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The copper-catalyzed one-step synthesis of 2,3-disubstituted
indoles from readily available starting materials, 2-iodoani-
line and various β-keto esters was described. The advantage
of this method is the use of cheap catalysts and simple exper-
imental procedures under mild reaction conditions. As the
substituted indole derivatives are important starting materi-

Indole derivatives are widely distributed in nature[1] and
are known to be an important structural unit for the devel-
opment of pharmaceuticals,[2] agrochemicals,[3] material sci-
ences[4] and perfumes.[5] For over a hundred years, the syn-
thesis of indoles has been an important area of focus for
organic chemists, and a huge amount of methods for the
synthesis of indoles have been demonstrated.[6] However, it
was noted that in some cases, specific substitution patterns
remain difficult to obtain by standard indole-forming reac-
tions so the search for new methodologies for the synthesis
of indole derivatives is still an important task in synthetic
organic chemistry.[6] In this paper, we would like to describe
the one-step synthesis of 2,3-disubstituted indoles by a cop-
per-catalyzed[7] domino reaction of 2-iodoaniline and β-
keto esters (Scheme 1).[8] 2,3-Disubstituted indole substruc-
tures are widely distributed in nature as indole alkaloids
and drugs, for example, vinblastine, reserpine, okaramines
and indomethacin, so that it seems necessary to develop a
mild and flexible method for the synthesis of such com-
pounds.[6]

Scheme 1. Copper-catalyzed one-step indole-forming reaction.

Table 1 shows the reaction conditions investigated in the
reaction of 2-iodoaniline with methyl acetoacetate as a
model case. The reactions of aromatic halides with soft car-
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als for the synthesis of biologically active indole alkaloids
and drug candidates, this method would have potential us-
age for above purpose.
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bon nucleophiles such as malonic acid esters[9] and β-keto
esters[10] have been reported and the conditions were helpful
for our present investigations. It was found that the choice
of additives (Table 1, Entries 1, 2, 5, 6, 8 and 9), base
(Table 1, Entries 9, 10 and 11), and solvent (Table 1, En-
tries 6 and 7) was crucial in this reaction. When the reaction
was carried out at 50 °C with the use of 10 mol-% CuI and
K2CO3 (1 equiv.), indole 3 was produced in 35% yield
(Table 1, Entry 1). The yield decreased in the presence of
proline as an additive[11a] (Table 1, Entry 2), although it in-
creased when the catalyst loading was increased to 20 mol-
% with a longer reaction time (Table 1, Entry 3). Good con-
version was achieved with the use of strong base (NaH) and
50 mol-% CuI (Table 1, Entry 4) even at room temperature.
When other additives such as ethylenediamine,[11h] N-meth-
ylglycin[11a] and 2-thenoic acid[11b] were used, moderate-to-
good yields (26 to 66%) were observed (Table 1, Entries 5
to 8). As a result, the reaction proceeded smoothly at 50 °C
with the use of 10 mol-% CuI and 20 mol-% of BINOL[11d]

(racemate) with cesium carbonate (1 equiv.) as the base in
DMSO to produce indole 3 in 79% isolated yield (Table 1,
Entry 11).[12]

Next, we investigated the reaction using a variety of β-
keto esters[13] under the optimized conditions. It was found
that β-keto esters including branched and bulky substitu-
ents (Table 2, Entries 2 and 3), terminal alkenes (Table 2,
Entry 4), long chains (Table 2, Entries 5 and 6), aromatic
rings (Table 3, Entries 1 and 2) and heteroaromatic rings
(Table 3, Entries 3–5) were feasible for the present reaction
to give the corresponding indoles in moderate-to-excellent
yields.[14]

In summary, we have developed a cheap and simple way
to synthesize 2,3-disubstituted indoles under mild reaction
conditions based on a copper-catalyzed Ullmann-type
coupling reaction. The mechanistic investigation of this
process is now underway.
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Table 1. Reaction of 2-iodoaniline with methyl acetoacetate.

[a] Isolated yield. [b] Isolated yield based on 2-iodoaniline (1) consumed.

Table 2. Synthesis of 2-alkyl-3-methoxycarbonylindole derivatives.
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Table 2. (continued)

[a] Isolated yield based on 2-iodoaniline (1) consumed. [b] 2 equiv. of β-keto ester 4 was used.

Table 3. Synthesis of 2-aryl/heteroaryl-3-methoxycarbonylindole derivatives.

[a] Isolated yield based on 2-iodoaniline (1) consumed. [b] Yield not optimized. [c] 2 equiv. of β-keto ester 4 was used.
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