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ABSTRACT

The gold(I)/chiral Brønsted acid relay catalysis enabled a highly stereoselective three-component reaction of salicylaldehydes, anilines, and
alkynols to give aromatic spiroacetals in high yields and stereoselectivities.

The spiroacetal moiety widely presented in a myriad of
natural products essentially contributes to the bioactivity
and represents a privileged scaffold in drug discovery.1

Moreover, molecules containing the spiroacetal have been
widely recognized as useful building blocks for the synth-
esis of a wide range of biologically active compounds,2

such as berkelic acid(I), which shows a confrontation
ovarian cancer effect, paecilospirone (II), which acts as
an inhibitor ofmicrotubule, andγ-rubromycin (III), which
exhibits antibacterial properties (Figure 1). Consequently,
efficient access to such a structural target has been in great
demand. However, the methods investigated previously
reported mostly on the diastereoselective spiroacetaliza-
tions fromoptically pure startingmatierals,3 and until very
recently, the asymmetric catalytic variants from achiral

materials to give optically active spiroacetal have not
appeared.4,5Ding and co-workers reported a nice synthesis
of spiroacetals with excellent levels of stereoselectivity
through asymmetric reductive acetalization of R,β-unsa-
turated ketones catalyzed by chiral iridium(I) complexes
(eq 1, Scheme 1).4a List identified a truly enantioselective

Figure 1. Nature products containing spiroacetal moiety.

(1) For reviews see: (a) Perron, F.; Albizati, K. F. Chem. Rev. 1989,
89, 1617. (b) Aho, J. E.; Pihko, P.M.; Rissa, T. K.Chem. Rev. 2005, 105,
4406.

(2) For selected early reports on total synthesis of nature products
containing spiroacetal motifs, see: (a) Zinzalla, G.;Milroy, L.; Ley, S. V.
Org. Biomol. Chem. 2006, 4, 1977. (b)Milroy, L.; Zinzalla, G.; Prencipe,
G.; Michel, P.; Ley, S. V.; Gunaratnam, M.; Beltran, M.; Neidle, S.
Angew. Chem., Int. Ed. 2007, 119, 2545. (c) Yuen, T.; Yang, S.; Brimble,
M. A. Angew. Chem., Int. Ed. 2011, 50, 8350.

(3) (a) Marsini, M. A.; Huang, Y.; Lindsey, C. C.; Wu, K.; Pettus,
T. R. R. Org. Lett. 2008, 10, 1477. (b) Wilson, Z. E.; Hubert, J. G.;
Brimble,M. A. Eur. J. Org. Chem. 2011, 3938. (c) Smith,M. J.; Furkert,
D. P.; Sperry, J.; Brimble,M.A.Synlett 2011, 1395. (d) Butkevich,A.N.;
Corbu, A.;Meerpoel, L.; Stansfield, I.; Angibaud, P.; Bonnet, P.; Cossy,
J. Org. Lett. 2012, 14, 4998.

(4) (a)Wang, X.; Han, Z.;Wang, Z.; Ding,K.Angew. Chem., Int. Ed.
2012, 51, 936–940. (b) �Cori�c, I.; List, B. Nature 2012, 483, 315. (c) Sun,
Z.;Winschel, G. A.; Borovika, A.; Nagorny., P. J. Am.Chem. Soc. 2012,
134, 8074.

(5) Wilsdorf, M.; Reissig, H. U. Angew. Chem., Int. Ed. 2012, 51,
9486.
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acetalization of hydroxyalkyl-substituted enol ethers by
using a newly designed chiral binol-based C2-symmetric
imidodiphosphoric acid as the chiral catalyst, generating
chiral spiroacetals in excellent stereoselectivity (eq 2,
Scheme 1).4b Subsequently, Nagorny established a similar
binol-based phosphoric acid-catalyzed stereoselective acet-

alization of hydroxyalkyl-substituted enol ethers (eq 3,
Scheme 1).4c Despite these successful examples, the union
of readily available and easily accessible fragments instead
of the preformed acetalization substrates into chiral spir-
oacetals under mild conditions, which actually provides a

more synthetically efficient access to the structurally com-
plex targets, has been investigated even less and is thereby
highly valuable to be disclosed.5 We will herein report a
gold(I)/Brønsted acid relay catalytic three-component
cascade reaction, providing an important alternative of
known methods to directly access highly enantioenriched
spiroacetals.

In the last decades, themetal/organo combined catalysis
has turned out to be a robust strategy for the creation of
new enantioselective transformations.6�8 In particular, the
hybrid metal/organo relay catalysis was able to assemble
readily available starting materials into structurally com-
plex molecules, essentially avoiding additional laborious
workup and purification process of the intermediates
involved.8 We and others found that the combination of
gold complexes and chiral phosphoric acids enabled a
range of asymmetric cascade reactions.8 Recently, Bar-
luenga developed a palladium(II)-catalyzed synthesis of
racemic spiroacetals through a three-component cascade
reaction.9 Inspired by this finding and our knowledge in
gold/phosphoric acid binary catalysis,8d,h,k�m we envi-
saged that the alkynols of type 1 are principally able to
undergo a cyclization reaction to afford aromatic enol ethers
A under the catalysis of a gold complex.8k The intermedi-
atesAmight participate in a formal [4þ 2] cyclization reac-
tion, consisting of an asymmetric Mannich-type reaction

Scheme 1. Typical Examples of Asymmetric Catalytic Access to
Chiral Spiroacetals

Scheme 2. Asymmetric Gold(I)/Brønsted Acid Relay Catalytic
Synthesis of Spiroacetals
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with salicylaldehydimines B in situ generated from the
condensation between salicylaldehydes 2 and anilines 310

under the catalysis of chiral Brønsted acid11 and a subse-
quent acetalization to result in the generation of corre-
sponding aromatic spiroacetals (Scheme 2). As such, a
series of enantioenriched aromatic spiroacetals would be
directly afforded from easily accessible substrates.
The initial investigation of the proposed asymmetric

relay catalytic three-component reaction was performed
with (2-ethynylphenyl)methanol (1a), 2-hydroxybenzalde-
hyde (2a), and aniline (3) in the presence of a combined
catalyst system8d consisting of chiral gold phosphate and
Brønsted acids prepared from PPh3AuMe (5 mol %) and
chiral phosphoric acid 5a (10mol%) and of 4 Åmolecular
sieves in fluorobenzene12 at 10 �C (Table 1). The transfor-
mation proceeded smoothly and afforded N-phenyl-30H-
spiro[chroman-2,10-isobenzofuran]-4-amine (4a) in good
yield (70%), but the enantioselecitivity was poor (entry 1).
Thus, various structurally diverse chiral phosphoric acids
5a�g derived from 3,30-disubstituted BINOLs were eval-
uated to identify the best orgnaocatalyst (entries 2�7).
Among them, the phosphoric acid 5g bearing a sterically
bulky substituents at 3,30-positions turned out to be the
preeminent catalyst andwas able to provide the spiroacetal
4awith high yield (83%) andmoderate diastereoselectivity
(3:1), while the major diastereomer of 4a was obtained in
72%ee (entry 7). Interestingly, the chiral gold phosphate in
situ generated from 5g and PPh3AuMe8d,e was able to
catalyze the reaction in 79% yield, but with a lower
enantioselectivity (entry 8 vs 7). The results indicated that
both gold phosphate and chiral phosphoric acid can
catalyze the cascade reaction, but the chiral phosphoric
acid plays a dominant role in the control of stereoselectiv-
ity in theMannich-type reaction step (Scheme 2). A survey
of solvents identified that the halogenated benzenes were
beneficial to the stereocontrol (entries 9�11), and enan-
tioselectivity could be enhanced to 80% ee by conducting
the reaction in 1,2,4-trichlorobenzene (entry 11). Then, a
variety of aniline derivatives (3b�e) were examined, and it
was found that either electronically withdrawing or donat-
ing substituents were well tolerated (entries 12�15). In
particular, the 3,5-dimethoxyaniline (3e) participated in
the three-component reaction with the highest level of
enantioselectivity (entry 15).
Under the optimal conditions, we next investigated the

generality for salicylaldehydes (Table 2). A wide range of
salicylaldehydes substituted with various substituents at
the benzene ring were applicable to the reaction, giving

aromatic spiroacetals in up to 95% yield with >25:1 dr
and up to 91% ee (entries 1�7). A disubstituted salicylal-
dehyde with the chloro groups at both 4 and 6-positions
underwent the reaction to furnish the corresponding 4f in
81%yield andwith 91%ee (entry 1).Notably, the position
of the substituent on the benzene ring of the salicylalde-
hydes exhibited significant effect on both the diastereo- and

enantioselectivities. For instance, 2-hydroxybenzalde-
hydes with a substituent at 4-postion gave higher enantios-
electivities than those with the substituent at either the
5- or 6-postion (entries 3, 6, and 7 vs 2 and 5). Excellent dia-
stereoselectivity (>25:1), together with a high yield (83%)
and high ee (85% ee), was obtained when 2-hydroxy-1-

naphthaldehyde was employed as a reaction component
(entry 4). Interestingly, the electron feature of the substi-
tuent on the benzene ring of 2-hydroxybenzaldehyde had
very little effect on the stereoselectivities (entries 3, 6, and 7).
Further investigationof the substrate scopewas focusedon
the alkynols. Various alkynols with different aryl substi-

tuents, such as a 4-fluorophenyl and 4-bromophenyl group,
were tolerated. Excellent enantioselectivities were also

Table 1. Evaluation of Brønsted Acid Catalysts and Optimiza-
tion of Reaction Conditionsa

entry B*-H ArNH2 4 yieldb (%) drc eed (%)

1 5a 3a 4a 70 3/1 1

2 5b 3a 4a 99 3/1 10

3 5c 3a 4a 65 3/1 21

4 5d 3a 4a 73 3/1 49

5 5e 3a 4a 93 3/1 19

6 5f 3a 4a 87 3/1 6

7 5g 3a 4a 83 3/1 72

8 5g 3a 4a 79 3/1 65e

9 5g 3a 4a 80 4/1 74f

10 5g 3a 4a 78 4.6/1 76g

11 5g 3a 4a 84 4.5/1 80h

12 5g 3b 4b 75 4.3/1 76h,i

13 5g 3c 4c 83 4.7/1 74h,i

14 5g 3d 4d 69 4.5/1 69h,i

15 5g 3e 4e 88 6/1 85h,i

aUnless indicated otherwise, the reaction of 1 (0.12 mmol), 2 (0.11
mmol), and 3 (0.10 mmol) was carried out in PhF (1.0 mL) at 10 �C for
3 d under Ar in the presence of gold catalyst (5 mol %), Brønsted acid
(10 mol%), and 4 ÅMs (50 mg). bCombined yield of both diastereomers.
cThe dr was determined by 1H NMR. dThe ee was determined by
HPLC. e 5 mol % of 5g was used. f In PhBr (1.0 mL). g In 1,3-dichlor-
obenzene (1.0 mL). h In 1,2,4-trichlorobenzene (1.0 mL) at 15 �C. iThe
compound details were described in the Supporting Information.

(10) Salicylaldehydimines B can be easily afforded from the conden-
sation of 2 and 3 catalyzed by Brønsted acid, while in the absence of the
acid, the condensation will become very slow.

(11) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew.
Chem., Int. Ed. 2004, 43, 1566. (b) Uraguchi, D.; Terada, M. J. Am.
Chem.Soc. 2004, 126, 5356.For reviews, see: (c)Akiyama,T.Chem.Rev.
2007, 107, 5744. (d) Doyle, A. G.; Jacobsen, E. N.Chem. Rev. 2007, 107,
5713. (e) Terada, M. Chem. Commun. 2008, 4097. (f) Terada, M.
Synthesis 2010, 1929. (h) Rueping, M.; Lin, M. Y. Chem.;Eur. J.
2010, 16, 4169. (i) Bernardi, L.; Comes-Franchini, M.; Fochi, M.; Leo,
V.; Mazzanti, A.; Ricci, A. Adv. Synth. Catal. 2010, 352, 3399.

(12) For the use of fluorobenzene as the optimal solvent in gold/
Bronsted acid relay catalysis, see ref 8l.
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obtained for those alkynols with different salicylalde-
hydes (Table 2, entries 8�20). Basically, the electron-
withdrawing substituent, such as either the fluoride,
chloride, or the bromide group, turned out to be bene-
ficial to the enantioselectivities, whereas the presence of
electron-donating substituents, such as the methyl group,
was slightly deleterious to the reactivity (entries 8�11 and
13�16 vs 18�20).Moreover, the position of the substituent

on the benzene ring of alkynols also had considerable
influence on the reactivity. Thus, the alkynols with a
substituent at the 4-postion provided the corresponding
spiroacetals in excellent yield and enantioselectivities (up
to 97% yield and 95% ee). However, comparably lower
yields and enantioselectivities were obtained when 5-sub-
stituted alkynols were examined as substrates (entries
8�11 vs 12 and entries 13�16 vs 17). The configurations
of 4i were determined by X-ray crystallography analysis
(see the Supporting Information).
A scale-up three-component reaction 1a with 2-hydro-

xy-1-naphthaldehyde and 3e proceeded smoothly under
the catalysis of gold(I)/ Brønsted acid binary system to
generate the enantioenriched spiroacetal 4i in amaintained
yield and stereoselectivity. After recrystallization, the en-
antiomeric purity of 4i could be enhanced to >99% ee.
The hydrogenolysis of the optically pure 4i furnished 30H-
spiro[chroman-2,10-isobenzofuran] 6, which is presented
as the cyclic core unit in the natural product paecilospirone
(II),3b,c in 90% yield with 98% ee (see the Supporting
Information).
In summary, we have disclosed an asymmetric relay

catalyticmulticomponent reaction by using gold(I) complex/
chiral phosphoric acid, which is able to assemble the
readily available and easily accessible substrates, including
salicylaldehydes, aniline, and alkynols into aromatic spir-
oacetals with high optical purity. The method provided an
important alternative of knownmethods to directly access
highly enantioenriched spiroacetals and would be poten-
tially applied to the synthesis of spiroacetal motifs pre-
sented in natural products.
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Table 2. Scope of Various Alkynols and Salicylaldehydes of the
Cascade Multiple Components Reactionsa

entry 4 R R0 yieldb (%) drc eed (%)

1 4f H 4,6-Cl2 81 10/1 91

2 4g H 5-Cl 79 >25/1 80

3 4h H 4-F 70 6/1 90

4 4i H e 83 >25/1 85

5 4j H 6-F 95 9/1 83

6 4k H 4-Br 78 6.5/1 89

7 4l H 4-Me 87 4/1 90

8 4m 4-F 4,6-Cl2 91 >25/1 90

9 4n 4-F 4-F 75 4.3/1 90

10 4o 4-F 4- Br 71 4.6/1 94

11 4p 4-F 4-Me 72 5/1 91

12 4q 5-F 4,6-Cl2 67 >25/1 81

13 4r 4-Cl 4,6-Cl2 87 9/1 92

14 4s 4-Cl 4-Me 92 4.3/1 92

15 4t 4-Cl 4-F 83 4/1 91

16 4u 4-Cl 4-Br 97 4/1 95

17 4v 5-Cl 4,6-Cl2 62 9/1 84

18 4w 4-Me 4,6-Cl2 94 >25/1 87

19 4x 4-Me e 87 6/1 86

20 4y 4-Me 4-Br 88 3.5/1 88

aUnless indicated otherwise, the reaction of 1 (0.12 mmol), 2 (0.11
mmol), and 3e (0.10 mmol) was carried out in 1,2,4-trichlorobenzene
(1.0 mL) at 15 �C for 3 d under Ar in the presence of gold(I) catalyst
(5 mol %), Brønsted acid (10 mol %), and 4 Å Ms (50 mg). bCombined
yield of both diastereomers. cThe dr was determined by 1HNMR. dThe
ee was determined by HPLC. e 2-Hydroxy-1-naphthaldehyde was used.
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