pyridine, rt, 12 h, 90%; (k) (i) TFA–CHCl₃–H₂O, rt, 30 min, (ii) BzCl (1.2 equiv.), pyridine, –40°C, 2 h, (iii) MsCl, pyridine, rt, 3 h, 53%; (l) HCl–satd MeOH, reflux, 24 h, 86%; (m) basic Al₂O₃–lutidine, 40°C, 30 min, 74%.

librium of the respective halfchair forms, and, hence, the NMR patterns. Notwithstanding, this evidence is cogent enough as to unambiguously assign carrot-derived (–)-daucic acid the D-*lyxo*-configuration.

The synthetic (–)-dimethyl daucate **43** could readily be de-esterified by aqueous trifluoroacetic acid to give the free acid **46** in crystalline form. Slightly more vigorous acid conditions elicited the pyran \rightarrow furan rearrangement observed previously for the carrot-derived product:³ when exposed to methanolic HCl, **43** was converted into **5** (60%), heating in water in the presence of a strongly acidic ion exchange resin gave the free acid **47** (81%). As **47** has been isolated from the shrub *Osbeckia chinensis*

L., and hence named osbeckic acid,¹³ it may well be generated from daucic acid in the plant.

2.4. Biosynthetic implications

Not only is the biosynthetic origin of (-)-daucic acid intriguing—sedoheptulose-7-phosphate **48** and DAH 7-P **49**, both established intermediates of the pentose phosphate and shikimic acid pathways, respectively, may be conjectured as precursors—but the close structural analogy to chelidonic acid **4** with only oxidation of the allylic OH group in daucic acid and ensuing elimination of water being required to effect the chemical conversion.

¹⁴C-Labeling studies on the biosynthesis of chelidonic acid have uniformly demonstrated that D-glucose and, still better, D-ribose is well incorporated,^{14,15} whilst **48** is not.¹⁴ The postulation, that, hence, DAH 7-P 49 is the likely precursor¹⁵ persisted for 30 years, yet was convincingly disproved recently by quantitative carbon flux analyses of ¹³C-labeled sugars, suggesting a biosynthetic assembly of chelidonic acid from one molecule of pentose phosphate and phosphoenolpyruprate (PEP).¹⁶ Such a biosynthetic process, de facto, is well established in Gram-negative bacteria, where PEP and D-arabinose 5-phosphate (D-Ara 5-P), in turn generated from Dribulose 5-phosphate by isomerization, undergo an aldol-type condensation to 3-deoxy-D-manno-octulosonate 8-phosphate (KDO 8-P), 50.17,18 Thereby, the KDO 8-P synthase involved stereoselectively elaborates the 4R isomer, hence, D-manno configuration for 50, as the aldol addition proceeds with exclusive si attack of PEP to the *re* face of the sugar carbonyl.¹⁹ Although the existence of such a KDO 8-P-based mechanism has, as of now, not been detected in plants, the fact that DAH 7-P synthase—a key enzyme of the shikimic acid pathway²⁰ and abundantly present in higher plantsnot only catalyzes aldol addition of PEP to its natural

substrate, D-erythrose 4-phosphate, but to D-ribose 5phosphate (D-Rib 5-P) and D-Ara 5-P as well,²¹ may tentatively be taken as evidence that an octulosonate 8-phosphate-based pathway is also operative in plants.

Relying on the newly established D-*lyxo* stereochemistry of (-)-daucic acid—48 and 49 as precursors would elaborate D-*arabino* configuration—and on the conjecture that daucic acid is a precursor of chelidonic acid, a biosynthetic pathway towards both readily unfolds as depicted in Scheme 5: D-Ara 5-P and PEP undergo an aldol-type condensation to KDO 8-P 50, whose stereochemistry in the pyranoid ring, notably, correlates perfectly with the D-*lyxo* configuration of daucic acid. If D-Rib 5-P would be involved in the aldol addition step, the eight-carbon sugar phosphate would have D-*altro* configuration entailing an ('unnecessary') epimerization at some later stage.

Unlike bacterial systems where the eight-carbon chain of KDO 8-P is incorporated into cell wall lipopolysaccharides, here, the terminal carbon obviously is removed by dephosphorylation and oxidative decarboxylation. Although the resulting intermediate **51**

Scheme 5. Conceivable mechanism for the biosynthesis of C_7 -dicarboxylic acids in plants from common precursors, based on the striking configurational identity of daucic acid 46 and KDO 8-P 50 in their pyranoid rings, the smooth chemical conversions of 46 into chelidonic 4 and osbeckic acid 47, and available evidence on the biosynthesis of 4. Meconic acid 54, plentiful in the latex of Papaveracea, may be arrived at merely by oxidation of conjectural intermediate 53.

requires only loss of water to reach daucic acid, a direct 3,2-elimination is unlikely-'cells obey the laws of chemistry²²—as the hydrogen atom involved (H-3) is not activated. This is usually effected by a vicinal carbonyl group—the D-glucose→kojic acid conversion²³ has been rationalized on this basis²⁴—hence, oxidation of 51 at C-4 appears most plausible, the ensuing dehydration $52 \rightarrow 53$ now being readily comprehensible. From the central dihydropyranone intermediate 53, elaboration of daucic acid merely requires reduction. and generation of chelidonic а acid the elimination of another molecule of water. Meconic acid may be conjectured to arise by a dehydrogenation step $(53 \rightarrow 54)$, the furanoid osbeckic acid 47 from daucic acid via ring contraction and twofold dehydration.

The tempting consistency of this metabolic scheme, most notably the configurational identity of KDO 8-P and daucic acid in their pyranoid rings, clearly calls for a systematic scrutiny of higher plants for the occurrence of an eight-carbon sugar phosphate pathway with the likely intermediates 51-53, especially in those species, in which these C_7 -dicarboxylic acids have been detected: daucic acid in carrots, sugar beet, wheat, sun flower, and tobacco,³ osbeckic acid in *Osbeckia chinensis*,¹³ meconic acid in Papaveraceae²⁵ and chelidonic acid in a plethora of plant families.²⁶ Also conducive towards unravelement of the biosynthesis of these plant acids will be the eleven-step-synthesis of (-)-daucic acid from D-galactose described since the first six from D-galactose to dimethyl D-glycero-L-manno-heptarate 34 can be performed in three consecutive one-pot operations on fairly large scale (51%). The synthesis is also flexible enough to readily prepare the postulated intermediates 51-53 in labeled form. Synthetic and biosynthetic studies along these veins are being implemented.

3. Experimental

3.1. General remarks

Melting points were determined with a Bock hot-stage microscope and are uncorrected. Optical rotations were measured on a Perkin-Elmer 241 polarimeter at 20°C using a cell of 1 dm path length; concentration (c) in g/100 mL and solvent are given in parentheses. ¹H and ¹³C NMR spectra were recorded on a Bruker ARX-300 spectrometer in the solvents indicated. Mass spectra were acquired on Varian MAT 311 and MAT 212 spectrometers. Microanalyses were determined on a Perkin-Elmer 240 elemental analyzer. Analytical thin-layer chromatography (TLC) was performed on precoated Merck plastic sheets (0.2 mm silica gel 60 F_{254}) with detection by UV (254 nm) and/or spraying with H_2SO_4 (50%) and heating. Column and flash chromatography was carried out on Fluka silica gel 60 (70-230 mesh) using the specified eluents.

3.2. D-Galactose \rightarrow D-xylo analogs of dimethyl daucate

3.2.1. 3,4,5,7-Tetra-*O***-acetyl-2,6-anhydro-D***-glycero*-L*gluco***-heptonamide** [*C*-(tetra-*O*-acetyl- α -D-galactopyranosyl)formamide] 7. 2,3,4,6-Tetra-*O*-acetyl-1,5-anhydro-D-*lyxo*-hex-1-enitol 6, readily accessible from D-galactose by acetylation,^{7a} treatment with HBr/HOAc^{7b} and diethylamine-promoted elimination of HBr^{7c} (75% overall yield on a 0.1 molar scale when refraining from purification of intermediates), was subjected to photoaddition of formamide to afford 7 in 54% yield;⁸ mp 187–189°C; $[\alpha]_{D}^{2D} = +57$ (*c* 0.9, CHCl₃) [lit.⁸ mp 186–189°C; $[\alpha]_{D}^{2D} = +53.3$ (CHCl₃)].

3.2.2. Methyl 2,6-anhydro-D-*glycero-L-gluco*-heptonate [methyl *C*-(α -D-galactopyranosyl)formate] 8. A suspension of 7 (5.42 g, 15 mmol) in 100 mL of 8% HCl in MeOH was refluxed for 3 h. The then clear solution was taken to dryness in vacuo and the resulting residue was purified by elution from a short silica gel column with CHCl₃-MeOH (4:1). Evaporation of the appropriate eluates left a syrup which crystallized from MeOH/CHCl₃: 2.87 g (86%) of 8; mp 141–142°C; [α]^D_D=+106 (*c* 0.7, MeOH). Anal. calcd for C₈H₁₄O₇ (222.2): C, 43.24; H, 6.35. Found: C, 62.07; H, 7.32.

3.2.3. Dimethyl 2,6-anhydro-D-glycero-L-gluco-heptarate 9. Freshly reduced Adams catalyst (1.0 g) was added to an aqueous solution of 8 (2.20 g, 10 mmol, in 50 mL), and O_2 was passed through the suspension with vigorous stirring for 4 h at 70°C, maintaining pH 8 by gradual addition of solid NaHCO₃. After filtration, the solution was taken to dryness in vacuo, the residue was suspended in methanolic HCl (40 mL of saturated solution), and stirred for 1 h at ambient temperature. Filtration of insolubles, removal of the solvent from the filtrate, purification of the resulting syrup by elution from a silica gel column (2×20 cm) with CHCl₃-MeOH (6:1), and evaporation of the eluates containing 9 gave 1.40 g (56%) of a colorless syrup, uniform by TLC ($R_f = 0.42$ in CHCl₃–MeOH, 4:1); MS (FD) m/z 251 (M⁺+1), 250 (M⁺). Anal. calcd for C₉H₁₄O₈ (250.2): C, 43.20; H, 5.64. Found C, 43.08, H, 5.60.

3.2.4. Dimethyl 3,4,5-tri-*O*-acetyl-2,6-anhydro-D-glycero-L-gluco-heptarate 10. A mixture of heptarate 9 (50 mg, 0.2 mmol), pyridine (2 mL) and Ac₂O (1 mL) was kept at rt overnight, subsequently diluted with EtOAc and washed with satd aqueous NaHCO₃ and water, and dried (Na₂SO₄). Concentration of solution to dryness gave a crystalline mass, which was recrystallized from EtOH to afford 70 mg (90%) of 10; mp 151–152°C; $[\alpha]_{D}^{20} = +173$ (*c* 0.7, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 2.02, 2.05, 2.10 (3 s, 3H each, 3 Ac), 3.76, 3.77 (two 3H-s, 2 OMe), 5.05 (d, 1H, *J*=6.0 Hz), 5.38 (d, 1H, *J*=2.7 Hz), 5.39 (dd, 1H, *J*=2.9, 9.8 Hz), 5.77 (dd, 1H, *J*=2.7, 2.9 Hz); MS (FD) *m*/*z* 378 (M⁺+2), 334 (M⁺-Ac). Anal. calcd for C₁₅H₂₀O₁₁ (376.3): C, 47.88; H,5.36. Found: C, 47.79; H, 5.19.

3.2.5. Dimethyl 3,4,5-tri-O-benzoyl-2,6-anhydro-D-glycero-L-gluco-heptarate 11. Benzoyl chloride (1.8 mL, 15 mmol) was added to a solution of dimethyl heptarate 9 (150 mg, 0.6 mmol) in pyridine (12 mL), and the mixture was stirred at rt overnight. Dilution with EtOAc, successive washings with satd aqueous NaHCO₃ and water, drying (Na₂SO₄), and evaporation to dryness in vacuo gave a syrup which was purified by elution from a short silica gel column with *n*-hexane–acetone (2:1). Removal of the solvents from the product-containing eluates (TLC: $R_f = 0.28$ in *n*-hexane–acetone, 2:1) gave a solid residue which crystallized from EtOH: 295 mg (87%) of 11 as colorless crystals; mp 136–137°C; $[\alpha]_{\rm D}^{20} = +217$ (c 1.1, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 3.63, 3.69 (two 3H-s, 2 OMe), 5.46 (d, 1H, J = 5.5 Hz), 5.57 (d, 1H, J = 3.6 Hz), 5.85 (dd, 1H, J = 5.4, 8.5 Hz), 6.04 (dd, 3.1, 8.5 Hz), 7.50, 7.95 (2 m, 9H and 6H, 3 C₆H₅); MS (FD) m/z 563 (M⁺+1). Anal. calcd for C₃₀H₂₆O₁₁ (562.5): C, 64.06; H, 4.66. Found: C, 63.96; H, 4.58.

Dimethyl 2,6-anhydro-3,4-di-O-benzoyl-5-O-3.2.6. mesyl-D-glycero-L-gluco-heptarate 12. A solution of heptarate 9 (810 mg, 3.2 mmol) in pyridine (10 mL) was cooled to -40°C and a mixture of benzoyl chloride (0.8 mL, 0.69 mmol) and pyridine (5 mL) was added dropwise with vigorous stirring. After 2 h at -40°C, methanesulfonyl chloride (0.25 mL, 3.2 mmol) was added and stirring was continued at -40°C (1 h) followed by allowing the mixture warm to rt (2 h). Subsequent extraction with satd aqueous NaHCO₃ and water, drying (Na_2SO_4) , and removal of the solvent in vacuo gave a residue, which was purified by elution from a silica gel column with n-hexane–acetone (2:1). The first fraction ($R_f = 0.49$, TLC in *n*-hexane–acetone, 3:2) contained 320 mg (18%) of tribenzoate of 11. The fractions eluted next, with product of $R_{\rm f} = 0.39$, were combined and evaporated to a syrup which crystallized from EtOH: 930 mg (53%) of 12 as colorless crystals; mp 158–160°C; $[\alpha]_{D}^{20} = +174$ (c 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 3.04 (s, 3H, SO₂Me), 3.64, 3.85 (2 s, 3H each, 2 OMe), 5.22 (d, 1H, J=6.7 Hz), 5.62 (d, 1H, J = 1.8 Hz), 5.76 (dd, 1H, J = 1.8, 2.9 Hz), 5.84 (dd, 1H, J=6.7, 10.3 Hz), 5.93 (dd, 1H, J=2.9, 10.3 Hz), 7.50, 8.00 (2 m, 2 C₆H₅); MS (FD) m/z 537 (M⁺+1). Anal. calcd for $C_{24}H_{24}O_{12}S$ (536.5): C,53.73; H, 4.51. Found: C,53.68; H, 454.

3.2.7. Dimethyl 2,6-anhydro-5-*O*-mesyl-D-glycero-Lgluco-heptarate 13. A suspension of 805 mg (1.5 mmol) of dibenzoate 12 in satd methanolic HCl (25 mL) was refluxed for 14 h. The clear solution was then taken to dryness in vacuo and the residue was purified on a short silica gel column by elution with aceton–CHCl₃ (1:1). Removal from the solvents in vacuo afforded a syrup, which crystallized from CHCl₃/*n*-hexane to yield 425 mg (73%) of 13; mp 149–150°C; $[\alpha]_D^{20} = +92$ (*c* 0.7, CHCl₃); MS (FD) *m*/*z* 388 (M⁺). Anal. calcd for C₁₅H₁₆O₁₆S (388.4): C, 46.39; H, 4.15. Found: C, 46.30; H, 4.03.

3.2.8. Dimethyl 2,6-anhydro-3-deoxy-D-xylo-hept-2enarate 2. A methanolic solution of mesylate 13 (390 mg, 1 mmol, in 10 mL) was added to 20 mL of 0.1N methanolic NaOMe, the mixture was stirred for 1 h, and subsequently concentrated in vacuo. The amorphous residue was purified by elution from a short silica gel column with acetone–CHCl₃ (1:1). Eluates containing product of R_f =0.40 (TLC in CHCl₃–acetone, 2:1) were concentrated to a syrup, which crystallized from EtOAc/hexane: 180 mg (77%) of **2**; mp 133–135°C; $[\alpha]_D^{20}$ =+106.0 (*c* 0.6, acetone). ¹H NMR (300 MHz, CDCl₃) δ 3.85, 3.88 (two 3H s, 2 OMe), 4.19 (m, 2H), 4.60 (m, 1H), 6.20 (dd, 1H, *J*=1.3, 4.8 Hz); MS (FD *m*/*z* 232 (M⁺), 233 (M⁺+1). Anal. calcd for C₉H₁₂O₇ (232.2): C, 46.55; H, 5.21. Found C, 46.48; H, 5.25

3.2.9. Dimethyl 4,5-di-O-acetyl-2,6-anhydro-3-deoxy-Dxylo-hept-2-enarate 14. A solution of heptenarate 2 (60 mg, 0.26 mmol) in a mixture of Ac_2O (1 mL) and pyridine (3 mL) was stirred at rt overnight and subsequently taken to dryness in vacuo. The resulting residue purified on a short silica gel column by elution with CHCl₃-MeOH (20:1) to give 68 mg (82%) of 14 as a clear syrup; $[\alpha]_D^{20} = +146.0$ (*c* 0.8, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 2.06, 2.11 (two 3H-s, 2 Ac), 3.84, 3.86 (two 3H-s, OMe), 4.61 (m, 1H), 5.13 (ddd, 1H, J=0.8, 2.2, 5.3 Hz), 5.38 (ddd, 1H, J=1.4, 1.5, 2.2 Hz), 6.23 (dd, J=1.5, 5.3 Hz; ¹H NMR (300 MHz, C₆D₆) δ 1.49, 1.50 (two 3H-s, 2 Ac), 3.27, 3.34 (two 3H-s, 2 OMe), 4.41 (m, 1H), 5.20 (ddd, 1H, J=0.8, 2.2, 5.3 Hz), 5.57 (ddd, 1H, J=1.4, 1.5, 2.2 Hz), 6.38 (dd, 1H, J=1.5, 5.3 Hz); MS (FD) m/z 316 (M⁺), 257 (M⁺-COOMe).

3.2.10. Dimethyl 4,5-di-O-benzoyl-2,6-anhydro-3-deoxy-D-xylo-hept-2-enarate 15. (a) By benzoylation of 2. Benzoyl chloride (0.2 mL, 0.7 mmol) was added solution of 2 (60 mg, 0.26 mmol) in pyridine (2 mL), and the mixture was stirred at rt overnight. Dilution with EtOAc, washing with satd NaHCO₃ and water, drying (Na_2SO_4) , and removal of the solvent in vacuo left a syrup, which was purified on a short silica gel column (*n*-hexane–acetone, 2:1). Eluates with $R_{\rm f} = 0.63$ (TLC, CHCl₃-EtOAc, 20:1) were concentrated to give 95 mg (83%) of **15** as colorless syrup; $[\alpha]_{D}^{20} = +127.0$ (c 0.9, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 3.82, 3.88 (two 3H-s, 2 OMe), 4.86 (m, 1H), 5.56 (ddd, 1H, J=0.8, 2.4, 5.2 Hz), 5.78 (ddd, 1H, J=1.5, 1.8, 2.4 Hz), 6.41 (dd, J = 1.5, 5.2 Hz), 7.46, 7.60, 8.03 (3 m, 10H, 2 C₆H₅); MS (FD) m/z 440 (M⁺). Anal. calcd for C₂₃H₂₀O₉ (440.4): C, 62.72; H, 4.58. Found: C, 62.65; H, 4.50.

(b) By elimination of benzoic acid from **11**. A solution of **11** (200 mg, 0.35 mmol) in Ac₂O (5 mL) was heated in the presence of NaOAc (150 mg) at 100°C for 1 h. The reaction mixture was diluted with EtOAc, washed with water, satd aqueous NaHCO₃ and water, and then dried over Na₂SO₄. The solution was concentrated and purified on a silica gel column (CHCl₃–EtOAc, 30:1) to afford 90 mg (59%) of **15** as a syrup, identical with the product described above.

3.3. D-Mannose \rightarrow products of D-*ribo* configuration (21–24)

3.3.1. Methyl 2,6-anhydro-D-glycero-D-talo-heptonate [methyl C-(α -D-mannopyranosyl)formate] 17. A solution of 4.0 g (11.2 mmol) of C-(tetra-O-acetyl- α -D-manno-

3981

syl)cyanide 16¹⁰ in water (40 mL) and conc. HCl (80 mL) was stirred at 50°C for 24 h followed by concentration in vacuo and repeated coevaporation with MeOH. Drying in vacuo afforded the free heptonic acid (17, H instead of Me, 2.2 g) as a uniform syrup (TLC: $R_{\rm f}$ = 0.49 in EtOAc-HOAc-water, 3:2:1), which was dissolved in anhydrous MeOH (20 mL) followed by addition of 20 mL of HCl-satd MeOH. The solution was stirred at rt for 2 h, followed by removal of the solvent to dryness in vacuo and three coevaporations with dry MeOH. Purification of the residue by elution from a silica gel column (3×30 cm) with CHCl₃-MeOH (5:1) and concentration of the eluates in vacuo gave 2.14 g (86%) of 17 as a syrup; $[\alpha]_D^{20} = +39.6$ (c 1.1, MeOH); $R_{\rm f} = 0.64$ (TLC in EtOAc-EtOH-water, 14:6:3). ¹H NMR (300 MHz, $[D_4]$ MeOH) δ 3.45 (dd, 1H, J=3.0, 8.9 Hz), 3.68 (m, 2H, H-5, H-6), 3.72 (m, 1H, H-7), 3.84 (dd, 1H, J=1.8, 11.8 Hz, H-7), 4.28 (dd, 1H, J = 2.2, 3.0 Hz), 4.52 (d, 1H, J = 2.2 Hz); MS (FD) m/z 223 (M⁺+1), 222 (M⁺). Anal. calcd for C₈H₁₄O₇ (222.2) C, 43.23; H, 6.35. Found: C, 43.29; H, 6.41.

3.3.2. Dimethyl 2,6-anhydro-D-glycero-D-talo-heptarate 18. To a mixture of 17 (2.14 g, 9.6 mmol) in satd aqueous NaHCO₃ (16 mL) containing KBr (90 mg) and $n-Bu_4NCl$ (120 mg) was added a solution of 50 mg of 2,2,6,6-tetramethyl-1-piperidinyloxy ('TEMPO') in CH₂Cl₂ (20 mL). The mixture was cooled to 0°C and a solution of NaOCl (13%, 56 mL) and satd aqueous NaHCO₃ (8.8 mL) was added dropwise over 1 h. Stirring was continued at 0°C for 20 h, followed by separation of the two layers and washing of the organic phase with water (3×15 mL). The combined aqueous extracts were acidified with 2N HCl and concentrated in vacuo to a syrup which was dissolved in water and passed through an ion-exchanger column (Amberlite IR-120 H+, 3×30 cm). After removal of the solvent the syrup was dissolved in anhydrous MeOH (30 mL) and treated with a satd solution of dry HCl in anhydrous MeOH (30 mL) at ambient temperature for 2 h, and then concentrated. The residue was purified on a silica gel column (3×30 cm) by elution with CHCl₃–MeOH (5:1). Product-containing eluates ($R_f = 0.91$, TLC in EtOAc-EtOH-water, 14:6:3) were concentrated to give 1.33 g (55%) of **18** as a colorless syrup; $[\alpha]_{D}^{20} = +61.4$ (c 1.5, MeOH); ¹H NMR (300 MHz, D₂O, 32°C) δ 3.74, 3.78 (two 3H-s, 2 OMe), 3.75 (dd, 1H, J=2.9, 5.8 Hz), 4.11 (dd, 1H, J=2.2, 3.0 Hz), 4.18 (dd, 1H, J=4.5, 5.8 Hz), 4.11 (dd, 1H, J=2.9, 5.8 Hz), 4.18 (dd, 1H, J=4.5, 8.9 Hz), 4.29 (d, 1H, J=4.5 Hz), 4.66 (d, 1H, J = 7.3 Hz). Anal. calcd for C₉H₁₄O₈ (250.2): C, 43.20; H,5.64. Found: C, 43,10; H, 5.62.

3.3.3. Dimethyl 2,6-anhydro-3,4-O-isopropylidene-Dglycero-D-talo-heptarate 19. A suspension of 18 (1.33 g, 5.3 mmol) in dry acetone (40 mL) and conc. H_2SO_4 (0.1 mL) was stirred at rt for 4 h. The reaction mixture was carefully neutralized with ion-exchange resin (Amberlite IR-400, OH–) and concentrated to syrup, which was dissolved in dry acetone (30 mL). After addition of 6 g of silica gel and removal of the solvent, the residue was applied to a silica gel column (3×30 cm) and eluted with toluene–EtOAc (1:1). Evaporation of the fractions with $R_{\rm f}$ =0.72 (TLC in EtOAc–EtOH–water, 30:3:1) and crystallization of the residue from EtOH–*n*-hexane gave 1.16 g (75%) of **19** as cubic crystals; mp 91°C; $[\alpha]_{\rm D}^{20}$ = +12.5 (*c* 1.0, acetone); ¹H NMR (300 MHz, [D₄]MeOH) δ 1.34, 1.45 (2 s, 3H each, CMe₂), 3.75, 3.77 (2 s, 3H each, 2 OMe), 4.14 (dd, 1H, *J*=5.2, 5.4 Hz), 4.20 (dd, 1H, *J*=5.4, 5.5 Hz), 4.31 (d, 1H, *J*=5.2 Hz), 4.54 (dd, 1H, *J*=4.3, 5.4 Hz), 4.67 (d, 1H, *J*=4.3 Hz); MS (FD) *m*/*z* 291 (M⁺+1), 290 (M⁺). Anal. calcd for C₁₂H₁₈O₈ (290.3): C, 49.65; H, 6.25. Found: C, 49.66; H, 6.25.

3.3.4. Dimethyl 2,6-anhydro-3,4-O-isopropylidene-5-Omesyl-D-glycero-D-talo-heptarate 20. To a cooled (0°C) solution of 19 (1.0 g, 3.4 mmol) in pyridine (12 mL) was added methanesulfonyl chloride (0.7 mL, 9 mmol), and the mixture was stirred for 3 h at 0°C. After addition of solid NaHCO₃ and stirring for another 30 min, the reaction mixture was diluted with satd aqueous NaHCO₃, extracted with EtOAc, dried (Na₂SO₄), and taken to dryness in vacuo: 1.19 g (94%) of 20 as colorless syrup; $[\alpha]_{D}^{20} = +9.7$ (c 1.0, CHCl₃); $R_{f} = 0.57$ (TLC in toluene-EtOAc, 1:1). ¹H NMR (300 MHz, CDCl₃) δ 1.32, 1.48 (two 3H-s, CMe₂), 3.08 (s, 3H, SO₂Me), 3.76, 3.77 (two 3H-s, 2 OMe), 4.30 (dd, 1H, J = 5.4, 5.7 Hz), 4.46 (d, 1H, J = 6.4 Hz), 4.52 (dd, 1H, J = 4.2, 5.4 Hz), 4.74 (d, 1H, J = 4.2 Hz), 4.99 (dd, 1H, J = 5.7, 7.4 Hz); MS (FD) m/z 369 (M⁺+1), 368 (M⁺). Anal. calcd for C₁₃H₂₀O₁₀S (368.4): C, 42.39; H, 5.47. Found: C, 42.23; H, 5.38.

3.3.5. Dimethyl 2,6-anhydro-4,5-O-isopropylidene-3deoxy-D-ribo-hept-2-enarate 21. To a solution of 1.0 g (2.7 mmol) 20 in 100 mL of lutidine was added 10 g of basic Al₂O₃ (Fluka type 5016A, basic) and the mixture was warmed to 40°C for 30 min, followed by evaporation to dryness in vacuo. The residue was applied to a silica gel column (3×30 cm) and eluted with CH₂Cl₂acetone 110:1. Removal of the solvent from the eluates with $R_f = 0.74$ (TLC in toluene–EtOAc, 1:1) in vacuo yielded 540 mg (73%) of **21** as a colorless syrup; $[\alpha]_{\rm D}^{20} =$ +41.9 (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.41, 1.48 (2 s, 3H each, CMe₂), 3.83, 3.84 (2 s, 3H each, 2 OMe), 4.46 (m, 2H, 5-H, 6-H), 4.63 (dd, 1H, J = 4.0, 4.9 Hz, 6.23 (d, 1H, J = 4.0 Hz); ¹³C NMR (75.5 MHz, CDCl₃) δ 25.9, 28.1 (CMe₂), 52.7, 52.9 (2 OMe), 67.2 (C-4), 71.7, 75.0 (C-5, C-6), 108.9 (C-3), 110.4 (CMe2), 144.6 (C-2), 161.9, 168.3 (2 CO). Anal. calcd for C₁₂H₁₆O₇ (272.3): C, 52.94; H, 5.92. Found: C, 53.06; H, 5.79.

3.3.6. Dimethyl 2,6-anhydro-3-deoxy-D*-ribo*-hept-2enarate **22**. Treatment of **21** (540 mg, 2.0 mmol) with 20 mL of a mixture of CHCl₃–TFA–water (50:10:1) at 30°C for 1 h and removal of the solvent afforded a syrup, which was purified by elution from a silica gel column (2×20 cm) with CH₂Cl₂–acetone (2:1). Concentration of the eluates gave 390 mg (85%) of **22** as a colorless syrup; $[\alpha]_{D}^{20}$ =+150.4 (*c* 1.0, acetone); $R_{\rm f}$ =0.57 (TLC in CHCl₃–acetone, 1:1). ¹H NMR (300 MHz, CDCl₃) δ 3.07, 3.45 (two 1H-d, 2 OH), 3.83, 3.84 (two 3H-s, 2 OMe), 4.12 (ddd, 1H, *J*=4.3, 5.7, 7.6 Hz), 4.32 (ddd, 1H, *J*=4.3, 4.4, 5.2 Hz), 4.63 (d, 1H, *J*=7.6 Hz), 6.10 (d, 1H, *J*=4.4 Hz); ¹³C NMR (75.5 MHz, CDCl₃) δ 52.7, 53.0 (2 OMe), 61.5 (C-4), 66.7 (C-5), 74.7 (C-6), 109.9 (C-3), 143.8 (C-2), 162.1, 169.2 (2 CO); MS (FD) m/z 233 (M⁺+1), 232 (M⁺). Anal. calcd for C₉H₁₂O₇ (232.2): C, 46.56; H, 5.21. Found: C, 44.91; H, 5.15.

3.3.7. Dimethyl 4,5-di-O-acetyl-2,6-anhydro-3-deoxy-Dribo-hept-2-enarate 23. Stirring of 22 (63 mg, 0.27 mmol) in a mixture of Ac₂O (2 mL) and pyridine (4 mL) for 5 h at rt, evaporation to dryness in vacuo, and elution of the residue from a silica gel column (1.5×20) cm) with CH_2Cl_2 -acetone (60:1) afforded 78 mg (91%) of **23** as a colorless syrup; $[\alpha]_{D}^{20} = +171.1$ (*c* 0.9, CHCl₃); $R_{\rm f}$ =0.69 (TLC in toluene–EtOAc 1:1); ¹H NMR (300 MHz, CDCl₃) δ 2.08, 2.09 (two 3H-s, 2 Ac), 3.82, 3.85 (two 3H-s, 2 OMe), 4.84 (m, 1H), 5.52 (m, 2H), 6.01 (m, 1H); ¹H NMR (C_6H_6): 1.68, 1.69 (two 3H-s, 2 Ac), 3.28, 3.25 (two 3H-s, 2 OMe), 4.74 (d, 1H, J=6.3 Hz), 5.62 (dd, 1H, J=3.8, 4.2 Hz), 5.71 (ddd, 1H, J=0.7, 4.2, 5.6 Hz), 6.02 (dd, 1H, J=0.7, 3.8 Hz); (FD) m/z317 (M⁺+1), 316 (M⁺). Anal. calcd for $C_{13}H_{16}O_{9}$ (316.3): C, 49.37; H, 5.10. Found: C, 48.95; H, 5.04.

3.3.8. Dimethyl 2,6-anhydro-4,5-di-O-benzoyl-3-deoxy-D-ribo-hept-2-enarate 24. A mixture of 22 (58 mg, 0.25 mmol), 4 mL of pyridine, and benzoyl chloride (0.1 mL, 0.86 mmol) was stirred for 4 h at 0°C and then diluted with EtOAc. The solution was successively washed with satd aqueous NaHCO₃ (3×10 mL) and water (10 mL), dried (Na₂SO₄), and then concentrated in vacuo. The residue was purified by elution from a silica gel column (1.5×20 cm) with CH_2Cl_2 -acetone (60:1). Removal of the solvents from the eluates in vacuo gave 81 mg (74%) of 24 as a colorless syrup; $[\alpha]_{\rm D}^{20} = +177.0$ (c 0.9, CHCl₃); $R_{\rm f} = 0.56$ (TLC in toluene-EtOAc, 1:1). ¹H NMR (300 MHz, CDCl₃) δ 3.75, 3.79 (two 3H-s, 2 OMe), 5.02 (m, 1H), 5.81 (m, 2H, H-4, H-5), 6.16 (m, 1H), 7.30, 7.45, 7.87 (3 m, 10 H, 2 C_6H_5); ¹H NMR (C_6H_6) δ 3.23, 3.26 (two 3H s, 2 OMe), 4.93 (d, 1H, J=6.4 Hz), 5.98 (dd, 1H, J=4.0, 4.3 Hz), 6.09 (ddd, 1H, J=0.9, 4.2, 6.4 Hz), 6.22 (dd, 1H, J=0.9, 4.0 Hz), 6.94, 7.04, 7.99 (3 m, 10H, 2 C₆H₅). Anal. calcd for C₂₃H₂₀O₉ (440.4): C, 62.73; H, 4.58. Found: C, 62.72; H, 4.68.

3.4. D-Mannose \rightarrow L-*lyxo* products 29–31 (*ent*-daucic acid derivatives)

3.4.1. 2,6-Anhydro-D-glycero-D-galacto-heptonic acid [C-(\beta-D-mannopyranosyl)formic acid] 25. To a solution of α -D-mannosyl-cyanide 16¹⁰ in MeOH (30 mL) was added 17 mL of 0.1N NaOMe in MeOH, and the mixture was kept at rt for 1 h followed by evaporation to dryness in vacuo. The residue was dissolved in 12.5% aqueous NaOH (50 mL) and refluxed for 4 h. Dilution with H₂O (150 mL), neutralization by stirring with Amberlite IR-120 (H+-form, 100 mL), filtration with several washings with water, and evaporation of the combined filtrates to dryness in vacuo gave a solid mass, which was purified by passing it, dissolved in 60 mL of water, through an Amberlite IR 120 column (100 mL) and rinsed with water. Evaporation of the combined eluates to dryness in vacuo gave 7.34 g (90%) of 25 as a syrup, which was directly used for the ensuing oxidation (→26); $R_{\rm f}$ =0.34 (TLC in EtOAc–HOAc– H₂O, 3:2:1); [α]_D²⁰=-2.4 (*c* 1.0 MeOH); ¹H NMR (300 MHz, D₂O) δ 3.41 (ddd, 1H, *J*=2.3, 6.4, 9.6 Hz, H-6), 3.59 (t, 1H, *J*=9.6 Hz), 3.72 (dd, 1H, *J*=3.4, 9.6 Hz), 3.75 (dd, 1H, *J*=6.4, 12.4 Hz), 3.93 (dd, 1H, *J*=2.3, 12.4 Hz), 4.31 (dd, 1H, *J*=1.4, 3.4 Hz), 4.37 (d, 1H, *J*=1.4 Hz); MS (FD) *m*/*z* 208 (M⁺).

3.4.2. Dimethyl 2,6-anhydro-D-glycero-D-galacto-heptarate 26. Solid 25 (7.00 g, 33.7 mmol) was gradually added (30 min) to a stirred, warmed (55-60°C) mixture of conc. HNO₃-fuming HNO₃ (1:1, 12 mL) containing 9 mg of NaNO₂. Stirring at 55–60°C was continued for 1.5 h, followed by dilution with water (80 mL), neutralization with 25% aqueous NaOH (to pH 8) and filtration of insolubles. Removal of the solvent in vacuo left a syrup, which was dissolved in H₂O (20 mL), then MeOH (200 mL) was added and the mixture was stored at 5°C for 12 h. The solid mass was separated, dissolved with H₂O (80 mL) and applied to a column of Amberlite IR-120 (H⁺-form) (140 mL). Acidic eluates were collected, treated with active carbon, and then taken to dryness in vacuo. Treatment of the residue with 8% HCl-MeOH (40 mL) at rt for 2 h and concentration to dryness gave a syrup, which was purified by elution from a silica gel column (4.5×30 cm) with $CHCl_{3}$ -MeOH (6:1). Eluates of $R_f = 0.40$ (TLC in CHCl₃-MeOH, 4:1) were evaporated to dryness in vacuo and the residue was crystallized from MeOH–CHCl₃: 4.65 g (55%) of **26** as needles; a second crop (0.98 g, 12%) was obtained from the mother liquor; mp 163°C; $[\alpha]_D^{20} =$ -22.7 (c 1.0, MeOH); ¹H NMR (300 MHz, D₂O) δ 3.76 (dd, 1H, J=3.0, 9.5 Hz), 3.81, 3.84 (two 3H-s, 2 OMe), 3.83 (dd, 1H, J=9.2, 9.5 Hz), 3.99 (d, 1H, J=9.2 Hz), 4.34 (dd, 1H, J=1.2, 3.0 Hz), 4.49 (d, 1H, J=1.2 Hz); MS (FD) m/z 252 (M₊+2), 251 (M⁺+1), 250 (M⁺). Anal. calcd for C₉H₁₄O₈ (250.2): C, 43.20; H,5.64. Found: C, 42.98; H, 5.56.

Dimethyl 2,6-anhydro-3,4-O-isopropylidene-D-3.4.3. glycero-D-galacto-heptarate 27. To a suspension of 26 (2.0 g, 8 mmol) in dry acetone (50 mL) containing 0.15 mL of conc. sulfuric acid was added. The reaction mixture was stirred for 4 h at 20°C followed by stirring with Amberlite IR-400 (OH⁻-form), filtration washing with water and evaporation of the combined filtrates to dryness. The residue was applied to a silica gel column $(3 \times 30 \text{ cm})$ and eluted with toluene–EtOAc (1:1). Evaporation of the fractions with $R_{\rm f} = 0.72$ (TLC in EtOAc– EtOH-water, 30:3:1) left a syrup that crystallized from EtOH-*n*-hexane: 1.80 g (75%) of **27** as colorless needles; mp 139°C; $[\alpha]_{D}^{20} = -31.1$ (*c* 1.0, Me₂CO); ¹H NMR (300 MHz, [D₄]MeOH) δ 1.32, 1.45 (2 s, 3H each, CMe2), 3.76, 3.77 (2 s, 3H each, 2 OMe), 3.98 (m, 2H, H-5, H-6), 4.23 (dd, 1H, J=6.0, 6.2 Hz), 4.55 (dd, 1H, J = 6.0, 6.2 Hz), 4.67 (d, 1H, J = 2.4 Hz); ¹³C NMR (75.5 MHz, $[D_4]$ MeOH) δ 26.6, 27.9 (CMe₂), 52.9 (2 OMe), 70.6, 79.4 (C-5, C-6), 75.6 (C-2, C-3), 111.9 (CMe_2) , 170.2, 171.5 (2 CO); MS (FD) m/z 292 (M⁺+ 2), 291 (M⁺+1), 290 (M⁺). Anal. calcd for $C_{12}H_{18}O_8$ (290.3): C, 49.65; H, 6.25. Found: C, 49.74; H, 6.28.

3983

3.4.4. Dimethyl 2,6-anhydro-3,4-O-isopropylidene-5-Omesyl-D-glycero-D-galacto-heptarate 28. To a cooled (0°C) solution of 27 (600 mg, 2 mmol) in pyridine (10 mL) was added methanesulfonyl chloride (0.4 mL, 5.2 mmol), and the mixture was stirred for 3 h at 0°C. Solid NaHCO₃ was then added and stirring was continued for another 30 min at 0°C. The reaction mixture was diluted with satd aqueous NaHCO₃, extracted with EtOAc, and dried over Na₂SO₄. Removal of the solvent in vacuo gave a crystalline mass, which was recrystallized from *i*-PrOH to afford 645 mg (85%) of 28 as colorless needles; mp 163°C; $[\alpha]_{D}^{20} = -17.9$ (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 1.37, 1.55 (2 s, 3H each, CMe₂), 3.14 (s, 3H, MsMe), 3.83, 3.84 (2 s, 3H each, 2 OMe), 4.17 (d, 1H, J=7.3 Hz), 4.45 (dd, 1H, J = 6.0, 6.2 Hz), 4.48 (d, 1H, J = 2.2 Hz), 4.63 (dd, 1H, J = 6.0, 6.2 Hz), 4.99 (dd, 1H, J = 6.2, 7.3 Hz); MS (FD) m/z 369 (M⁺+1), 368 (M⁺). Anal. calcd for C₁₃H₂₀O₁₀S (368.4): C, 42.39; H,5.47. Found: C, 42.03; H,5.42.

3.4.5. Dimethyl 2,6-anhydro-4,5-*O*-isopropylidene-3deoxy-L-*lyxo*-hept-2-enarate 29. To a solution of 324 mg (0.9 mmol) 28 in 30 mL of lutidine was added 3 g of basic Al₂O₃ (Fluka type 5016 A basic) and the mixture was warmed to 40°C for 30 min followed by evaporation in vacuo to dryness. The residue was applied to a silica gel column (1.5×30 cm) and eluted with CH₂Cl₂-Me₂CO (110:1). Removal of the solvent from the eluates with $R_{\rm f}$ =0.53 (TLC in vacuo yielded 165 mg (69%) as 29 as a syrup; $[\alpha]_{\rm D}^{20}$ =+20.6 (*c* 0.9, CHCl₃); ¹H and ¹³C NMR data were identical to those of its D-*lyxo* enantiomer 41. Anal. calcd for C₁₂H₁₆O₇ (272.3): C, 52.94; H, 5.92. Found: C, 51.44; H, 5.86.

3.4.6. Dimethyl **2,6-anhydro-3-deoxy-L**-*lyxo*-hept-2enarate (*ent*-dimethyl daucate) **30**. Exposure of **29** to 6 mL of CHCl₃–TFA–H₂O (50:10:1) for 1 h at 30°C and evaporation to dryness in vacuo gave a semi-crystalline residue, which was purified by elution from a silica gel column (2×20 cm) with CH₂Cl₂–Me₂CO (2:1) Removal of the solvent and crystallization from EtOAc–*n*-hexane afforded 95 mg (73%) of **30**; mp 126°C; $[\alpha]_D^{20} = +94.1$ (*c* 0.3, acetone); ¹H and ¹³C NMR data duplicated those of the enantiomeric (carrot-derived) (–)-dimethyl daucate 42 (vide infra). Anal. calcd for C₉H₁₂O₇ (232.2): C, 46.56; H, 5.21. Found: C, 45.92; H, 5.15.

3.4.7. Dimethyl 4,5-di-O-acetyl-2,6-anhydro-3-deoxy-*Llyxo***-hept-2-enarate 31. Stirring of 30 (30 mg) in 4 mL of pyridine–acetic anhydride (4:1) for 5 h at rt, followed by work-up as described for the D-***lyxo* **product 43 (cf. below) afforded 31 (27 mg, 88%) as a syrup of [\alpha]_D^{20} = +53.6 (***c* **1.0, CHCl₃). ¹H NMR data were identical to those of 44.**

3.5. D-Galactose→L-arabino analogs of daucic acid

3.5.1. Methyl 2,6-anhydro-D-glycero-L-manno-heptonate [methyl C-(β -D-galactopyranosyl)formate] 33. To a solution of 14.0 g (39.2 mmol) of C-(tetra-O-acetyl- β -Dgalactosyl)cyanide 32^{12b} in dry MeOH (30 mL) was added 17 mL of 0.1N NaOMe–MeOH and the mixture was stirred at ambient temperature for 2 h, followed by removal of the solvent in vacuo. The residue was dissolved in 12.5% aqueous NaOH (50 mL) and the solution was refluxed for 4 h, subsequently diluted with water (150 mL) and neutralized by stirring with Amberlite IR-120 (H⁺-form, 120 mL). Filtration, several washings with water and evaporation of the combined filtrates to dryness in vacuo gave the free heptonic acid (33, H instead of Me) as a crystalline mass, which was directly subjected to esterification by stirring with HClsatd MeOH (50 mL) at rt overnight. The mixture was then taken to dryness in vacuo providing 7.4 g (85%) of 33 as a syrup, sufficiently pure (¹H NMR) for the ensuing oxidation (\rightarrow 34).

Syrupy **33**, of $R_f = 0.40$ (TLC in EtOAc–*i*-PrOH–water 5:2:1), can be crystallized by trituration with EtOAc:²⁷ mp 121–123°C, $[\alpha]_D^{20} = -32.0$ (*c* 0.2, H₂O).

3.5.2. Dimethyl 2,6-anhydro-D-glycero-L-manno-heptarate 34. To a solution of syrupy 33 as obtained above (7.2 g, 32 mmol) in satd aqueous NaHCO₃ (50 mL) containing KBr (300 mg) an nBu_4NCl (350 mg) was added a solution of TEMPO in CH₂Cl₂ (150 mg in 60 mL) followed, after cooling to 0°C, by the dropwise addition of a mixture of aqueous 13% NaOCl (150 mL), satd aqueous NaCl (50 mL) and satd aqueous NaHCO₃ (25 mL) over the period of 1 h. Stirring was continued for 12 h at 0°C and the mixture was allowed to warm to ambient temperature. Separation of the two layers, washing of the organic phase with water (3×25) mL), acidification of the combined aqueous layer and extracts with 2N HCl, and concentration in vacuo left a syrup which was dissolved in water (80 mL) and passed through an Amberlite IR-120 column (H+-form, 140 mL). Acidic eluates were collected, treated with active carbon, and then taken to dryness in vacuo. The resulting syrup was exposed to 8% HCl-MeOH (40 mL) for 2 h at ambient temperature. Removal of the solvent, purification of the residue by elution from a silica gel column with CHCl₃-MeOH (6:1) and evaporation of the combined eluates with $R_{\rm f} = 0.40$ in CHCl₃-MeOH (4:1) to dryness in vacuo gave a syrup which crystallized on trituration with MeOH–CHCl₃: 6.65 g (70%) of **34** as colorless needles; mp 163–164°C; $[\alpha]_{D}^{20} = +23.0$ (*c* 1.0, MeOH). ¹H NMR (300 MHz, D₂O) δ 3.76 (dd, J=3.0 Hz, 9.6 Hz, 1H), 3.81, 3.84 (2 s, 3H each), 3.83 (dd, J=9.2, 9.6 Hz, 1H), 4.00 (d, J=9.2 Hz, 1H), 4.34(dd, J=1.3, 3.0 Hz, 1H), 4.50 (d, J=1.3 Hz, 1H); ¹³C NMR (75.5 MHz, D₂O) δ 55.9, 56.0,70.6, 72.5, 75.7, 80.3, 80.8, 173.2, 173.7; MS (FD) m/z 251 (M⁺+1), 250 (M⁺). Anal. calcd for $C_9H_{14}O_8$ (250.2): C, 43.20; H,5.64. Found C, 43.24; H,5.60.

3.5.3. Dimethyl 2,6-anhydro-4,5-*O*-isopropylidene-Dglycero-L-manno-heptarate 35. A suspension of dimethyl heptarate 34 (3.40 g, 13.6 mmol) in dry acetone (70 mL) containing 0.2 mL of conc. H_2SO_4 was stirred for 4 h at ambient temperature, and subsequently neutralized with basic ion-exchange resin (Amberlite IR-400, OH⁻). Evaporation to dryness gave a syrup which was applied to a silica gel column (4.5×30 cm) and eluted with toluene–EtOAc (1:1). Evaporation of the fractions with $R_f = 0.72$ (TLC in EtOAc–EtOH–water 30:3:1) and crystallization of the residue from EtOH–*n*-hexane gave 3.25 g (83%) of **35** as colorless needles; mp 139°C; $[\alpha]_{D}^{20} = +38.7$ (*c* 0.7, CHCl₃). (300 MHz, CDCl₃) δ 1.31, 1.47 (2 s, 3H each), 3.49 (bs, 1H), 3.79, 3.80 (2 s, 3H each), 3.88 (d, J=8.2 Hz, 1H), 4.04 (m, 1H), 4.20 (dd, J=5.8, 5.8 Hz, 1H), 4.51 (m, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 26.1, 27.4 (*CMe*₂), 52.7, 52.9 (2 OMe), 69.7, 73.4, 74.8, 76.7, 77.4, 110.9, 167.6, 169.9 (2 COOMe); MS (FD) *m*/*z* 291 (M⁺+1), 290 (M⁺), 275 (M⁺–CH₃). Anal. calcd for C₁₂H₁₈O₈ (290.3): C, 49.65; H, 6.25. Found C, 49.71; H, 6.22.

3.5.4. Dimethyl 2,6-anhydro-3-O-benzoyl-4,5-O-isopropylidene-D-glycero-L-manno-heptarate 36. A solution of 35 (490 mg, 1.7 mmol) in pyridine (10 mL) containing 400 µL (3.5 mmol) of benzoyl chloride was stirred at rt overnight and then poured onto an approximate 1:1 mixture of ice and satd aqueous NaHCO₃. The solid material was filtered off, washed with water, and recrystallized from EtOH to afford 585 mg (90%) of 36; mp $160-162^{\circ}C; [\alpha]_{D}^{20} = +6.3 (c \ 0.8, CHCl_{3}); {}^{1}H \ NMR (300)$ MHz, CDCl₃) δ 1.36, 1.56 (two 3H-s, CMe₂), 3.76, 3.87 (two 3H-s, 2 OMe), 4.36 (d, 1H, J = 5.4 Hz), 4.57 (dd, 1H, J = 5.4, 6.4 Hz), 4.61 (d, 1H, J = 2.3 Hz), 4.68 (dd, 1H, J=2.3, 6.4 Hz), 5.72 (t, 1H, J=5.4 Hz), 7.55, 8.05 (2 m, 3H and 2H, C₆H₅); MS (FD) m/z 395 (M⁺+1), 394 (M⁺). Anal. calcd for $C_{19}H_{22}O_9$ (394.4): C, 57.87; H, 5.62. Found: C, 57.80; H, 5.55.

2,6-anhydro-3,4-di-O-benzoyl-5-O-3.5.5. Dimethyl mesyl-D-glycero-L-manno-heptarate 38. A solution of 36 (320 mg, 0.8 mmol) in 6 mL of CHCl₃-TFA-water (50:10:1) was stirred at ambient temperature for 30 min, then concentrated to a syrup and purified on a silica gel column by elution with acetone– $CHCl_3$ (2:1). Eluates with $R_f = 0.26$ (TLC in acetone–CHCl₃, 2:1) were concentrated to a syrup, which was dissolved in pyridine (3 mL), cooled to -35 to -40° C, followed by addition of a mixture of benzoyl chloride (0.12 mL, 1 mmol) and pyridine (1 mL). Stirring at -40°C was continued for 2 h whereafter methanesulfonyl chloride (0.15 mL, 2 mmol) was then added, and the mixture was allowed to warm to rt (3 h). Subsequent dilution with EtOAc (20 mL), washing with satd aqueous NaHCO₃ and water, drying (Na_2SO_4) , and concentration in vacuo gave a syrup which was purified on a silica gel column (CHCl₃-EtOAc, 5:1). Eluates with $R_f = 0.60$ (TLC in $CHCl_3$ -acetone, 5:1) were concentrated to give a crystalline mass consisting of a 5:1 mixture (¹H NMR) of 38 and its 4-O-mesylated isomer. Fractional crystallization from EtOH afforded 230 mg (53%) of 38; mp 189–190°C; $[\alpha]_D^{20} = +89.0$ (*c* 0.6, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 3.05 (s, 3H, SO₂Me), 3.72, 3.86 (two 3H s, 2 OMe), 4.30 (d, 1H, J = 10.0 Hz), 4.55 (m, 1H), 5.55 (dd, 1H, J=3.1, 10.2 Hz), 5.73 (dd, 1H, J=0.7, 3.1)Hz), 5.91 (dd, 1H, J = 10.0, 10.2 Hz), 7.50, 8.00 (2 m, 6H and 4H, 2 C₆H₅); MS (FD) m/z 537 (M⁺+1), 536 (M⁺). Anal. calcd for $C_{24}H_{24}O_{12}S$ (536.5): C, 53.73; H, 4.51. Found: C, 53.63; H, 4.45.

Aside **38**, 40 mg (10%) of dimethyl 2,6-anhydro-3,5-di-*O*-benzoyl-4-*O*-mesyl-D-*glycero*-L-*manno*-heptarate was obtained from the fractional crystallization; mp 226– 228°C; $[\alpha]_D^{20} = +104.8$ (*c* 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 3.05 (s, 3H, Ms*Me*), 3.72, 3.73 (two 3H-s, 2 OMe), 4.26 (d, 1H, *J*=9.9 Hz), 4.52 (m, 1H, 6-H), 5.29 (dd, 1H, *J*=3.5, 9.9 Hz), 5.76 (t, 1H, *J*=9.9 Hz), 6.22 (dd, 1H, *J*=1.3, 3.5 Hz), 7.35 and 8.10 (2 m, 6 and 4H, 2 C₆H₅); MS (FD) *m*/*z* 537 (M⁺+1), 536 (M⁺).

3.5.6. Dimethyl **2,6-anhydro-5**-*O*-mesyl-D-glycero-Lmanno-heptarate **39**. A suspension of **38** (180 mg, 0.33 mmol) in 16% HCl–MeOH (10 mL) was refluxed for 2 days. The clear solution was concentrated to a syrup which was purified on a silica gel column (CHCl₃-acetone, 1:1). Product-containing eluates (R_f =0.25, TLC in CHCl₃-acetone, 1:1) were concentrated to afford 95 mg (86%) of **39** as a crystalline mass; mp 144–145°C; MS (FD) m/z 329 (M⁺+1), 328 (M⁺).

3.5.7. Dimethyl 2,6-anhydro-3-deoxy-L-arabino-hept-2enarate 40. To a solution of 39 in MeOH (80 mg in 2 mL) was added 1.7 mL of 0.1N NaOMe in MeOH and the mixture was stirred at rt for 15 min. Removal of the solvent in vacuo and purification by elution from a silica gel column with CHCl₃-acetone (1:1) afforded 52 mg (90%) of 40 as a syrup; $[\alpha]_D^{20} = +30.0$ (*c* 1.0, acetone); ¹H NMR (300 MHz, CDCl₃) δ 3.80, 3.85 (two 3H s, 2 OMe), 4.19 (m, 1H), 4.25 (m, 1H), 4.73 (dd, 1H, J=0.9, 5.4 Hz), 6.13 (dd, 0.9, 4.3 Hz), MS (FD) m/z 233 (M⁺+1), 232 (M⁺). Anal. calcd for C₉H₁₂O₇ (232.2): C, 46.56; H, 5.21. Found: C, 46.50; H, 5.14.

3.5.8. Dimethyl 4,5-di-O-acetyl-2,6-anhydro-3-deoxy-Larabino-hept-2-enarate 41. Exposure of 40 (23 mg, 0.1 mmol) to a mixture of Ac₂O (0.3 mL) and pyridine (1.5 mL) for 12 h at rt, evaporation to dryness in vacuo and purification of the residual syrup by elution from a short silica gel column with n-hexane-acetone (2:1) gave 27 mg (90%) of 41 as a syrup, which gradually crystallized by standing at 5°C; mp 104–106°C; $[\alpha]_D^{20} =$ +72.0 (c 0.6, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 2.01, 2.11 (two 3H-s, 2 Ac), 3.79, 3.88 (two 3H s, 2 OMe), 5.06 (dd, 1H, J=2.1, 2.2 Hz), 5.14 (ddd, 1H, J=1.6, 2.1, 5.4 Hz), 5.44 (m, 1H), 6.18 (dd, 1H, J=1.5, 5.4 Hz); ¹H NMR (C_6H_6) δ 1.44, 1.46 (two 3H s, 2 Ac), 3.20, 3.25 (two 3H s, 2 OMe), 4.89 (dd, 1H, J = 1.6, 2.6 Hz), 5.22 (ddd, 1H, J=1.6, 2.3, 5.3 Hz), 5.58 (m, 1H), 6.37 (dd, J=1.5, 5.3 Hz); ¹³C NMR (75.5 MHz, CDCl₃) δ 20.8 (2 Ac), 52.6, 52.9 (2 OMe), 62.5 (C-4), 66.9 (C-5), 73.2 (C-6), 104.6 (C-3), 145.2 (C-2), 161.9, 166.4, 169.9, 169.4 (4 CO); MS (FD) m/z 316 (M⁺).

3.6. D-Galactose \rightarrow (-)-dimethyl daucate and derivatives 42–45

3.6.1. Dimethyl 2,6-anhydro-4,5-*O*-isopropylidene-3-*O*-mesyl-D-glycero-L-manno-heptarate 37. To a cooled solution of 35 (1.0 g, 3.4 mmol) in pyridine (12 mL), methanesulfonyl chloride (0.7 mL, 9 mmol) was added. The mixture was stirred for 3 h at 0°C. After stirring with solid NaHCO₃ for 30 min at 0°C, the reaction

mixture was diluted with satd aqueous NaHCO₃, then extracted with EtOAc, and dried over Na₂SO₄. The solution was concentrated to give a crystalline mass, which was recrystallized from *i*-PrOH to afford 1.1 g (85%) of 37 as colorless needles; mp 163°C; $[\alpha]_{\rm D}^{20} =$ +17.2 (c 1.1, CHCl₃); $R_{\rm f}$ =0.34 (toluene-EtOAc, 1:1); ¹H NMR (300 MHz, CDCl₃) δ 1.37, 1.56 (2 s, 3H each, CMe₂), 3.15 (s, 3H, SO₂Me), 3.84, 3.85 (two 3H-s, 2 OMe), 4.17 (d, J=7.4 Hz, 1H), 4.46 (dd, J=6.0, 6.3 Hz, 1H), 4.49 (d, J=2.3 Hz, 1H), 4.64 (dd, J=2.3, 6.0 Hz, 1H), 4.98 (dd, J=6.0, 6.3 Hz, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 26.1, 27.1 (CMe₂), 39.0 (SO₂Me), 52.9, 53.1 (2 OMe), 73.7, 74.6, 75.3, 75.7, 77.2, 111.8 (CMe₂), 167.0, 167.1 (2 CO); MS (FD) m/z 369 (M⁺+1), 368 (M^+) , 353 (M^+-Me) . Anal. calcd for $C_{13}H_{20}O_{10}S$ (368.4): C, 42.39; H, 5.47. Found: C, 42.48; H, 5.37.

2,6-anhydro-4,5-O-isopropylidene-3-3.6.2. Dimethyl deoxy-D-lyxo-hept-2-enarate (dimethyl 4,5-O-isopropylidene-daucate) 42. To a solution of mesylate 37 (1.0 g, 2.7 mmol) in 100 mL of lutidine was added 10 g of basic Al₂O₃ (Fluka type 5016) and the suspension was stirred for 30 min at 40°C and subsequently evaporated to dryness. The residue was applied to a silica gel column (3×30 cm) and eluted with CH₂Cl₂-acetone (110:1). Removal of the solvent from the eluates with $R_{\rm f} = 0.51$ (TLC in toluene–EtOAc 1:1) in vacuo yielded 565 mg (77% of **42** as a syrup; $[\alpha]_{D}^{20} = -19.1$ (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 1.37, 1.41 (2 s, 3H each, CMe₂), 3.83, 3.90 (2 s, 3H each, 2 OMe), 4.67, (1H, d, J=1.5 Hz, H-6), 4.69 (1H, ddd, J=1.3, 1.5, 5.9)Hz), 4.89 (dd, 1H, J=3.3, 5.9 Hz), 6.08 (dd, 1H, J = 1.3, 3.3 Hz). Anal. calcd for C₁₂H₁₆O₇ (272.3): C, 52.94; H, 5.92. Found: C, 53.10; H, 5.87.

3.6.3. (-)-Dimethyl daucate (dimethyl 2,6-anhydro-3deoxy-D-lyxo-hept-2-enarate) 43. Exposure of 42 (475 mg, 1.7 mmol) to a stirred mixture of 20 mL of CHCl₃-TFA-water (50:10:1) gave after 1 h at rt and evaporation to dryness a semi-crystalline residue, which was purified by elution from a silica gel column (2×20 cm) with CH_2Cl_2 -acetone (2:1). Concentration of the eluate and crystallization from EtOAc-n-hexane afforded 335 mg (83%) of 43 as a colorless powder; mp 128–129°C; $[\alpha]_{\rm D}^{20} = -97.3$ (c 0.6, acetone); $R_{\rm f} = 0.38$ (TLC in CHCl₃-acetone 1:1). ¹H NMR (300 MHz, CDCl₃) δ 3.84, 3.86 (2 s, 3H each, 2 OMe), 4.30 (1H, ddd, J=1.2, 2.4, 4.4 Hz, H-5), 4.50 (1H, ddd, J=0.7, 3.3, 4.4 Hz, H-4), 4.67 (1H, dd, J=0.7, 2.4 Hz, H-6), 6.05 (1H, dd, J=1.2, 3.3 Hz, H 3; ¹³C NMR (75.5 MHz, CDCl₃) δ 52.8, 53.1 (2 OMe), 63.8 (C-4), 66.0 (C-5), 75.6 (C-6), 111.5 (C-3), 143.3 (C-2), 162.2, 168.8 (2CO); MS (FD) m/z 234 (4%, M⁺+2), 233 (39%). M^++1), 232 (100%, M^+); UV (EtOH) λ_{max} 242 nm (ε 5470). Anal. calcd for C₉H₁₂O₇ (232.3): C, 46.56; H,5.21. Found: C, 46.49; H, 5.19.

3.6.4. Dimethyl 4,5-di-*O*-acetyl-2,6-anhydro-3-deoxy-D*lyxo*-hept-2-enarate 44. Stirring of dimethyl daucate 43 (40 mg, 0.17 mmol) with Ac₂O (1 mL) and pyridine (4 mL) at 20°C for 5 h, evaporation to dryness in vacuo, and elution of the syrupy residue from a silica gel column (1.5×20 cm) with CH₂Cl₂-acetone (60:1) gave 50 mg (91%) of **44** as a colorless syrup, uniform by TLC (R_f =0.60 in toluene–EtOAc, 1:1); [α]_D^{2D}=-54.1 (*c* 0.6, CDCl₃); ¹H NMR (300 MHz, CHCl₃) δ 2.05, 2.10 (2 s, 3H each, 2 Ac*Me*), 3.82, 3.86 (2 s, 3H each, 2 OMe), 4.84 (1H, d, *J*=1.4 Hz, H-6), 5.73 (2H, m, H-4, H-5), 5.98 (1H, dd, *J*=1.7, 2.3 Hz, H-3). ¹H NMR (300 MHz, C₆D₆) δ 1.65, 1.66 (2 s, 3H each, 2 AcMe), 3.31 (s, 6H, 2 OMe), 4.27 (1H, d, *J*=1.7 Hz, H-6), 5.56 (1H, ddd, *J*=1.2, 2.3, 4.5 Hz, H-4), 5.81 (1H, ddd, *J*=1.2, 1.7, 1.7 Hz, H-5), 6.00 (1H, dd, *J*=1.7, 2.3 Hz, H-3); ¹³C NMR (75.5 MHz, CDCl₃) δ 20.5, 20.6 (2 AcMe), 52.8, 53.0 (2 COOMe), 63.5, 64.2 (C-4, C-5), 74.5 (C-6), 107.5 (C-3), 144.6 (C-2), 161.4, 166.4, 169.8, 169.9 (4 CO); MS (FD) *m*/*z* 316 (M⁺). Anal. calcd for C₁₃H₁₆O₉ (316.3): C, 49.37; H, 5.10. Found: C, 49.31; H, 5.03.

3.6.5. Dimethyl 2,6-anhydro-4,5-di-O-benzoyl-3-deoxy-D-lyxo-hept-2-enarate 45. Dimethyl daucate 43 (21 mg, 0.09 mmol) was benzoylated with benzoyl chloride (0.1 mL, 0.86 mmol) and 3 mL of pyridine. The reaction mixture was stirred for 4 h at ambient temperature and then diluted with EtOAc. The solution was washed with satd aqueous NaHCO₃ (3×10 mL) and H₂O (10 mL), dried (Na_2SO_4) , and concentrated in vacuo to a residue, which was purified by elution from a silica gel column $(1.5 \times 20 \text{ cm})$ with CH₂Cl₂-acetone (60:1). Removal of the solvent from the eluates in vacuo and trituration of the syrup with little MeOH resulted in crystallization: 30 mg (76%) of **45**; mp 112–113°C [lit.³ mp 112°C for the carrot-derived product]; $[\alpha]_{D}^{20} = -88.9$ (c 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 3.76, 3.90 (2 s, 3H each, 2 OMe), 5.06 (1H dd, J=1.4, 2.0 Hz, H-6), 6.07 (2H, m, H-4, H-5), 6.21 (1H, dd, J=1.6, 3.0 Hz, H-3), 7.26–8.14 (10 H, m, 2 C_6H_5); ¹H NMR (300 MHz, C_6H_6) δ 3.17, 3.32 (2 s, 3H each, 2 OMe), 4.31 (1H, dd, J=1.2, 1.7 Hz, H-6), 5.83 (1H, ddd, J=1.2, 1.7, 4.3 Hz, H-4), 6.11 (1H, ddd, J=1.5, 1.7, 4.3 Hz, H-5), 6.17 (1H, dd, J=1.5, 2.8 Hz, H-3), 6.8-7.1, 7.9 -8.1 (2 m, 10 H, 2 C₆H₅); ¹³C NMR (75.5 MHz, CDCl₃) δ 53.0, 53.1 (2 OMe), 64.6, 64.9 (C-4, C-5), 74.3 (C-6), 107.5 (C-3), 128.5–133.9 (12 C, 2 C₆H₅), 145.1 (C-2), 161.7, 165.3, 165.6, 166.7 (4 CO); MS (FD) m/z440 (M⁺). Anal. calcd for $C_{23}H_{20}O_9$ (440.4): C, 62.72; H, 4.58. Found: C, 62.66; H, 4.49.

3.6.6. (-)-Daucic acid [2,6-anhydro-3-deoxy-D-lyxo-hept-2-enaric acid; IUPAC: (2S,3R,4R)-3,4-dihydro-3,4-dihydroxy-2H-pyran-2,6-dicarboxylic acid] 46. To an aqueous solution of dimethyl daucate 43 (60 mg, 0.3 mmol, in 4 mL) was added TFA (1 mL) and the mixture was stirred for 3 days at 30°C. Evaporation of the solution to dryness in vacuo afforded a syrup, which gave a crystalline mass on trituration with acetone–*n*-hexane: 42 mg (79%) of **46**; mp 87–88°C; $[\alpha]_{\rm D}^{20} =$ -85.0 (c 1.2, MeOH); $R_{\rm f}=0.25$ (TLC in EtOAc-HOAc-water, 3:2:1); [lit.³ mp 85–87°C]. ¹H NMR (300 MHz, $[D_4]$ MeOH) δ 4.28 (dt, 1H, J=1.6, 1.6, 4.5 Hz, H-5), 4.60 (ddd, 1H, J=0.9, 2.0, 4.5 Hz, H-4), 4.74 (dd, 1H, J=0.9, 1.6 Hz), 5.93 (dd, 1H, J=1.6, 2.0 Hz); ¹³C NMR (75.5 MHz, $[D_4]$ MeOH) δ 67.4 (C-4), 68.2 (C-5), 79.6 (C-6), 115.4 (C-3), 145.7 (C-2), 166.8, 173.4 (2 CO). Anal. calcd for C₇H₈O₇ (204.1): C, 41.14; H, 3.95. Found: C, 41.12; H, 3.87.

3.6.7. (+)-Dimethyl osbeckate [methyl 2S-hydroxy-2-(5carbomethoxy-2-furyl)acetate 5. Refluxing 43 (50 mg, 0.21 mmol) in methanol satd. with HCl (5 mL) for 4 h was followed by evaporation to dryness in vacuo and several coevaporations from MeOH. Purification of the residue by elution from a silica gel column (1×15 cm) with CH₂Cl₂-MeOH (20:1), removal of the solvents from the eluates and trituration of the residues with acetone–*n*-hexane yielded 28 mg (62%) of 5 as colorless crystals; mp 134°C; $[\alpha]_D^{20} = +78.9$ (*c* 0.5, acetone) [lit.¹³ for the Osbeckia chinensis-derived product: mp 134-135°C; $[\alpha]_D^{20} = +79.3$ (c 0.2, acetone)]; ¹H NMR (300 MHz, CDCl₃) δ 3.56 (bs, 1H, OH), 3.82, 3.87 (two 3H-s, 2 OMe), 5.25 (s, 1H), 6.48, 7.13 (2 d, J=3.5 Hz); MS (FD) m/z 215 (M+1)⁺, 214 (M⁺). Anal. calcd for C₉H₁₀O₆ (214.2): C, 50.47; H, 4.71. Found: C, 50.50; H, 4.74.

3.6.8. (+)-Osbeckic acid [2*S*-hydroxy-2-(5-carboxy-2furyl)acetic acid] 47. A solution of dimethyl daucate 43 (50 mg, 0.2 mmol) in water (5 mL) was stirred with Amberlite IR-120 (H⁺-form, 1 g) and the mixture was refluxed for 5 h. Filtration and evaporation of the combined filtrate and washings to dryness in vacuo gave 35 mg (85%) of 47 as a colorless syrup; R_f =0.59 (TLC in EtOAc-HOAc-water, 3:2:1); $[\alpha]_D^{20}$ =+79.6 (*c* 0.8, MeOH) [lit.¹³ oil, $[\alpha]_D^{20}$ =+83.5 (*c* 0.2, MeOH)]; ¹H NMR (300 MHz, D₂O) δ 5.47 (s, 1H), 6.70 (d, *J*=3.5 Hz), 7.31 (d, 1H, *J*=3.5 Hz); ¹³C NMR (75.5 MHz, D₂O) δ 69.4 (C-2), 114.4, 122.9 (C-3', C-4'), 147.5, 158.1, 164.8, 176.2 (C-2', C-5', 2 CO).

Acknowledgements

We are pleased to acknowledge the support of this investigation by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Alexander von Humboldt Foundation (fellowship to K.N.)

References

- 1. Peters, S.; Lichtenthaler, F. W.; Lindner, H. J. Tetrahedron: Asymmetry 2003, 14, 2475–2479.
- Keys, A. J.; Leaver, C. J.; Barton, D. H. R.; Brown, B. D.; Widdowson, D. A. *Nature* 1971, 232, 423–424.
- Barton, D. H. R.; Brown, B. D.; Ridley, D. D.; Widdowson, D. A.; Keys, A. J.; Leaver, C. J. J. Chem. Soc., Perkin Trans. 1 1975, 2069–2076.
- 4. (a) Kiss, J.; Arnold, W. *Helv. Chim. Acta* **1975**, *58*, 297–302; (b) A scrutinous evaluation of the ¹H NMR data on 4,5-unsaturated hexopyranuronates reported therein disclosed serious inconsistencies: the formulae for educts III–V and VII–XI are identical, yet lead to different products, i.e. a β -anomer VI and an α -anomer X; moreover the coupling constants for the β -(VI) and α -compound (X) seem to be interchanged, because only the latter can adopt a half-chair conformation with a H²-C-

C-H³ torsional angle of ~130°, and hence, a $J_{2,3}$ of 7.5 Hz. By consequence, the utility of these data for comparative purposes is futile.

- (a) Miyoshi, E.; Shizuri, Y.; Yamamura, S. *Chem. Lett.* 1987, 511–514; (b) Ueda, M.; Shigemori, H.; Sata, N.; Yamamura, S. *Phytochemistry* 2000, 53, 39–44.
- 6. For a preliminary report of part of this work, see: Lichtenthaler, F. W.; Nakamura, K.; Klotz, J. Angew. Chem., Int. Ed. 2003, 43, in press.
- (a) Jeanloz, R. W.; Stoffyn, P. J. Methods Carbohydr. Chem. 1962, 1, 224–225; (b) Maurer, K.; Müller, A. Ber. Dtsch. Chem. Ges. 1930, 63, 2069–2073; (c) When refraining from purification of the two intermediates, the yield over the three steps amounts to 75%.
- Chmielewski, M.; BeMiller, J. N.; Ceretti, D. P. J. Org. Chem. 1981, 46, 3903–3908.
- (a) Fischer, E.; Oetker, R. Ber. Dtsch. Chem. Ges. 1913, 46, 4029–4040; (b) Irani, R. K.; Bose, J. L. Indian J. Chem. 1975, 13, 529.
- Kini, G. D.; Petrie, C. R.; Hennen, W. J.; Dalley, N. K.; Wilson, B. E.; Robins, R. K. *Carbohydr. Res.* **1987**, *159*, 81–94.
- (a) Davis, N. J.; Flitsch, S. L. *Tetrahedron Lett.* **1993**, *34*, 1181–1184;
 (b) DeNooy, A. E. J.; Besemer, A. C.; van Bekkum, H. *Recl. Trav. Chim. Pays-Bas* **1994**, *113*, 165–166; *Tetrahedron* **1995**, *51*, 8023–8032;
 (c) Györgydeák, Z.; Thiem, J. *Carbohydr. Res.* **1995**, *268*, 85–92.
- (a) Erwig, E.; Koenigs, W. Ber. Dtsch. Chem. Ges. 1889, 22, 2207–2215; (b) De las Heras, F. G.; Fernández-Resa, P. J. Chem. Soc., Perkin Trans. 1 1982, 903–907.
- Su, J.-D.; Osawa, T.; Kawashiki, S.; Namiki, M. Agric. Biol. Chem. 1987, 51, 2449–3450.
- 14. Bohm, B. A. Arch. Biochem. Biophys. 1966, 115, 181-186.
- 15. Malcolm, M. J.; Gear, J. R. Can. J. Biochem. 1971, 49, 412-416.
- Shen, Z.-W.; Fisinger, U.; Poulev, A.; Eisenreich, W.; Werner, I.; Pleiner, E.; Bacher, A.; Zenk, M. H. *Phyto-chemistry* 2001, *57*, 33–42.
- 17. Unger, F. M. Adv. Carbohydr. Chem. Biochem. 1981, 38, 378–388.
- Bednarski, M. D.; Crans, D. C.; Dilosimo, R.; Simon, E. S.; Stein, P.-D.; Whitesides, G. M.; Schneider, M. J. *Tetrahedron Lett.* 1988, 29, 427–430.
- Dotson, G. A.; Nanjappan, P.; Reily, M. D.; Woodard, R. W. *Biochemistry* 1993, 32, 12392–12397.
- 20. Haslam, E. Shikimic Acid: Metabolism and Metabolites; Wiley: Chichester, 1993.
- (a) Sheflyan, G. Y.; Howe, D. L.; Wilson, T. L.; Woodard, R. W. J. Am. Chem. Soc. 1998, 120, 11027– 11032; (b) Duewel, H. S.; Woodard, R. W. J. Biol. Chem. 2000, 275, 22824–22831.
- 22. Dictum attributed to Sir Robert Robinson.
- 23. Béelik, A. Adv. Carbohydr. Chem. 1956, 11, 145-183.
- 24. Lichtenthaler, F. W. Pure Appl. Chem. 1978, 50, 1358ff.
- 25. Fairbairn, J. W.; Williamson, E. M. *Phytochemistry* **1978**, *17*, 2087–2089.
- 26. Ramstadt, E. Pharm. Acta Helv. 1953, 28, 45-57.
- BeMiller, J. N.; Yadav, M. P.; Kalabokis, V. N.; Myers, R. W. Carbohydr. Res. 1990, 200, 111–126.