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Abstract: L-Rhamnose was converted, over a 13-step-sequence,
into 2¢-O-acetyl-N2-(N,N-dimethylaminomethylene)-1¢-O-(4-meth-
oxybenzyl)-3-[2-(4-nitrophenyl)ethyl]-L-biopterin, an appropriate-
ly protected precursor of 1¢-O- and 2¢-O-monoglycosyl-L-biopterin.
Thus, the first selective synthesis of these L-biopterin glycosides
was accomplished by treatment of the precursor with either DDQ or
sodium methoxide, then with tetra-O-benzoyl-a-D-glucopyranosyl
bromide in the presence of silver triflate and tetramethylurea, fol-
lowed by removal of the remaining protecting groups.

Key words: L-biopterin glycosides, limipterin, glycosylations,
pteridine, protecting groups

Various pterin derivatives have been isolated from many
living organisms, including microorganisms, algae, in-
sects, fish, amphibians, and mammals.1 Among the pterin
derivatives, L-biopterin (1) is the most abundant of the
naturally occurring pterins found in human urine2 and
exhibits enzyme cofactor activity in hydroxylation of aro-
matic amino acids as the form of its tetrahydro derivative.3

Meanwhile, pterin glycosides having various kinds of
sugars attached to the side-chain at C-6 of the pteridine
ring were found to be produced by some prokaryotes. For
example, 2¢-O-(a-D-glucopyranosyl)-L-biopterin (2) was
isolated from cyanobacterium, Anacystis nidulans,4 Syn-
echococcus sp. PCC 7942,5 and Spirulina (Arthrospira)
platensis,6 whereas limipterin [2¢-O-(2-acetamido-2-
deoxy-b-D-glucopyranosyl)-L-biopterin] (3) was isolated
from a green sulfur photosynthetic bacterium Chlorobium
limicola f. thiosulfatophilum NCIB 8327 (Figure 1).7 Be-
sides these glycosides of L-biopterin, some glycosides of
other pterin derivatives have also been found in nature8

and some of them have remained obscure as for the
anomeric structure of the sugar moiety and the position of
the pterin moiety where the sugar attaches.9

Efficient preparation of various types of glycosides of
biopterin and related pterins by glycosylation has not been
achieved so far, despite considerable interest from the
viewpoint of their physiological function and biological
activities as well as the structural proof of hitherto
reported natural products. Although we reported the
synthesis of 2¢-O-(D-glucopyranosyl)-L-biopterins,10 gly-
cosylation of N2-(N,N-dimethylaminomethylene)-3-[2-(4-
nitrophenyl)ethyl]-L-biopterin (4) was not obtained with
high selectivity: e.g., treatment of 4 with tetra-O-benzoyl-
a-D-glucopyranosyl bromide11 (3 mol equiv) in the pres-
ence of tin(IV) chloride afforded 2¢-O-(b-D-gluco-
pyranosyl)-L-biopterin (5a, 41% yield), together with the
1¢-O-glycosyl isomer 5b (15%) and the 1¢,2¢-di-O-glyco-
syl derivative 5c (14%; Scheme 1).

Scheme 1

This result prompted us to undertake an effective prepara-
tion of 1¢-O- and 2¢-O-monoprotected L-biopterin deriva-
tives as the potential key precursors to achieve the
selective 2¢-O- and 1¢-O-monoglycosylation. Although
synthetic procedures for biopterin itself12 and protection
of the pyrimidine ring moiety13 were well documented,
preparation of biopterin derivatives whose one hydroxy
group of the side-chain diols is protected has not been
reported yet, to the best of our knowledge. Taking into
consideration the available combination of protecting
groups employed for the synthetic pathways, we have
chosen p-methoxybenzyl (PMB) group for protection of
1¢-hydroxy group, since its cleavage can be effectively
performed under specific conditions14 that cause no
disruption of the rest of the molecule. We now describe
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herein the preparation of a novel versatile 2¢-O-acetyl-1¢-
O-PMB-L-biopterin derivative and the first selective
glycosylation of L-biopterin.

Since no example of 3-O-protected 5-deoxy-L-arabinoses
has been reported so far, we designed a synthetic route for
the key intermediate 5-deoxy-3-O-PMB-L-arabinose (11)
by starting from L-rhamnose (Scheme 2). Thus, glyco-
sidation of L-rhamnose with allyl alcohol and the sub-
sequent acetalation with 2,2-dimethoxypropane provided
allyl 2,3-O-isopropylidene-a-L-rhamnopyranoside (6,15

80%) together with the corresponding b-anomer (8%).
Treatment of 6 with p-methoxybenzyl chloride and sodi-
um hydride in DMF gave the 4-O-PMB derivative 7. Con-
version of the allyl glycoside 7 into the 1-propenyl
glycoside with potassium tert-butoxide in DMSO, fol-
lowed by hydrolysis in 70% acetic acid,16 afforded 4-O-
PMB-L-rhamnopyranose (8).

The cleavage of C-1 of 8 was achieved by application of
the Hough and Taylor’s procedures17 with a slight modi-
fication. Namely, treatment of 8 with ethanethiol in the
presence of tosylic acid in acetic acid gave the dithioacetal
9, which was then oxidized with m-chloroperbenzoic acid
(MCPBA) to the corresponding sulfone 10. Degradation
of 10 with dilute aqueous ammonia afforded 5-deoxy-3-
O-PMB-L-arbinofuranose (11).

The selective oxidation for the 2-hydroxy group of 11
with cupric acetate18 provided the L-erythro-pentos-2-ul-
ose derivative 12. The pteridine ring formation of 12 with

2,5,6-triamino-4-hydroxypyrimidine sulfate was carried
out in aqueous sodium bicarbonate solution to give an in-
separable mixture of the 6-substituted pterin 13a and its 7-
substituted isomer 13b.19 These products were separated
and characterized after having been converted into the ful-
ly-protected derivatives 14a,b by the following three
steps. Namely, treatment of 13a,b with N,N-dimethylfor-
mamide dimethyl acetal in DMF, the following acetyla-
tion of a hydroxy group afforded 2¢-O-acetyl-N2-(N,N-
dimethylaminomethylene)-1¢-O-PMB derivatives, whose
N-3 position was then protected with 2-(4-nitrophe-
nyl)ethyl (NPE) group by Mitsunobu reaction with NPE
alcohol in the presence of triphenylphoshine and diethyl
azodicarboxylate (DEAD) to provide 14a and 14b. These
products were separated by column chromatography over
silica gel into the desired 6-substituted pterin (L-biopter-
in) derivative 14a (53% overall yield from 12) and the 7-
substituted (L-primapterin) derivative 14b (15%).

The structural assignment of 14a and 14b was achieved
primarily on the basis of their 13C NMR spectral data.20

The signals of C-6 and C-7 of 6-alkylkylpteridines gener-
ally appear at a similar field, whereas C-7 signals of 7-
alkyl derivatives shifts to a lower field (ca. 20 ppm) from
those of C-6.21 Therefore, the close values of 14a (C-6:
d = 150.71 ppm, C-7: d = 149.88 ppm) and the distant
values of 14b (C-6: d = 140.92 ppm, C-7: d = 159.98 ppm)
indicate the 6-substituted pterin for the former and the 7-
substituted pterin for the latter.

Scheme 2
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Deprotection of 2¢-O-acetyl-1¢-O-PMB-L-biopterin deriv-
ative 14a was then carried out under mutually exclusive
conditions to give the mono-O-protected compounds
(Scheme 3). Namely, methanolysis of 14a in the presence
of sodium methoxide provided the 1¢-O-PMB derivative
15, while treatment of 14a with 2,3-dichloro-5,6-dicyano-
1,4-benzoquinone (DDQ) afforded the 2¢-O-acetyl com-
pound 16. The partially protected pterins 15 and 16 are
important precursors for the 2¢- and  1¢-O-monoglycosyl
derivatives, respectively. In addition, these compounds
have such an advantage as to be sufficiently soluble in
dichloromethane, although pterin derivatives having the
side chain diols are sparingly soluble in nonpolar aprotic
solvents.

Efficient glycosylation of 15 was exemplified by the con-
densation with tetra-O-benzoyl-a-D-glucopyranosyl bro-
mide in the presence of silver triflate22 and
tetramethylurea (TMU) in dichloromethane at room tem-
perature for three hours, affording 2¢-O-(2,3,4,6-tetra-O-
benzoyl-b-D-glucopyranosyl)-L-biopterin derivative (17)
as a sole product in 75% yield. The similar treatment of 16
afforded 1¢-O-glycosyl analogue 18 in 73% yield. More-
over, glycosylation of 15 with 1,3,4,6-tetra-O-acetyl-2-
deoxy-2-phthalimindo-b-D-glucopyranosyl bromide23

provided 2¢-O-(1,3,4,6-tetra-O-acetyl-2-deoxy-2-phthali-
mindo-b-D-glucopyranosyl)-L-biopterin derivative 20 in
77% yield.24 Cleavage of PMB group of 17 and 20 was

performed by use of DDQ without harming glycosyl link-
age, affording 5a and 21, respectively.

Removal of the protecting groups of 5a and 18 was carried
out by the successive treatment with sodium methoxide
(to cleave all acyl groups), aqueous ammonia (to cleave
the N,N-dimethylaminomethylene group), and then DBU
(to cleave the NPE group) to give 2¢-O-(b-D-glucopyrano-
syl)-L-biopterin (2b) and its 1¢-O-glycosyl analogue 19 in
ca. 90% (overall yield from 5a and 18), respectively.
Similarly, removal of the phthaloyl group and the N,N-
dimethylaminomethylene group of 21 with methylamine,
followed by the action of acetic anhydride, afforded the
fully-acetylated derivative, which was then treated with
aqueous ammonia and then with DBU to give limipterin
(3) in 86% (overall yield from 21).

In summary, we have developed a novel effective way for
selective preparation of L-biopterin glycosides via 2¢-O-
acetyl-1¢-O-PMB-L-biopterin derivative 14a. The 1¢-O-
PMB derivatives 15 and the 2¢-O-acetyl compounds 16
derived from 14a are regarded as highly useful precursors
respectively for the 2¢- and 1¢-O-glycosyl-L-biopterin de-
rivatives having various types of sugar moiety.
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