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Abstract: We have developed a route towards novel 6,7-dihydro-
pyrido[3′,2′:4,5]imidazo[1,2-d][1,4]benzodiazepines, in five straight-
forward steps from commercially available 2-bromobenzaldehydes
and 3-(2-aminoethyl)imidazo[4,5-b]pyridines we have described
previously, with full control over the three elements of diversity.
The route appears to be suitable for systematic exploration of struc-
ture–activity relationships around this medicinally relevant tetracy-
clic scaffold.
Key words: scaffold-oriented synthesis, Buchwald arylation, Be-
champ reduction

Recently, we described a facile transformation of N-(3-ni-
tro-2-pyridyl)imidazolines 1 into 3-(2-aminoethyl)imid-
azo[4,5-b]pyridines 2 under Bechamp reduction
conditions.1 The 2-aminoethyl side chain in 2 (derived
from the imidazoline bismethylene moiety in 1) means
that these compounds may be considered as analogues of
tryptamine.2 We reasoned that the primary amine func-
tionality could be viewed not only as a site for introducing
additional side-chain diversity (e.g., via reductive amina-
tion) but also as providing an opportunity for linking the
imidazo[4,5-b]pyridine moiety to the 2-aryl substituent
(via intramolecular aryl halide amination) and thus form-
ing a tetracyclic scaffold 3 (Scheme 1).
A preliminary review of the literature related to 3 revealed
its novelty. Indeed, only one compound (4) containing this
scaffold in its entirety has been described in the literature
(though no biological data have been reported).3 At the
same time, the two tricyclic moieties contained in 3 ap-
pear as cores for a range of pharmaceuticals (Scheme 2).
The 6,7-dihydroimidazo[1,2-d][1,4]benzodiazepine por-
tion (shown in the box) was featured in Hoffmann-La
Roche’s inverse agonists of GABAA α5 receptors 5,4
Leiden University’s ligands for adenosine receptors 6,5
Acadia Pharmaceuticals’ Mrg receptor agonists for pain
management 76 (also developed at Caltech7), Arqule’s in-
hibitors of Akt1 kinase 8 with antiproliferative activity,8
as well as inhibitors of E. coli RecA ATPase 9 described
by University of North Carolina.9 The latter, along with 7,
appear to stem from a closely related combinatorial li-
brary disclosed by Trega Biosciences.10

Scheme 1  Imidazo[4,5-b]pyridines 2 with a 2-aminoethyl side chain
for building further scaffold complexity toward 3

In contrast, the 7,8,9,10-tetrahydropyrido[3′,2′:4,5]imid-
azo[1,2-a]azepine moiety (shown in the circle) is far less
common and only one report on inverse agonists and an-
tagonists of histamine H3 receptors, exemplified by 10,
was found in the literature.11

Prompted by these observations and having access to
compound 11 that we had prepared earlier1 and which
contained all necessary substitution, we proceeded to test
out formation of the tetrahydroimidazo[1,2-a]azepine
system under Buchwald conditions.12 Although the for-
mation of a seven-membered ring via intramolecular pal-
ladium-catalyzed amination of haloaromatics (to give
benzazepines) is well documented in the literature,13 there
has been only one report of a similar reaction involving
(benzo)imidazo-bridged amino side chains [realized un-
der copper(I)-catalyzed conditions].14 We were therefore
gratified to observe that compound 11 was converted
cleanly, although somewhat sluggishly, into the desired
6,7-dihydropyrido[3′,2′:4,5]imidazo[1,2-d][1,4]benzodi-
azepine (3, Scheme 3) under very similar conditions15 to
those used in the preparation of precursor 11,1 thus alle-
viating a need to screen for alternative ligands and sourc-
es of palladium. Compound 3 turned out to be highly
crystalline (which is consistent with its rigid tetracyclic
structure) and we were able to obtain a single-crystal X-
ray structure for it to confirm the connectivity within the
tetracycle (Figure 1).16
We thus envisaged a series of analogues that could be de-
rived from 2-bromobenzaldehydes 12 and 2-chloro-3-nit-
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ropyridines 14, but we also aimed to introduce a third
point of diversity by performing reductive alkylation of
the 3-(2-aminoethyl)imidazo[4,5-b]pyridines prior to the
Buchwald-type cyclization step. Thus, we sought to
achieve full control over three elements of diversity that
would make our protocol particularly attractive for library
synthesis.
Preparation of 2-imidazolines 13 from the respective
benzaldehydes 12, with subsequent palladium-catalyzed
N-arylation of the former using 14, was achieved in a
straightforward fashion as described previously.17 The re-
ductive rearrangement of the intermediate N-pyridyl im-
idazolines 15 under Bechamp conditions1 turned out to be
high-yielding, tolerating a range of substituents on the

Scheme 2  Pharmaceutical relevance of 6,7-dihydropyrido[3′,2′:4,5]imidazo[1,2-d][1,4]benzodiazepines 3
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Scheme 3  Preparation of compound 3 from precursor 11 described
earlier1
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Figure 1  X-ray crystallographic structure of compound 3
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pyridine and the phenyl rings. 3-(2-Aminoethyl)imid-
azo[4,5-b]pyridines 16 were subjected to a stepwise re-
ductive alkylation procedure18 with a range of aromatic as
well as aliphatic aldehydes. The resultant secondary
amines 17 were found to be at least 85% pure by 1H NMR
spectroscopy and, without further purification, were sub-
jected to the same Buchwald arylation conditions as were
used to prepare 3.15 The secondary amines 17 turned out
to be markedly more reactive compared to their primary

amine counterpart 11, the complete conversion was
achieved within 16 hours, providing the target tetracycles
18a–m (Table 1) in good to excellent yields over two
steps from 16 (Scheme 4).19

In summary, we have developed a concise, streamlined,
and atom-economical20 route toward novel 6,7-dihydro-
pyrido[3′,2′:4,5]imidazo[1,2-d][1,4]benzodiazepines, in
five steps from commercially available 2-bromobenzalde-
hydes, making use of the primary amine functionality of
the 3-(2-aminoethyl)imidazo[4,5-b]pyridines we have de-
scribed previously, with full control over the three ele-
ments of diversity. The route appears to be distinctly
suitable for systematic library generation within this tetra-
cyclic scaffold.
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Yield of 
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Scheme 4  Synthesis of tetracyclic 6,7-dihydropyrido[3′,2′:4,5]imidazo[1,2-d][1,4]benzodiazepines 18a–m with three elements of diversity
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