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A simple and efficient reaction was developed for the synthesis of dibenzazepine lactam 
derivatives. The core 7-membered azepine ring was formed by a stepwise sequence involving 
a palladium-catalyzed amination and an aldol condensation.

Keywords

Dibenzazepine; Pd-catalyzed amination; Aldol condensation; Polycyclic compound

Bioactive molecules possessing a dibenz[b,f]azepine scaffold play an important role in drug 
discovery.1, 2 The unique tricyclic dibenzazepine ring system lies at the heart of a wide array of 
constitutionally diverse compounds exhibiting profound therapeutic properties.3 This class of 
dibenzazepines, which includes carbamazepine (1),4 oxcarbazepine (2),5 eslicarbazepine 
acetates (3),6 trimipramine (4),7 and clozapine (5),8 show antimicrobial, antifungal, antioxidant, 
antiepileptic, and anticonvulsant, as well as anticancer activities (Figure 1).
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Figure 1. Pharmaceutical and bioactive compounds possessing a dibenzazepine scaffold.
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Scheme 1. Synthetic strategies for accessing dibenzazepine lactam analogues.

As part of our work for the construction of polycyclic compounds for inclusion in libraries,9 a 



series of dibenzoxepines 8 were prepared via a one-pot aldol condensation and metal-free 
etherification (Scheme 1a).9e In addition, we developed a highly efficient synthesis of 
dibenzoxepine lactam 10 based on a one-pot Ullmann coupling reaction and an aldol 
condensation.9f Inspired  by these developments, we envision that the formation of more 
challenging dibenzazepine lactam 13 could be achievable. However, the first attempt with 4-
aminoindolinone 11 and 2-bromobenzaldehyde 7 failed to provide any desired product, 
presumably due to the rapid formation of the imine between the amine and aldehyde groups. 
Instead, acetal-protected arylbromide 12 was selected as a coupling partner for the Pd-catalyzed 
amination (Scheme 1b). Here, we present the first synthesis of dibenzazepine lactams from 4-
aminoisoindolin-1-ones. 

Table 1. Optimization of Pd-catalyzed amination reaction conditionsa
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Entry Pd Ligand Base Yield (%)
1 Pd(OAc)2 BINAP NaOtBu 27
2 Pd(OAc)2 BINAP K3PO4 29
3 Pd(OAc)2 BINAP K2CO3 6
4 Pd(OAc)2 BINAP Cs2CO3 80
5 Pd2(dba)3 BINAP Cs2CO3 86
6 PdCl2(CH3CN)2 BINAP Cs2CO3 57
7 Pd(PPh3)4 BINAP Cs2CO3 39
8 Pd(OAc)2 DPEphos Cs2CO3 77
9 Pd(OAc)2 Xantphos Cs2CO3 50
10 Pd(OAc)2 Davephos Cs2CO3 58
11 Pd(OAc)2 Cy-Johnphos Cs2CO3 28
12 Pd(OAc)2 X-Phos Cs2CO3 88
13 Pd(OAc)2 S-Phos Cs2CO3 92
14 Pd(OAc)2 DIOP Cs2CO3 49
15 Pd(OAc)2 dppf Cs2CO3 33
16 Pd2(dba)3 S-Phos Cs2CO3 59

a Reaction conditions: Amino-isoindol-1-one (0.6 mmol), ArBr (0.5 mmol), Pd (3.0 mol %), 
ligand (4.5 mol %), base (1.4 equiv), toluene (3.0 mL), microwave 150 oC, 20 min.

Based on our previous work on microwave-promoted palladium-catalyzed aminations of 
arylhalides,10 we investigated the reaction of 4-amino-2-methylisoindolin-1-one (11a) with 
arylbromide 12a in the presence of a Pd catalyst (Table 1).11 The reaction using Pd(OAc)2 in 
combination with BINAP and NaOtBu in toluene gave 14a in a low yield (entry 1). Changing 
the base dramatically impacted the yields. The catalytic system with K3PO4 and K2CO3 



provided 14a in a low yield (entries 2 and 3), but a great improvement was observed with 
Cs2CO3 in 80% yield (entry 4). Next, screening palladium sources revealed Pd2(dba)3 as the 
most active catalyst, as it provided an 86% yield (entries 4 – 7). Although Pd2(dba)3 showed 
slightly better result, we decided to use Pd(OAc)2 as the easy-to-handle catalyst. Furthermore, 
we screened a wide range of phosphine ligands with Pd(OAc)2 as the catalyst (entries 8-15). 
Among the tested ligands, biaryl-based X-Phos and S-Phos proved to be very effective, 
providing 88% and 92% yields, respectively (entries 12 and 13). Additionally, the combination 
of Pd2(dba)3 and S-Phos gave 14a in 59% yield. 
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Scheme 2. Substrate scope for the Pd-catalyzed amination. a Reaction conditions: Amino-
isoindol-1-one (0.6 mmol), ArBr (0.5 mmol), Pd(OAc)2 (3.0 mol %), S-Phos (4.5 mol %), 
Cs2CO3 (1.4 equiv), toluene (3.0 mL), microwave 150 oC, 20 min.

With an effective catalytic system in hand (Pd(OAc)2, S-Phos, and Cs2CO3), we then explored 
the scope of the amination reaction (Scheme 2). The coupling reactions of 11a with halo- or 
methyl-substituted arylbromides 12b-d proceeded smoothly to provide corresponding products 
14b-d in 93-98% yields. When highly electron-rich dimethoxyphenylbromide 12e was used, 
the reaction was less effective, and 14e was obtained in 64% yield. This coupling reaction was 
also expanded to naphthyl- and heteroaryl-bromides, including pyridine and thiophene 
derivatives, which provided good to excellent yields. Interestingly, the 1-PMB-substituted 
derivative of 4-aminoindolin-1-one provided desired product 14i in 98% yield. Substrate 4-(N-
methylamino)indolin-1-one 11c was compatible with this transformation, albeit giving 14j in 
a 45% yield. Additionally, the use of 5-chloro-substituted 11d was well tolerated and provided 
14k in good yield.

Table 2. Optimization of the reaction conditions for the base-mediated aldol condensationa
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Entry Base (equiv) Temp (oC) Time (h) Yield (%)
1 10% NaOH (3.0) 70 2 10
2 NaOtBu (3.0) 70 2 56
3 K2CO3 (3.0) reflux 4 34
4 K2CO3 (3.0) reflux 12 98
5 Cs2CO3 (3.0) reflux 12 98
6b K2CO3 (3.0) reflux 12 98

a Reaction conditions: aldehyde 15a (0.3 mmol), base (3 equiv), EtOH (6 mL). b The one-pot 
reaction was proceeded directly from 14a without isolation of 15a (reaction conditions: 14a 
(0.3 mmol), p-TsOH (1 equiv), EtOH/H2O (2.0 mL/2.0 mL), rt, 10 min, then K2CO3 (3 equiv), 
EtOH (6.0 mL), reflux, 12 h)

Next, the removal of the acetal protecting groups was easily accomplished in quantitative yields 
by using standard acidic conditions. The subsequent aldol cyclization was examined under 
basic conditions (Table 2). Among the various inorganic bases screened, both K2CO3 and 
Cs2CO3 afforded cyclic product 13a in an excellent yield. Then, we further investigated a one-
pot tandem process for the acetal deprotection and aldol condensation. Applying the conditions 
reported for the acid/base-promoted aldol condensation reaction,9d 14a afforded expected 



product 13a in yield compatible to that obtained when the two reactions are conducted 
separately (Table 2, entry 6).  
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Scheme 3. Substrate scope for the one-pot aldol condensation. a Reaction conditions: acetal 
(0.3 mmol), p-TsOH (1 equiv), EtOH/H2O (2.0 mL/2.0 mL), rt, 10 min, then K2CO3 (3 equiv), 
EtOH (6.0 mL), reflux, 12 h.



Under the optimized conditions for the one-pot deprotections/aldol condensation, the 
intramolecular cyclization occurred smoothly to furnish the desired dibenzazepine lactams 
(Scheme 3). When electron-rich methyl (13c) and dimethoxy (13e) groups were used, the 
corresponding products were obtained in excellent yields. Electron-withdrawing substituents 
including halogens (13b, 13d, and 13k) were well tolerated. In addition, heteroaryl substituents 
(14f–h) also proved suitable, leading to heterodibenzazepine lactams 13f–h in reasonable to 
good yields. Notably, N-PMB protected lactam 14i smoothly afforded corresponding 
dibenzazepine lactam 13i in 98% yield. The cyclization of 14j with tertiary-methylamine 
effectively gave 13j in 65% yield.

In summary, we have developed an efficient synthesis of dibenzazepine lactams via a Pd-
catalyzed amination of 4-amino-1-isoindolones with acetal-protected aryl bromides, followed 
by a one-pot deprotection/aldol condensation. Biological evaluations of these derivatives for 
pharmaceutical use are currently underway.
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