

Subscriber access provided by Nottingham Trent University

Borane Catalyzed Chemoselectivity-Controllable N-alkylation and ortho C-alkylation of Unprotected Arylamines Using Benzylic Alcohols

Shanshui Meng, Xiaowen Tang, Xiang Luo, Ruibo Wu, Junling Zhao, and Albert Sun Chi Chan

ACS Catal., Just Accepted Manuscript • Publication Date (Web): 09 Aug 2019

Downloaded from pubs.acs.org on August 9, 2019

Just Accepted

Letter

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Borane Catalyzed Chemoselectivity-Controllable N-alkylation and ortho C-alkylation of Unprotected Arylamines Using Benzylic Alcohols

Shan-Shui Meng*[‡], Xiaowen Tang[‡], Xiang Luo, Ruibo Wu, Jun-Ling Zhao^{*}, Albert S. C. Chan^{*}

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. *KEYWORDS: Unprotected arylamine, N-alkylation, ortho C-alkylation, chemoselectivity-controllable, B(C*₆*F*₅)₃.

ABSTRACT: An unprecedented protocol for the efficient and highly chemoselective alkylation of unprotected arylamines using alcohols catalyzed by $B(C_6F_5)_3$ has been developed. The reaction gives N-alkylated products and ortho C-alkylated products in different solvents in good chemoselectivities and yields. Control experiments and DFT calculations indicated that the borane underwent alcohol/arylamine exchange to ensure catalytic activity, and a possible mechanism involving a carbocation is proposed.

Arylamines, which are important and fundamental compounds, have unique significance in industrial, agricultural and pharmaceutical chemistry.¹ Alkylation is one of the most direct and powerful tools for increasing the complexity of arylamines.² Numerous alkylating agents and methods have been developed to enable the N-alkylation of arylamines. However, traditional alkylating methods often generate stoichiometric amounts of waste and salt contaminants. Alcohols are a class of stable and widely available organic compounds with low toxicity, making them ideal alternatives to traditional alkylating agents. Since the first example of a transitional-metal catalyzed alkylation of aniline using an alcohol via the so-called "hydrogen borrowing" strategy was reported, this area has been intensely explored (Scheme 1).³ However, this protocol has its natural limitations: 1) only primary alcohols have been thoroughly investigated, and 2) the alkylation is strictly limited to amino groups.

Using alcohols to obtain alkylated arylamines via nucleophilic substitution is another option.⁴ Due to the poor leaving ability of hydroxyl groups and the incompatibility between catalysts and amines, few examples of such reactions have been reported. In 2011, Saito and coworkers developed a promising direct N-alkylation of amines with primary alcohols catalyzed by an Fe/amino acid system.⁵ More recently, the Sweeney group reported an elegant N-allylation of amines catalyzed by nickel.⁶ Despite these precedents, there are many problems in this area that must be addressed. N-Alkylations with bulky alcohols, e.g., secondary and tertiary alcohols, remain difficult.^{4e} Moreover, to the best of our knowledge, the synthesis of ortho C-alkylated anilines, which are important motifs in ligands, still requires excess ZnCl₂/HCl and harsh reaction conditions.⁷ Therefore, a catalytic, efficient and practical alkylation of arylamines using bulky alcohols is challenging yet highly appealing, and developing the catalytic alkylation with controllable chemoselectivity is also of interest.

The main challenge in the direct catalytic alkylation of amines with alcohols is that an "off-cycle species" can form between the electron-rich arylamines and acidic catalysts.^{4,5} To

realize the alkylation, the catalyst must meet three basic conditions: 1) acidic enough to activate the hydroxyl group; 2) stable in wet and basic conditions; 3) able to dissociate from amines. $B(C_6F_5)_3$ a powerful nonmetallic Lewis acid catalyst, has been elegantly applied in "frustrated Lewis pair" catalysis.⁸ Fu⁹ and Ingleson¹⁰ have both reported $B(C_6F_5)_3$ -catalyzed Nalkylations of amines using carboxylic acids or aldehydes in the presence of an organosilane. In their reports, the borane maintained its catalytic activity in the presence of arylamines (Scheme 1). $B(C_6F_5)_3$ has also been shown to activate hydroxyl groups for various transformations of alcohols.^{11,12} The Li group developed a high ortho-selective alkylation of phenols using 1,3-dienes catalyzed by $B(C_6F_5)_3$ and studied the mechanism in great detail.¹³ Zhang and Liu reported an elegant, chemoselective and ortho-selective substitution of phenols with diazoesters using the same catalyst.¹⁴ However, ortho-selective alkylations of unprotected arylamines remain underdeveloped. Herein, we report an unprecedented protocol for practical and efficient N-alkylations and ortho C-alkylations of unprotected arylamines with bulky alcohols (secondary and tertiary alcohols) with controllable chemoselectivity catalyzed by $B(C_6F_5)_3$.

Scheme 1. The methods of catalytic alkylation of arylamines with alcohols.

1) N-alkylation of amine via "hydrogen borrowing" strategy

C-alkylation, >30 example, 54-90% yield N-alkylation, >24 example, 55-91% yield

ACS Paragon Plus Environment

57

58

59

60

The initial investigation with model substrates 1a and 2a revealed the successful N-alkylation in 63% yield using 10 mol% $B(C_6F_5)_3$ in toluene (Table 1, entry 1). The polar aprotic solvent CH_3NO_2 gave a higher yield of **3a** (entry 3), and an unexpected ortho C-alkylation product (4a) was also isolated. This exciting finding indicated that the challenging ortho Calkylation of arylamines might be achievable with this catalytic system. The reaction did not proceed in ether or ester solvents (entries 4 and 5). To further improve the yield of the Nalkylation, the reaction was found to proceed smoothly under ambient atmosphere, generating 3a in 86% yield after 48 h (entry 6). We wondered if a weakly acidic environment might promote the C-alkylation because the amino group would be protonated and thus less reactive. Polyfluorinated alcohols, which are protic nonnucleophilic solvents, have been utilized in functional reactions of aromatic rings in previous reports.¹⁵ To our delight, an obvious increase in the yield of 4a was observed when CF₃CH₂OH was used (entry 7). A perfluorinated alcohol, HFIP (1,1,1,3,3,3-hexafluoro-2-propanol), was found to be superior, giving 71% yield of 4a with negligible N-alkylation product (entry 9).16

TABLES 1. Optimization of alkylation conditions.^a

H ₂ N	Me Diphenylmethanol 1a B(C ₆ F ₅) ₃ 10 mol% 120 $^{\circ}$ C	► MeO- 3a	Ph ₂ + MeO
Entry	Solvent	yield% ^b (3a)	yield% ^b (4a)
1	toluene	63	<5
2	1,2-dichloroethane	62	<5
3	CH ₃ NO ₂	71	12
4	THF	0	0
5	Ethyl acetate	0	0
6 ^c	CH ₃ NO ₂	86	<5
7	TFE	24	36
8	CF ₃ CHOHCH ₃	27	30
9	HFIP	<5	71
10 ^{c,d}	CH ₃ NO ₂	67	<5

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), $B(C_6F_5)_3$ (10 mol%), 15 ml sealed tube, 120 °C, 12h. ^bIsolated yield. ^cIn 10 ml Schlenk tube with an air-balloon, 48h. ^dAt 100 °C. HFIP=1,1,1,3,3,3-hexafluoro-2-propanol.

With the optimal conditions in hand, we decided to explore the alcohol scope of this N-alkylation. Diphenylmethanols with electron-neutral and electron-donating groups were suitable for the reaction (3b-d, 82-91%, Scheme 2). However, the desired reaction did not occur for the alcohol with a strong electronwithdrawing group (3e). For less reactive alcohols, 1phenylethan-1-ol and 1-phenylpropan-1-ol, the N-alkylation still provided satisfactory results (3f-i, 59%-83%). Cyclic alcohols were smoothly transformed into the corresponding amines (3j 73%, 3k 67%). The functional group tolerance of this system was also investigated (31-n, 68-81%), and the products were further oxidized to imines under the reaction conditions (3m, 3n). α -Tertiary amines always attract considerable interest due to their unique properties.¹⁷ However, the catalytic alkylation of amines using tertiary alcohols is rarely achieved because of the low reactivity of tertiary alcohols and the elimination of the hydroxyl group. Luckily, the desired transformations proceeded with satisfactory efficiencies with little optimization of the conditions (**30-q**, 55-63%).

Scheme 2. The alcohol scope of N-alkylation.^a

Page 2 of 7

^aReaction conditions: **1** (0.2 mmol), **2a** (0.4 mmol), $B(C_6F_5)_3$ (10 mol%), CH₃NO₂ (1 ml), 120 °C, 10 ml Schlenk tube, 24-48h. Isolated yield. ^bCH₃NO₂ (0.5 ml), 85 °C. ^cDCE (0.5 ml), 85 °C.

A series of alcohols was examined under the *ortho* Calkylation conditions (Scheme 3). Substituted benzhydrols gave the *ortho* C-alkylated arylamines in HFIP (**4a-4d**, 71%-81%); strangely, the C-alkylation with benzhydrols bearing electrondonating groups was more efficient in CH₃NO₂ than in HFIP (**4e-4g**). The electronic properties of the alcohol substrate is a key factor in the *ortho* C-alkylation. The H-substituted and Fsubstituted benzyl alcohols did not give the desired products, but even the very weak electron-donating group CH₃ could facilitate the C-alkylation, generating the corresponding product in moderate yield (**4i**, 56%). Other electron-rich benzyl alcohols efficiently produced *ortho*-alkylation amines under the optimal conditions (**4j-4p**, 53%-82%).

Scheme 3. The alcohol substrate of *ortho*-selective C-alkylation.^a

1

2

3

4

5

6

7

^aReaction conditions: **1** (0.2 mmol), **2a** (0.4 mmol), $B(C_6F_5)_3$ (10 mol%), HFIP (1 ml), 15 ml sealed tube, 120 °C, 12h. Isolated yield. ^bCH₃NO₂ (1 ml).

Trisubstituted aromatics, which are important frameworks, appear frequently in organic ligands, functionalized organometallic compounds and polymeric materials.¹⁸ The appealing bis C-alkylation products could be isolated in high yields (Scheme 4, **4q-4t**, 73%-87%) from this C-alkylation system when the ratio of alcohols to amines was changed to 2.1:1.

Scheme 4. The alcohol substrate of *ortho*, *ortho'* bis C-alkylation.^a

^aReaction conditions: **1** (0.42 mmol), **2a** (0.2 mmol), $B(C_6F_5)_3$ (10 mol%, 0.02 mmol), HFIP (1 ml), 15 ml sealed tube, 120 °C, 12h. Isolated yield. ^bThe ratio between **1a** and **2a** was 1:1. ^cdr = 1:1.

Different arylamines gave both the desired N-alkylation and C-alkylation products in high yields (Scheme 5). Different electron-neutral and electron-donating substituents at the 4position were well tolerated (**5b-5f**, 81%-91%; **6b-6f**, 73%-81%). To ensure that the C-alkylation is *ortho*-selective, 3,5dimethylaniline was evaluated and generated **6g** in high yield and excellent site selectivity. The *ortho*-alkylation was more likely to occur at a less hindered position (**6h**). 2-Substituted arylamines also gave excellent *ortho* selectivity in the Calkylation under the optimal conditions (**6j**, 74%; **6k**, 72%); however, a mixture of unknown compounds was generated when the reactions were conducted under the N-alkylation conditions.

Scheme 5. The scope of arylamines.^a

^aThe reaction was carried out under the specified conditions. Isolated yield. ^bReaction conditions: **1** (0.2 mmol), **2a** (0.4 mmol), $B(C_6F_5)_3$ (10 mol%), CH_3NO_2 (1 ml), 120 °C, 10 ml Schlenk tube. °Reaction conditions: **1** (0.2 mmol), **2a** (0.4 mmol), $B(C_6F_5)_3$ (10 mol%), HFIP (1 ml), 15 ml sealed tube, 120 °C.

To provide more insight into the reaction, complex I $(B(C_6F_5)_3-NH_2PMP)$ was synthesized, and the structure was confirmed by single-crystal X-ray analysis (Scheme 6). In a previous report, the generation of an "off-cycle species" between the amine and Lewis catalyst would limit the reaction,^{4,5} but in our system, the N-alkylation and C-alkylation could be catalyzed by complex I, and similar results were achieved. Control experiments indicated that a S_N1 pathway was more reasonable in the alkylated reaction (see Supporting Information).

Scheme 6. The reaction catalyzed by complex I.

The $B(C_6F_5)_3$ -catalyzed alkylation of arylamines with alcohols is assumed to proceed through four steps as shown in Figure 1: (1) alcohol/amine exchange of complex I generates catalyst-alcohol complex II; (2) dissociation of complex II delivers the carbocation; (3) nucleophilic attack of the carbocation by the arylamine produces the N-/C-alkylation intermediates; (4) protolysis of the σ -complex intermediates produces the final N-/C-alkylation products and regenerates $B(C_6F_5)_3$. To verify the feasibility of our proposed catalytic cycle, density functional theory (DFT) calculations with the $M06-2X^{19}$ functional were conducted to evaluate the energy profile and configurational information of the catalytic process. The reaction between model substrates diphenylmethanol (1a) and p-anisidine (2a) in toluene was chosen as the model reaction. Moreover, the temperature was set to 393.15 K, which is consistent with the actual reaction conditions. More computational details are described in the Supporting Information.

Figure 1. Plausible mechanism of the alkylation.

The free energy profile and pivotal transition states along the proposed reaction path are shown in Figure 2, and all structures involved in the catalytic cycle are shown in Figure S1 (see the Supporting Information). The coordination of $B(C_6F_5)_3$ and **2a** is highly exothermic by 16.9 kcal/mol, while the coordination with **1a** is slightly endergonic by 2.4 kcal/mol. This suggests that amine-coordinated catalyst complex **I** is thermodynamically stable; nevertheless, alcohol-amine exchange is also feasible. The subsequent alcohol activation is still endergonic by 11.2 kcal/mol with a barrier of 12.7 kcal/mol, indicating that intermediate complex **III** is metastable and that the formation of the carbocation is the rate-limiting step. In the initial stage of the arylamine alkylation, the

carbocation is stabilized by the p- π conjugated system of 2a via a cation- π interaction. The atom distances involved with the following nucleophilic attack are 3.48 Å for C-N and 3.09 Å for C-C, which are consistent with the both the N-alkylation and Calkylation occurring simultaneously. However, the free energy profile of the two alkylation steps indicates that N-alkylation is absolutely favored over the C-alkylation both thermodynamically and kinetically. The N-alkylation is highly exothermic by 20.8 kcal/mol and was shown to be barrierless by our potential energy surface scan (Figure S2, see the Supporting Information), while the C-alkylation is slightly exothermic by 8.7 kcal/mol with a barrier of 5.2 kcal/mol. It seems that the N-alkylation could be the sole dominant pathway in our system. In the latter stage of the catalytic cycle, proton transfer from ammonium N-alkylation intermediate IV_1 to B_2 is endergonic by 2.0 kcal/mol without a reaction barrier; conversely, a rearomatization process involving a proton transfer from C-alkylation intermediate IV_2 to B_2 is highly exothermic by 16.4 kcal/mol with a negligible barrier of 0.1 kcal/mol. These significant thermodynamic differences facilitate the C-alkylation pathway. After the proton transfer process, hydroxide-coordinated catalyst \mathbf{B}_2 is reverted to watercoordinated complex B_3 . The coordinating free energy of the water molecule and $B(C_6F_5)_3$ is -6.0 kcal/mol, indicating that thermodynamically favored complex I can be generated rapidly via an exchange of arylamine 1a and water. To further illuminate the chemoselectivity in different solvents, the interactions of 2a with solvent molecules are investigated^{10a,20} and the electrostatic potential surfaces of HFIP-2a, 2a and CH₃NO₂-2a complex are displayed in Figure 2C. The arylamine 2a is hydrogen-bonding acceptor in solvent HFIP making the amine group electron-deficient, which can be a severe obstacle for N-alkylation, and the reaction is more likely to undergo Calkylation pathway. But in CH₃NO₂, the arylamine **2a** turns into hydrogen-bonding donor and the amine group is much more electron-rich, which enhances the N-alkylation giving a higher yield of N-alkylated product.

Figure 2. (A) Gibbs free energy profile of $B(C_6F_5)_3$ -catalyzed alkylation of 2a with 1a. (B) 3D-structures of the transition states involved in the reaction process. (C) Electrostatic potential surfaces of HFIP-2a, 2a and CH₃NO₂-2a complex.

In conclusion, efficient N-alkylations and ortho Calkylations of arylamines with controllable chemoselectivity catalyzed by $B(C_6F_5)_3$ using alcohols has been developed. The 1

2

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

59

60

chemoselectivity is controlled by the solvent; CH₃NO₂ gives Nalkylation products, while HFIP, which is protic, is essential for C-alkylation. The reaction features a wide substrate scope and provides convenient access to advanced arylamines. Mechanistic studies and DFT calculations suggest that the reaction might proceed through a four-step mechanism, and the feasibility of N-alkylation and ortho C-alkylation is well demonstrated.

ASSOCIATED CONTENT

The Supporting Information is available free of charge on the ACS Publications website. Experimental details, GCMS, and NMR spectra of products (PDF)

13 Crystallographic data for Complex I (CIF)

AUTHOR INFORMATION

Corresponding Author

Corresponding Author

mengshsh@mail.sysu.edu.cn; zhaojling3@mail.sysu.edu.cn;

chenxz3@mail.sysu.edu.cn.

Author Contributions

The manuscript was written through contributions of all authors. / All authors have given approval to the final version of the manuscript. / ‡ S.-S. Meng and X. Tang contributed equally.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We are grateful to the Research Foundation for Natural Science Foundation of Guangdong Province (2018A0303130178) and Advanced Talents of Sun Yat-sen University (36000-18821101) for financial support of this program. We thank Prof. Yong Liang for the kind suggestion of reaction mechanism.

REFERENCES

[1] (a) Amines: Synthesis Properties and Applications (Ed.: Lawrence, S. A.), Cambridge University Press, Cambridge, 2004; (b) Amino Group Chemistry, From Synthesis to the Life Sciences (Ed.: Ricci, A.), Wiley-VCH, Weinheim, 2007; (c) The Organic Chemistry of Aliphatic Nitrogen Compounds (Ed.: Brown, B. R.) Cambridge University: Cambridge, 2004; d) Catalytic Amination for N-Alkyl Amine Synthesis (Ed.: Shi, F.; Cui X.), Elsevier, 2018.

41 [2] (a) Surry, D. S.; Buchwald, S. L. Biaryl Phosphane Ligands in Palladium-Catalyzed Amination. Angew. Chem. Int. Ed. 2008, 47. 42 6338-6361; (b) Hartwig, J. F. Evolution of a Fourth Generation 43 Catalyst for the Amination and Thioetherification of Aryl Halides. Acc. 44 Chem. Res. 2008, 41, 1534-1544; (c) Bissemner, A. C.; Lundgren, R. 45 J.; Creutz, S. E.; Peters, J. C.; Fu, G. C. Transition-Metal-Catalyzed Alkylations of Amines with Alkyl Halides: Photoinduced, Copper-46 Catalyzed Couplings of Carbazoles. Angew. Chem. Int. Ed. 2013, 52, 47 5129-5133; (d) Peacock, D. M.; Roos, C. B.; Hartwig, J. F. Palladium-48 Catalyzed Cross Coupling of Secondary and Tertiary Alkyl Bromides 49 with a Nitrogen Nucleophile. ACS Cent. Sci. 2016, 2, 647-652.

50 [3] (a) Guillena, G.; Ramón, D. J.; Yus, M. Hydrogen Autotransfer in the N-Alkylation of Amines and Related Compounds using Alcohols 51 and Amines as Electrophiles. Chem. Rev. 2010, 110, 1611-1641; (b) 52 Irrgang, T.; Kempe, R. 3d-Metal Catalyzed N- and C-Alkylation 53 Reactions via Borrowing Hydrogen or Hydrogen Autotransfer. Chem. 54 Rev. 2019, 119, 2524-2549; (c) Bähn, S.; Imm, S.; Neubert, L.; Zhang, M.; Neumann, H.; Beller, M. The Catalytic Amination of Alcohols. 55 ChemCatChem 2011, 3, 1853-1864; (d) Corma, A.; Navas, J.; Sabater, 56 M. J. Advances in One-Pot Synthesis through Borrowing Hydrogen 57 Catalysis. Chem. Rev. 2018, 118, 1410-1459; (e) Yang, Q.; Wang, Q.; 58

Yu, Z. Substitution of alcohols by N-nucleophiles via transition metalcatalyzed dehydrogenation. *Chem. Soc. Rev.* **2015**, *44*, 2305-2329.

[4] (a) Dryzhakov, M.; Richmond, E.; Moran, J. Recent Advances in Direct Catalytic Dehydrative Substitution of Alcohols. Synthesis 2016, 48, 935-959; b) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Bismuth-Catalyzed Direct Substitution of the Hydroxy Group in Alcohols with Sulfonamides, Carbamates, and Carboxamides. Angew. Chem. Int. Ed. 2007, 46, 409-413; (c) Terrasson, V.; Marque, S.; Georgy, M.; Campagne, J.-M.; Prim, D. Lewis Acid-Catalyzed Direct Amination of Benzhydryl Alcohols. Adv. Synth. Catal. 2006, 348, 2063-2067; (d) Zhu, A.; Li, L.; Wang, J.; Zhuo, K. Direct nucleophilic substitution reaction of alcohols mediated by a zinc-based ionic liquid. Green Chem. 2011. 13, 1244-1250; (e) Ohshima, T.; Ipposhi, J.; Nakahara, Y.; Shibuya, R.; Mashima, K. Aluminum Triflate as a Powerful Catalyst for Direct Amination of Alcohols, Including Electron-Withdrawing Group-Substituted Benzhydrols. Adv. Synth. Catal. 2012, 354, 2447-2452; (f) Nayal, O. S.; Thakur, M. S.; Kumar, M.; Kumar, N.; Maurya, S. K. Ligand-free Iron(II)-Catalyzed N-Alkylation of Hindered Secondary Arylamines with Non-activated Secondary and Primary Alcohols via a Carbocationic Pathway. Adv. Synth. Catal. 2018, 360, 730-737.

[5] (a) Zhao, Y.; Foo, S. W.; Saito, S. Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. *Angew. Chem. Int. Ed.* **2011**, *50*, 3006-3009; (b) Du, Y.; Oishi, S.; Saito, S. Selective N-Alkylation of Amines with Alcohols by Using Non-Metal-Based Acid-Base Cooperative Catalysis. *Chem. Eur. J.* **2011**, *17*, 12262-12267.

[6] Sweeney, J. B.; Ball, A. K.; Lawrence, P. A.; Sinclair, M. C.; Smith, L. J. A Simple, Broad-Scope Nickel(0) Precatalyst System for the Direct Amination of Allyl Alcohols. *Angew. Chem. Int. Ed.* **2018**, *57*, 10202-10206.

[7] (a) Alajarin, M.; Bonillo, B.; Ortin, M.-M.; Sanchez-Andrada, P.; Vidal, A.; Orenes, R.-A. Domino reactions initiated by intramolecular hydride transfers from tri(di)arylmethane fragments to ketenimine and carbodiimide functions. *Org. Biomol. Chem.* **2010**, *8*, 4690–4700; (b) Guo, L.; Kong, W.; Xu, Y.; Yang, Y.; Ma, R.; Cong, L.; Dai, S.; Liu, Z. Large-scale synthesis of novel sterically hindered acenaphthenebased α -diimine ligands and their application in coordination chemistry. *J. Organometal. Chem.* **2018**, *859*, 58-67; (c) Cheng, B.; Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. Highly Enantioselective Cobalt-Catalyzed Hydrosilylation of Alkenes. *J. Am. Chem. Soc.* **2017**, *139*, 9439-9442; (d) Cherian, A. E.; Domski, G. J.; Rose, J. M.; Lobkovsky, E. B.; Coates, G. W. Acid-Catalyzed ortho-Alkylation of Anilines with Styrenes: An Improved Route to Chiral Anilines with Bulky Substituents. *Org. Lett.* **2005**, *7*, 5135-5137.

[8] (a) Stephan, D. W. J. Am. Chem. Soc. 2015, 137, 10018-10032; (b)
Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2015, 54, 6400 – 6441; (c) Oestreich, M.; Hermeke, J.; Mohr, J. Chem. Soc. Rev. 2015, 44, 2202-2220.

[9] (a) Fu, M.-C.; Shang, R.; Cheng, W.-M.; Fu, Y. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids. *Angew. Chem. Int. Ed.* **2015**, *54*, 9042-9046; (b) Zhang, Q.; Fu, M.-C.; Yu, H.-Z.; Fu, Y. Mechanism of Boron-Catalyzed N-Alkylation of Amines with Carboxylic Acids. *J. Org. Chem.* **2016**, *81*, 6235-6243; (c) Pan, Y.; Luo, Z.; Han, J.; Xu, X.; Chen, C.; Zhao, H.; Xu, L.; Fan, Q.; Xiao, J. B(C₆F₅)₃-Catalyzed Deoxygenative Reduction of Amides to Amines with Ammonia Borane. *Adv. Synth. Catal.* DOI: 10.1002/adsc.201801447.

[10] (a) Fasano, V.; Radcliffe, J. E.; Ingleson, M. J. B(C₆F₅)₃-Catalyzed Reductive Amination using Hydrosilanes. *ACS Catal.* **2016**, **6**, 1793-1798; (b) Fasano, V.; Radcliffe, J. E.; Ingleson, M. J. Mechanistic Insights into the B(C₆F₅)₃-Initiated Aldehyde-Aniline-Alkyne Reaction To Form Substituted Quinolines. *Organometallics* **2017**, *36*, 1623-1629; (c) Pan, Z.; Shen, L.; Song, D.; Xie, Z.; Ling, F.; Zhong, W. B(C₆F₅)₃-Catalyzed Asymmetric Reductive Amination of Ketones with Ammonia Borane. *J. Org. Chem.* **2018**, *83*, 11502-11509.

[11] (a) Dryzhakov, M.; Hellal, M.; Wolf, E.; Falk, F. C.; Moran, J. Nitro-Assisted Brønsted Acid Catalysis: Application to a Challenging Catalytic Azidation. *J. Am. Chem. Soc.* **2015**, *137*, 9555-9558; (b) Shibuya, M.; Okamoto, M.; Fujita, S.; Abe, M.; Yamamoto, Y. Boron-Catalyzed Double Hydrofunctionalization Reactions of Unactivated Alkynes. *ACS Catal.* **2018**, *8*, 4189-4193; (c) Tiddens, M. R.; Gebbink,

R. J. M. K.; Otte, M. The B(C₆F₅)₃-Catalyzed Tandem Meinwald Rearrangement-Reductive Amination. *Org. Lett.* 2016, *18*, 3714-3717;
(d) Meng, S.-S.; Wang, Q.; Huang, G.-B.; Lin, L.-R.; Zhao, J.-L.; Chan, A. S. C. B(C₆F₅)₃ catalyzed direct nucleophilic substitution of benzylic alcohols: an effective method of constructing C-O, C-S and C-C bonds from benzylic alcohols. *RSC Adv.*, 2018, *8*, 30946–30949.
[12] Y. D. Bardshen, M. D. B. H. C. M. S. C. M. C. M.

1

2

3

4

60

5 [12] (a) Dryzhakov, M.; Richmond, E.; Li, G.; Moran, J. Catalytic B(C₆F₅)₃•H₂O-promoted defluorinative functionalization of tertiary 6 aliphatic fluorides. J. Fluorine Chem. 2017, 193, 45-51; (b) San, H. H.; 7 Wang, S.-J.; Jiang, M.; Tang, X.-Y. Boron-Catalyzed O-H Bond 8 Insertion of α-Aryl α-Diazoesters in Water. Org. Lett. 2018, 20, 4672-9 4676; (c) Li, W.; Werner, T. B(C₆F₅)₃-Catalyzed Michael Reactions: Aromatic C-H as Nucleophiles. Org. Lett. 2017, 19, 2568-2571; (d) 10 Khan, I.; Manzotti, M.; Tizzard, G. J.; Coles, S. J.; Melen, R. L.; 11 Morrill, L. C. Frustrated Lewis Pair (FLP)-Catalyzed Hydrogenation of 12 Aza-Morita-Baylis-Hillman Adducts and Sequential Organo-FLP 13 Catalysis. ACS Catal. 2017, 7, 7748-7752; (e) Zhu, W.; Sun Q.;; Wang, 14 Y.; Yuan, D.; Yao, Y. Chemo- and Regioselective Hydroarylation of Alkenes with Aromatic Amines Catalyzed by [Ph₃C][B(C₆F₅)₄]. Org. 15 Lett. 2018, 20, 3101-3104; (f) Tian, J.-J.; Zeng, N.-N.; Liu, N.; Tu, X.-16 S.; Wang, X.-C. Intramolecular Cyclizations of Vinyl-Substituted 17 N,N-Dialkyl Arylamines Enabled by Borane-Assisted Hydride 18 Transfer. ACS Catal. 2019, 9, 295-300; (g) Hoshimoto, Y.; Ogoshi, S. Triarylborane-Catalyzed Reductive N-Alkylation of Amines: A 19 Perspective. ACS Catal. 2019, 9, 5439-5444.

Perspective. ACS Catal. 2019, 9, 5439–5444.
[13] Wang, G.; Gao, L.; Chen, H.; Liu, X.; Cao, J.; Chen, S.; Chen, X.; Li, S. Chemoselective Borane-Catalyzed Hydroarylation of 1,3-Dienes with Phenols Angew. Chem. Int. Ed. 2019, 58, 1694–1699.

[14] (a) Yu, Z.; Li, Y.; Shi, J.; Ma, B.; Liu, L.; Zhang, J. (C₆F₅)₃B
Catalyzed Chemoselective and *ortho*-Selective Substitution of Phenols
with a-Aryl a-Diazoesters. *Angew. Chem. Int. Ed.* 2016, 55, 14807 –
14811; (b) Yu, Z.; Ma, B.; Chen, M.; Wu, H.-H.; Liu, L.; Zhang, J.
Highly Site-Selective Direct C-H Bond Functionalization of Phenols
with α-Aryl-α-diazoacetates and Diazooxindoles via Gold Catalysis. *J. Am. Chem. Soc.* 2014, *136*, 6904-6907; c) Rao, S.; Kapanaiah, R.;
Prabhu, K. R. Boron-Catalyzed C-C Functionalization of Allyl

Alcohols. Adv. Synth. Catal. 2019, 361, 1301-1306.
[15] Wencel-Delord, J.; Colobert, F. A remarkable solvent effect of fluorinated alcohols on transition metal catalysed C-H functionalizations. Org. Chem. Front., 2016, 3, 394–400.

[16] (a) Qi, C.; Gandon, V.; Lebœuf, D. Calcium(II)-Catalyzed Intermolecular Hydroarylation of Deactivated Styrenes in Hexafluoroisopropanol. *Angew. Chem. Int. Ed.* 2018, *57*, 14245 – 14249; (b) Richmond, E.; Vuković, V. D.; Moran, J. Nucleophilic Ring Opening of Donor-Acceptor Cyclopropanes Catalyzed by a Brønsted Acid in Hexafluoroisopropanol. *Org. Lett.* 2018, *20*, 574-577; (c) Li, S.-S.; Lv, X.; Ren, D.; Shao, C.-L.; Liu, Q.; Xiao, J. Redox-triggered cascade dearomative cyclizations enabled by hexafluoroisopropanol. *Chem. Sci.* **2018**, *9*, 8253–8259.

[17] (a) Kang, S. H.; Kang, S. Y.; Lee, H.-S.; Buglass, A. J. Total Synthesis of Natural *tert*-Alkylamino Hydroxy Carboxylic Acids. *Chem. Rev.* **2005**, *105*, 4537-4558; (b) Hager, A.; Vrielink, N.; Hager, D.; Lefranc, J.; Trauner, D. Synthetic approaches towards alkaloids bearing α -tertiary amines. *Nat. Prod. Rep.* **2016**, *33*, 491-522; (c) Mailyan, A. K.; Eickhoff, J. A.; Minakova, A. S.; Gu, Z.; Lu, P.; Zakarian, A. Cutting-Edge and Time-Honored Strategies for Stereoselective Construction of C–N Bonds in Total Synthesis. *Chem. Rev.* **2016**, *116*, 4441-4557.

[18] (a) Zhang, C.-L.; Ye, S. N-Heterocyclic Carbene-Catalyzed Construction of 1,3,5-Trisubstituted Benzenes from Bromoenals and α-Cyano-β-methylenones. *Org. Lett.* **2016**, *18*, 6408-6411; (b) Naka, H.; Uchiyama, M.; Matsumoto, Y.; Wheatley, A. E. H.; McPartlin, M.; Morey, J. V.; Kondo, Y. *J. Am. Chem. Soc.* **2007**, *129*, 1921-1930.

[19] (a) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Theory. Comput. 2006, 2, 364-382; (b) Zhao, Y.; Truhlar, D. G.; A new local density functional for maingroup thermochemistry, transition metalbonding, thermochemical kinetics, and noncovalent interactions J. Chem. Phys. 2006, 125, 194101-194118; (c) Zhao, Y.; Truhlar, D. G. Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States. J. Phys. Chem. A 2006, 110, 13126-13130; (d) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215-241.

[20] (a) Berkessel, A.; Adrio, J. A.; Hüttenhain, D.; Neudörf, J. M. "Booster Effect" of Fluorinated Alcohol Unveiling the Solvents: Aggregation-Induced Conformational and Changes Cooperatively Enhanced H-Bonding. J. Am. Chem. Soc. 2006, 128, 8421-8426; (b) Berkessel, A.; Adrio, J. A. Dramatic Acceleration of Olefin Epoxidation in Fluorinated Alcohols: Activation of Hydrogen Peroxide by Multiple H-Bond Networks. J. Am. Chem. Soc. 2006, 128, 13412-13420; (c) Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. J. Am. Chem. Soc. 2003, 125, 12672-12673; (d) Etter, M. C.; Urbañczyk-Lipkowska, Z.; Zia-Ebrahimi, M.; Panunto, T. W.; Hydrogen Bond Directed Cocrystallization and Molecular Recognition Properties of Diarylureas. J. Am. Chem. Soc. 1990, 112, 8415-8426.

