Synthesis of 4-Anilinoquinazoline-Derivative Dual Kinase Inhibitors Targeting EGFR and VEGFR-2

Keuk Chan Bang,^{†,∥} Tae Hun Song,^{†,‡,∥} Young Jin Park,^{†,‡} Jong Soo Lee,^{†,‡} Seungah Jun,[‡] Seung Hyun Jung,[‡] Young-Jin Chun,^{†,*} and Ha Hyung Kim^{†,*}

[†]College of Pharmacy, Chung-Ang University, Seoul 06974, Korea. *E-mail: yjchun@cau.ac.kr; hahyung@cau.ac.kr [‡]Department of Drug Discovery, Hanmi Research Center, Gyeonggi-do 18469, Korea Received September 27, 2017, Accepted November 17, 2017, Published online December 27, 2017

Keywords: 4-Anilinoquinazoline, Dual inhibitor, Epidermal growth factor receptor, Vascular endothelial growth factor receptor-2

The epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor-2 (VEGFR-2) signaling pathway have been clinically validated in solid tumors.^{1,2} EGFR is highly overexpressed in a variety of cancers and plays a role in enhanced cell proliferation, in escape from apoptosis to ensure cancer cell survival, and finally, in the aggressive growth of invasive tumors.³

VEGFR-2 is the principal receptor in angiogenesis. Inhibition of VEGFR-2 signaling pathway influences tumor growth and metastasis by inhibiting tumor angiogenesis.^{4,5}

Although single-pathway inhibitors have shown potential in cancer therapy, these pathways have shown limited clinical efficacy because cancer has complex pathology.^{6,7} However, it is highly recommended to treat cancer with dual-pathway inhibitors because of the heterogeneous characteristics of cancer. In addition, dual kinase inhibitors could synergistically inhibit tumor growth.⁸

In our study, a series of novel dual-acting compounds were designed and synthesized to inhibit EGFR and VEGFR-2. *In vitro* kinase profiling and cell-based screening together with Structure–Activity Relationship (SAR) studies finally led to the discovery of compound **1**, which was a hybrid structure containing both acryl amide of CI-1033 and 4-bromo-2-fluoroaniline moiety of ZD-6474 (Figure 1).^{9,10}

The general synthetic procedure for the preparation of compound 1 derivatives is summarized in Scheme 1.¹¹ A substituted quinazoline 2 was reacted with a substituted aniline, and subsequent nucleophilic aromatic substitution by *N*-Boc amino alcohol afforded the alkoxy quinazoline 3. After deprotection of *N*-Boc, the carboxylic acid group was coupled with an amine to provide the amide 4. Subsequent reduction of the nitro group on compound 4 and acrylation using acryloyl chloride yielded the target compounds 5–13.

The enzyme inhibitory activities of EGFR and VEGFR-2 are summarized in Table 1. In order to investigate the SAR, the chain length (n) at site C-7 of the quinazoline was

modified to vary the number of carbons (5-7). All of the modified compounds showed good IC₅₀ values for EGFR in the range of 2 to 10 nM; in particular, 7 (n = 1) displayed better VEGFR-2 activity than 5 (n = 3) and 6 (n = 2). Thus, the short chain was superior to the long chains. Next, we evaluated the influence of R₁-substituted analogues, which were derived with various alkyl (7-10) or hetero alkyl (11-13) substituents on EGFR and VEGFR-2, for which the carbon chain was fixed at n = 1. The hetero alkyl analogues (11 and 13) exhibited better inhibitory activities than the alkyl analogues (7-10). Among the analogues, 11¹² showed stronger inhibition targeting EGFR and VEGFR-2 than the other derivatives (Table 1). In addition, 11 demonstrated potent inhibitory activities against mutated EGFRs (Table 2) as well as A431, VEGF-induced HUVEC, and H1975 cell lines. However, 11 did not inhibit Hs27, the human normal cell line (Table 3). Thus, 11 showed strong inhibitory activities toward EGFR and VEGFR-2 overexpressed cells as well as 1st generation EGFR inhibitor-resistant cell, which was expressed as T790 M mutation of EGFR in non-small cell lung cancer.¹³ On the other hand, Iressa and ZD-6474 did not show any inhibitory activity against EGFR T790 M mutated cell and

Figure 1. Schematic showing the design of compound 1 for the merged EGFR–VEGFR pharmacophore.

^{||}These authors contributed equally to this work.

Scheme 1. (a) 4-bromo-2-fluoroaniline, iPrOH, reflux, 4 h; (b) *N*-Boc amino alcohol, KOTMS, DMSO, rt., 4 h; (c) TFA, CH_2Cl_2 , rt., 0.5 h; (d) R_1CO_2H , EDCI, pyridine, rt., 4 h; (e) Fe, AcOH, reflux, 2 h; (f) acryloyl chloride, DMF, rt., 1 h.

enzymes. In addition, **11** significantly suppressed angiogenesis dose-dependently in mice because of VEGFR-2 inhibition (Figure 2).

In summary, we developed a series of compounds having 4-anilinoquinazoline as the key structure. The compounds were synthesized and evaluated for dual inhibitory activities against EGFR and VEGFR-2. Compound **11** showed excellent inhibitory activities against kinases and cells in EGFR and VEGFR-2 as well as T790 M mutant EGFR pathway. In addition, **11** demonstrated anti-angiogenic effect. Thus, compound **11** could serve as a guide for the development of an EGFR and VEGFR-2 dual inhibitor.

Table 1. Inhibitory kinase activities of derivatives for EGFR and VEGFR-2

			IC ₅₀ (nM)	
Compound	n	R ₁	EGFR	VEGFR-2
5	2	CH ₃	2	157
6	3	CH ₃	10	545
7	1	CH_3	2	139
8	1	CH ₂ CH ₃	3	250
9	1	CH ₂ CH ₂ CH ₃	32	954
10	1	cyclopropyl	8	513
11	1	CH ₂ N(CH ₃) ₂	2	103
12	1	CH ₂ piperidine	7	857
13	1	CH ₂ OCH ₃	14	161
ZD-6474			800	35
CI-1033			9	>1,000

Table 2. Inhibitory activities against mutated EGFRs.

		IC ₅₀ (nM)				
Compound	EGFR	EGFR ^{T790M}	EGFR ^{T790M/L858R}			
11	2	11	3			
Iressa	530	> 1,000	> 1,000			
ZD6474	800	> 1,000	> 1,000			

Figure 2. Compound **11** inhibit angiogenesis in the mice Matrigel Plug assay.¹⁴

Table 3. Inhibitory activities in cell-based assay for A431, VEGFinduced HUVEC, H1975, and Hs27.

Compound	IC ₅₀ (nM)					
	A431	HUVEC	H1975	Hs27		
11	14	93	130	> 1,000		
Iressa	45	> 1,000	> 1,000	> 1,000		
ZD6474	142	43	> 1,000	> 1,000		

References

- R. Feld, S. S. Sridhar, F. A. Shepherd, J. A. Mackay, W. K. Evans, *J. Thorac. Oncol.* **2006**, *1*, 367.
- A.-K. Olsson, A. Dimberg, J. Kreuger, L. Claesson-Welsh, Nat. Rev. Mol. Cell Biol. 2006, 7, 359.
- J. Cui, X. Peng, D. Gao, Y. Dai, J. Ai, Y. Li, *Bioorg. Med. Chem. Lett.* 2017, 27, 3782.
- S. Cebe-Suarez, A. Zehnder-Fjallman, K. Ballmer-Hofer, Cell. Mol. Life Sci. 2006, 63, 601.
- 5. K. N. More, J. Lee, Bull. Korean Chem. Soc. 2017, 38, 70.
- 6. F. A. Eskens, J. Verweij, Eur. J. Cancer 2006, 42, 3127.
- 7. R. Dziadziuszko, J. Jassem, Ann. Oncol. 2012, 23(suppl 10), x193.
- J. R. Tonra, D. S. Deevi, E. Corcoran, H. Li, S. Wang, *Clin. Cancer Res.* 2006, *12*, 2197.
- W. J. Slichenmyer, W. L. Elliott, D. W. Fry, Semin. Oncol. 2001, 28(suppl 16), 80.
- Y. S. Kim, F. Li, B. E. O'Neill, Z. Li, *Bioconjug. Chem.* 2013, 24, 1937.

- J. B. Smaill, G. W. Rewcastle, J. A. Loo, K. D. Greis, O. H. Chan, E. L. Reyner, E. Lipka, H. D. H. Showalter, P. W. Vincent, W. L. Elliott, W. A. Denny, *J. Med. Chem.* 2000, 43, 1380.
- 12. Spectral data (11): white solid; ¹H NMR (300 MHz, CDCl₃) δ 9.23 (s, 1H), 8.97 (s, 1H), 8.65 (s, 1H), 8.35–8.30 (m, 1H), 7.70–7.66 (m, 1H), 7.61 (s, 1H), 7.36–7.32 (m, 2H), 7.16 (s,

1H), 6.90–6.81 (m, 1H), 6.56–6.51 (m, 1H), 5.86–5.81 (m, 1H), 4.23 (t, J = 4.6 Hz, 2H), 3.89–3.84 (m, 2H), 3.01 (s, 2H), 2.27 (s, 6H).

- 13. S. Wang, S. Cang, D. Liu, J. Hematol. Oncol. 2016, 9, 34.
- 14. S. W. Huang, J. C. Lien, S. C. Kuo, T. F. Huang, *Carcino*genesis **2012**, *33*, 1022.