

Stereocontrolled Synthesis of 2-Deoxy-C-glycopyranosyl Arenes Using Glycals and Aromatic Amines

Shengbiao Tang,^{†,‡} Qiannan Zheng,[†] De-Cai Xiong,^{*,†,§} Shende Jiang,[‡] Qin Li,[†] and Xin-Shan Ye^{*,†}

[†]State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China

 ‡ School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China

[§]State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China

(5) Supporting Information

ABSTRACT: An efficient and stereoselective one-pot, two-step tandem α -arylation of glycals from readily available aryl amines via stable diazonium salts has been developed. Moreover, the stereoselective preparation of the challenging β -C-glycosyl arenes by the anomerization of α -C-glycosides using HBF₄ is also described. This protocol has a broad substrate scope and a wide functional-group tolerance. It can be used for the gram-scale preparation of 3-oxo-C-glycosides, which are versatile substrates for the preparation of many biologically important C-glycosides.

he C-glycopyranosyl motif is present in numerous biologically active compounds and drugs such as angucyclines, marmycin A-B, urdamycinones A-D, kidamycin, pluramycin A, canagliflozin, dapagliflozin, and ipragliflozin (Scheme 1a).¹ A key carbon-carbon glycosidic bond between the aglycon carbon and the anomeric carbon of the attached carbohydrate confers remarkable stability against both enzymatic and/or chemical hydrolysis, thus improving the physiological efficacy of a bioactive compound. Therefore, carbon-carbon glycosidic bond construction is one of the enduring and crucial goals of organic synthesis.² Transition-metal-catalyzed coupling reactions are powerful tools for the construction of unique Cglycosyl linkages.³ Especially, Heck-type arylations of glycals⁴ with arylboronic acids,⁵ triarylindium reagents,⁶ arylzinc reagents,⁷ arylhydrazines,⁸ sodium arylsulphinates,⁹ aryl bromides/iodides,¹⁰ aromatic acids,¹¹ and others have been developed.¹² Indeed, all have now been extensively employed as useful approaches for the synthesis of 2-deoxy- α -C-D-glycosyl arenes (Scheme 1b). Nevertheless, these reactions suffer from some limitations such as limited substrate scope, low yield, long reaction time, or byproducts. Moreover, these transformations are unable to generate 2-deoxy- β -D-glycosyl arenes, which are naturally occurring C-glycosides. Therefore, the development of more practical and stereoselective protocols for the synthesis of 2-deoxy-C-glycosyl arenes from readily accessible starting materials still remains a challenge.

Aryl diazonium salts are ideal electrophilic partners for palladium-catalyzed coupling reactions at room temperature under mild conditions, especially for a Heck reaction of allylic alcohols/esters.¹³ Glycals are somewhat similar to allylic

Scheme 1. Some Bioactive 2-Deoxy-C-glycosyl Compounds

Received: April 9, 2018

alcohols/esters. However, diazonium salts are absent from *C*-glycoside synthesis. The instability and explosive nature of the salts might be the main restriction on their widespread application. Nevertheless, the *in situ* diazotization of readily available anilines is an alternative safe way to diazonium salts.¹⁴ So, we herein report a stereocontrolled protocol for the synthesis of 2-deoxy-*C*-glycopyranosyl arenes from glycals and aromatic amines (Scheme 1c).

We embarked on our investigation by studying the arylation of glucal 1a with 4-methoxybenzenediazonium tetrafluoroborate (2) in the presence of various Pd catalysts and additives at room temperature for 1 h (Table 1). No arylation occurred utilizing

^{*a*}Reaction conditions: **1a** (21.0 mg, 0.05 mmol), Pd catalyst (0.0075 mmol), and **2** (22.0 mg, 0.1 mmol) in THF (4 mL) at room temperature for 1 h. ^{*b*}Isolated yield. ^{*c*}**3** (31.0 mg, 0.25 mmol) and NaNO₂/Me₃CNO₂/NOBF₄ (0.25 mmol) in THF (4 mL) at -40 °C to room temperature for 30 min; then **1a** (42.0 mg, 0.1 mmol) and Pa(dba)₂ (0.015 mmol) at room temperature for 1 h. ^{*d*}MeOH as the solvent. ^{*c*}**4a***α* (10.0 mg) and HBF₄-Et₂O complex (50–75 μ L) in Et₂O (1 mL) at room temperature for 1 h. PMP = *p*-methoxyphenyl.

 $Pd(OAc)_2$ as the catalyst (entry 1). The desired α -arylation products $4a\alpha$ (34% yield) and 5a (25% yield) were, however, obtained in the presence of PPh₃ (entry 2). The use of $Pd(PPh_3)_4$ as the catalyst, with or without Xanphose as the ligand, led to similar results (entries 3–4). To our delight, only $4a\alpha$ (81%) yield) was obtained when the reaction was catalyzed by $Pd(dba)_2$ instead of $Pd(PPh_3)_4$ (entry 5). Further optimization studies of other additives did not increase the yield of $4a\alpha$ (Table 1, entries 6-9; Table S1, entries 1-19). Next, compound 2, generated in situ by different methods from amine 3, was applied to the above optimal conditions. After screening different diazotizing reagents (entries 10-13), NOBF₄ proved the best. Diazotization of amine 3 with NOBF₄ in THF at 0 °C for 30 min, followed by the treatment of glycal **1a** and $Pd(dba)_2$ at room temperature for 1 h, gave 2-deoxy- α -D-glycosyl arene 4a α in 73% isolated yield (entry 13). By this point, we had established an efficient method to produce α -C-glycosides via the arylation of glycals from aryl amines. In addition, the α -C-glycosides could be further transformed into β -C-glycosides through the action of HBF₄-

 Et_2O complex (Table 1, entry 14, for more details on condition screening, see Table S2 in the Supporting Information (SI)).

With the optimized reaction conditions in hand, a variety of glycals were subjected to these arylation/anomerization reactions (Scheme 2). The reactions of methylated glucal or

^aThe *C*-glycosylation conditions (see Table 1, entry 13); the anomerization conditions (see Table 1, entry 14); isolated yield.

benzylated galactal/6-deoxy-glucal/rhamnal afforded the corresponding α - or β -linked product in 57–92% yields. The *tert*butyldimethylsilyl protective group was well tolerated under the arylation conditions (product $4c\alpha$), whereas the anomerization product $4c\beta$ was partially desilylated. It is noteworthy that the reaction of benzylated L-arabinal with amine 3 could only generate $4g\beta$, which is a thermodynamically stable arylation product whose anomerization is forbidden.

Subsequently, we explored the scope of the aryl amines; the results are summarized in Table 2. Aryl amines bearing both electron-withdrawing and electron-donating substituents underwent the reactions smoothly, affording the corresponding α products in moderate to good yields. The anomerization of 2deoxy- α -C-D-glycosyl arenes with electron-donating substituents could provide the β -products in excellent yields (entries 4, 15). To our delight, β -C-glycosides were accessed in moderate yields from the arenes with electron-withdrawing substituents. The ring-opened compound 6 was detected in 25% yield when α -C-Dglycosyl para-bromobenzene (4i α) was converted to its β counterpart $(4i\beta)$. Interestingly, compound 6 was inert to the anomerization conditions (Scheme 3A). This is quite a common occurrence as the aryl moiety contains electron-withdrawing substituents. To further demonstrate the practicality of this newly developed method, the reaction of 3 and 1f was carried out on 6.44 mmol scale (entry 15). Product $4f\alpha$ was obtained in 58% isolated yield (1.20 g). Anomerization of $4f\alpha$ was performed on 3.68 mmol scale, and $4f\beta$ was afforded in 98% isolated yield (1.18 g).

The anomeric configurations were mainly confirmed by the values of the $J_{1,2}$ coupling constant. That is, a large $J_{1,2}$ constant was assigned for a ${}^{4}C_{1}$ (D, β , >10 Hz), ${}^{1}C_{4}$ (L, β , >10 Hz), or ${}^{1}C_{4}$ (D, α , ~9.5 Hz) conformer, and a small $J_{1,2}$ constant (<7.0 Hz)

Table 2. C-Glycosylation of Glycals with Various Amines and Anomerization a,b

^{*a*}For the C-glycosylation conditions, see Table 1, entry 13; for the anomerization conditions, see Table 1, entry 14. ^{*b*}Isolated yield. ^{*c*}Gram-scale reaction. ^{*d*}Amine 3 (2.0 g, 16.2 mmol, 2.5 equiv), If (2.0 g, 6.44 mmol), and Pa(dba)₂ (0.97 mmol) were used at room temperature for 3 h. ^{*c*}Substrate 4*fa* (1.2 g, 3.68 mmol), HBF₄ (2.5 mL), and Et₂O (100 mL) were used at room temperature for 1.5 h.

was assigned for a ${}^{4}C_{1}$ (D, α , <7.0 Hz) or ${}^{1}C_{4}$ (L, α , <7.0 Hz) conformer. Others were assigned on the basis of the NMR spectra of known compounds or the 2D NMR spectra.

Next, the generated 2-deoxy-3-oxo-C-glycosides were transformed into 3-hydroxy or 3-dimethylamino 2-deoxy-C-glycosides (Scheme 3B), which are valuable C-glycosyl motifs in bioactive natural products. Reduction of compound $4\mathfrak{f}\mathfrak{p}$ using NaBH₄ afforded 42% yield of the alcohol 7 and 40% yield of the alcohol 8 with no stereoselectivity. When LiBHEt₃ was employed, the alcohol 8 was obtained in 78% yield as a single isomer. Treatment of $4\mathfrak{f}\mathfrak{p}$ with NH₄OAc and NaBH₃CN formed 3-amino-C-glycoside, which was subsequently converted into the expected 3-dimethylamino-C-glycoside 9 (50% yield) in the presence of HCHO and NaBH₃CN. The structures of compounds 7, 8, and 9 were unambiguously identified by their NMR analyses (Scheme S2 in the SI).

Although the formation mechanism of α -*C*-glycosides from glycals and aryl diazonium salts via a Heck-type reaction is clear, ^{5,15} the details of this anomerization reaction are not yet known. Thus, a plausible mechanism, based on the combination of the previous work of Suzuki, Zou, and our group, through our observations, is proposed (Scheme 4). We propose that HBF₄

activates the O5 oxygen, resulting in an endocyclic C1–O5 bond cleavage to generate the acyclic oxocarbenium C (pathway A in Scheme 4),^{2,16} which would prefer to produce the β -product via a kinetic cyclization. If an electron-deficient aryl group is present, HBF₄ promotes activation of the O3 oxygen to produce the stable byproduct D (pathway B in Schemes 4 and 3A).

In conclusion, for the first time, we have disclosed the one-pot, two-step tandem α -arylation of glycals from readily available aryl amines via a stable diazonium salt offering exclusive 3-oxo- α -*C*glycosides. Furthermore, the challenging β -*C*-glycosyl arenes can be obtained from anomerization of α -*C*-glycosides in the presence of HBF₄. The protocols can be used for the gramscale preparation of the products and show a broad substrate

Organic Letters

scope and wide functional-group tolerance. The versatile 3-oxo-*C*-glycosides can be easily transformed into other bioactive natural *C*-glycosyl motifs, thereby expanding the usefulness of the methods. Given all of the advantages, our protocols could find wide applications in the preparation of many biologically important *C*-glycosides.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.8b01117.

Detailed experimental procedures and spectral data for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: xinshan@bjmu.edu.cn.

*E-mail: decai@bjmu.edu.cn.

ORCID ®

Xin-Shan Ye: 0000-0003-4113-506X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by grants from the National Natural Science Foundation of China (Grant No. 21572012, 21772006) and the State Key Laboratory of Drug Research (SIMM1803KF-02).

REFERENCES

 (1) (a) Bililign, T.; Griffith, B. R.; Thorson, J. S. Nat. Prod. Rep. 2005, 22, 742–760. (b) Štambaský, J.; Hocek, M.; Kočovský, P. Chem. Rev. 2009, 109, 6729–6764. (c) Chao, E. C.; Henry, R. R. Nat. Rev. Drug Discovery 2010, 9, 551–559. (d) Hultin, P. G. Curr. Top. Med. Chem. 2005, 5, 1299–1331. (e) Cañeque, T.; Gomes, F.; Mai, T. T.; Maestri, G.; Malacria, M.; Rodriguez, R. Nat. Chem. 2015, 7, 744–751.

(2) For reviews on C-glycoside synthesis, see: (a) Du, Y.; Linhardt, R. J.; Vlahov, I. R. *Tetrahedron* **1998**, *54*, 9913–9959. (b) Lee, D. Y. W.; He, M. *Curr. Top. Med. Chem.* **2005**, *5*, 1333–1350. (c) Bokor, É.; Kun, S.; Goyard, D.; Tóth, M.; Praly, J.-P.; Vidal, S.; Somsák, L. *Chem. Rev.* **2017**, *117*, 1687–1764. (d) Yang, Y.; Yu, B. *Chem. Rev.* **2017**, *117*, 12281–12356.

(3) For selected examples of the transition-metal-catalyzed C-glycosylation, see: (a) Nicolas, L.; Angibaud, P.; Stansfield, I.; Bonnet, P.; Meerpoel, L.; Reymond, S.; Cossy, J. Angew. Chem., Int. Ed. **2012**, *51*, 11101–11104. (b) Gong, H.; Sinisi, R.; Gagne, M. R. J. Am. Chem. Soc. **2007**, *129*, 1908–1909. (c) Gong, H.; Gagne, M. R. J. Am. Chem. Soc. **2008**, *130*, 12177–12183. (d) Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. **2012**, *51*, 4140–4143. (e) Zhao, C.; Jia, X.; Wang, X.; Gong, H. J. Am. Chem. Soc. **2014**, *136*, 17645–17651. (f) Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. **2016**, *138*, 12049–12052. (h) Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H. C.; Shing, T. K. M.; Nakamura, M. J. Am. Chem. Soc. **2017**, *139*, 10693–10701.

(4) For a review on *C*-glycoside synthesis using glycals, see: Ansari, A. A.; Lahiri, R.; Vankar, Y. D. *ARKIVOC* **2012**, *2013*, 316–362.

(5) (a) Xiong, D.-C.; Zhang, L.-H.; Ye, X.-S. Org. Lett. 2009, 11, 1709– 1712. (b) Liu, C.-F.; Xiong, D.-C.; Ye, X.-S. J. Org. Chem. 2014, 79, 4676–4686. (c) Ramnauth, J.; Poulin, O.; Rakhit, S.; Maddaford, S. P. Org. Lett. 2001, 3, 2013–2015. (d) Zeng, J.; Vedachalam, S.; Xiang, S.; Liu, X.-W. Org. Lett. 2011, 13, 42–45. (6) Price, S.; Edwards, S.; Wu, T.; Minehan, T. *Tetrahedron Lett.* 2004, 45, 5197–5201.

(7) (a) Steinhuebel, D. P.; Fleming, J. J.; Du Bois, J. Org. Lett. 2002, 4, 293–295. (b) Xue, S.; He, L.; Han, K.-Z.; Zheng, X.-Q.; Guo, Q.-X. Carbohydr. Res. 2005, 340, 303–307.

(8) Bai, Y.; Kim, L. M. H.; Liao, H.; Liu, X.-W. J. Org. Chem. 2013, 78, 8821–8825.

(9) Ma, J.; Xiang, S.; Jiang, H.; Liu, X.-W. Eur. J. Org. Chem. 2015, 2015, 949–952.

(10) (a) Li, H.-H.; Ye, X.-S. Org. Biomol. Chem. 2009, 7, 3855–3861.
(b) Lei, M.; Gao, L.; Yang, J.-S. Tetrahedron Lett. 2009, 50, 5135–5138.
(c) Tao, Y.; Ding, N.; Ren, S.; Li, Y. Tetrahedron Lett. 2013, 54, 6101–6104.

(11) (a) Xiang, S.; Cai, S.; Zeng, J.; Liu, X.-W. Org. Lett. **2011**, *13*, 4608–4611. (b) Tan, H. Y.; Xiang, S.; Leng, W. L.; Liu, X.-W. RSC Adv. **2014**, *4*, 34816–34822.

(12) (a) Zeng, J.; Ma, J.; Xiang, S.; Cai, S.; Liu, X.-W. Angew. Chem., Int. Ed. **2013**, 52, 5134–5137. (b) Leng, W.-L.; Liao, H.; Yao, H.; Ang, Z.-E.; Xiang, S.; Liu, X.-W. Org. Lett. **2017**, 19, 416–419. (c) Bai, Y.; Leng, W. L.; Li, Y.; Liu, X.-W. Chem. Commun. **2014**, 50, 13391–13393.

(13) (a) Pan, D.; Chen, A.; Su, Y.; Zhou, W.; Li, S.; Jia, W.; Xiao, J.; Liu, Q.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2008, 47, 4729–4732.
(b) Shang, X.; Liu, Z. Youji Huaxue 2015, 35, 522–527. (c) Werner, E. W.; Mei, T. S.; Burckle, A. J.; Sigman, M. S. Science 2012, 338, 1455–1458.

(14) (a) Teci, M.; Tilley, M.; McGuire, M. A.; Organ, M. G. *Chem.* - *Eur. J.* **2016**, *22*, 17407–17415. (b) Oger, N.; d'Halluin, M.; Le Grognec, E.; Felpin, F.-X. Org. Process Res. Dev. **2014**, *18*, 1786–1801.

(15) (a) Beletskaya, I. P.; Cheprakov, A. V. *Chem. Rev.* **2000**, *100*, 3009–3066. (b) Le Callonnec, F.; Fouquet, E.; Felpin, F.-X. Org. Lett. **2011**, *13*, 2646–2649.

(16) (a) Matsumoto, T.; Katsuki, M.; Jona, H.; Suzuki, K. J. Am. Chem. Soc. 1991, 113, 6982–6992. (b) Shao, H.; Wang, Z.; Lacroix, E.; Wu, S.-H.; Jennings, H. J.; Zou, W. J. Am. Chem. Soc. 2002, 124, 2130–2131.
(c) Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2018, 118, 1495–1598. (d) Xiong, D.-C.; Gao, C.; Li, W.; Wang, Y.; Li, Q.; Ye, X.-S. Org. Chem. Front. 2014, 1, 798–806.

D