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Trisubstituted N-benzylpyrrole derivatives were synthesized
through a one-pot four-component reaction from ¢-keto esters,
benzylamines, aromatic aldehydes, and nitromethane in the
presence of 10mol% bromodimethylsulfonium bromide
(BDMS) as catalyst at room temperature. Some of the salient
features of the present protocol are simple and mild reaction
conditions, good yields, and applicability with a wide range of
substrates.

Multicomponent reactions (MCRs) are a well-recognized
synthetic strategy to synthesize complex bioactive molecules
from readily available starting materials in a single step due to
simplicity, superior atom-economy, low costs, high substrates
variability, and bond-forming efficiency (BFE).1­4 Pyrrole
constitutes an important class of heterocyclic5 compounds,
which are widely distributed in nature,6 valuable building blocks
for synthesizing conducting polymers,7­9 and synthetic pharma-
ceuticals.10 Among them, substituted pyrroles possess anti-
mycobacterial, antibiotic, antioxidant, and cytotoxic properties11

as shown in Figure 1.
They are usually synthesized12 by well-known reactions

namely the Hantzsch13,14 or Knorr15,16 or Paal­Knorr17,18

reaction. Recently substituted pyrroles were synthesized pref-
erably from ¢-diketones, aromatic aldehydes, primary amine,
and nitroalkane with various metal catalyst such as FeCl3,19 the
palladium-mediated Suzuki coupling,20 NiCl2¢6H2O,21 iodine,22

ionic liquid [Hbim]BF4,23 and solid-phase synthesis.24 Some
of these procedures have disadvantages such as harsh condi-
tions,19­24 prolonged reaction time, and use of expensive metal
namely palladium. Though these methods are quite useful, there
is further scope to develop a synthetic methodology which might
work under mild reaction conditions. Interestingly, the synthesis
of highly substituted pyrroles using ¢-keto esters is relatively
less explored. As a part of our ongoing research program to
develop new methodologies, we showed that bromodimethyl-
sulfonium bromide (BDMS) is a useful catalyst in organic
synthesis,25,26 and its usefulness was also exploited by others in
recent times.27 We also demonstrated that it is an efficient
catalyst for a diverse range of multicomponent reactions.26c,26d

In this letter, we would like to disclose BDMS-catalyzed one-pot
four-component synthesis of substituted pyrrole derivatives
using ¢-keto esters, benzylamines or substituted benzylamines,
aromatic aldehydes, and nitromethane as shown in Scheme 1.

To find suitable reaction conditions, a mixture of methyl
acetoacetate (1a), benzylamine (2a), and 4-fluorobenzaldehyde
(3a) in nitromethane (4) at room temperature was examined in
the presence of 5, 10, and 15mol% BDMS, respectively, and the
results are summarized in Table 1. It was observed that 10mol%
BDMS is sufficient to provide the best result in terms of yield
and reaction time.
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Figure 1. Some biologically active substituted pyrroles.
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Scheme 1. Synthesis of substituted pyrroles.

Table 1. Optimization of reaction conditions for the synthesis
of substituted pyrrolea

N H

5a

Me

F

O
MeO

NH2
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+

Catalyst

room temperature

1a

4

CHO

F

2a

MeNO2

3a

S.No Catalyst
Catalyst

amount/mol%
Time/h Yieldb/%

1 No catalyst ® 24 NR
2 BDMS 5 9 65
3 BDMS 10 7 78
4 BDMS 15 8 75
5 48% aq. HBr 10 14 41
6 TBATB 10 12 55
7 HClO4 5 16 30
8 CSA 10 18 21

aThe reactions were carried out using 1mmol of each methyl
acetoacetate (1a), benzylamine (2a), and 4-fluorobenzaldehyde
(3a) in 1mL of nitromethane (4) at room temperature. bIsolated
yield.
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The reactions were also scrutinized in different solvents
such as CH3CN, THF, DMF, and MeOH using 1 equivalent of
nitromethane at room temperature using 10mol% BDMS as
catalyst, and it afforded lower yields as well as required longer
reaction times. It is noteworthy to mention that nitromethane acts
as reagent-cum-solvent in the present protocol. The isolated
product 5a was characterized from 1HNMR in which the H-5
proton appears at ¤ 6.56 ppm as a singlet whereas the C-5 carbon
signal comes at ¤ 110.9 ppm.

After optimization, the reactions were examined with
methyl acetoacetate (1a), benzylamine (2a) and with various
aromatic aldehydes such as 4-chlorobenzaldehyde, benzalde-
hyde, furan-2-carbaldehyde in nitromethane (4) in the presence
of 10mol% BDMS at room temperature and the desired
products 5b­5d were isolated in 68­72% yields (Table 2,
Entries 2­4). Similarly, 4-methylbenzylamine (2b), methyl
acetoacetate (1a), and 4-chlorobenzaldehyde afforded the de-
sired product 5e in 75% yield (Table 2, Entry 5) under identical
reaction conditions.

The scope of the present protocol was further examined by
carrying out reactions with methyl acetoacetate (1a) and (R)-
(+)-¡-methylbenzylamine (2c) with various aromatic aldehydes
having substituents Me, OMe, NO2, Br, and F in the aromatic
ring under similar reaction conditions and the products 5f­5k
were obtained in good yields (Table 2, Entries 6­11). Likewise,
a reaction with 2-naphthaldehyde, methyl acetoacetate (1a), (R)-
(+)-¡-methylbenzylamine (2c), and nitromethane under identi-
cal reaction conditions provided the desired product 5l in 62%
yield (Table 2, Entry 12). In addition, a wide variety of ¢-keto
esters such as ethyl acetoacetate (1b), allyl acetoacetate (1c), and
t-butyl acetoacetate (1d) and different aromatic aldehydes such
as 4-fluorobenzaldehyde, 3-hydroxybenzaldehyde, and 4-bro-
mobenzaldehyde were treated with (R)-(+)-¡-methylbenzyl-
amine (2c) and nitromethane under similar reaction conditions,
respectively, and the desired products 5m­5p were obtained in
good yields (Table 2, Entries 13­16). Similarly, methyl aceto-
acetate (1a) or ethyl acetoacetate (1b), (S)-(¹)-¡-methylbenzyl-
amine (2d), nitromethane reacted with various aromatic alde-
hydes having substituents such as Cl, Me, OH, OMe, NO2, and
F on the aromatic ring under similar reaction conditions and
the required products 5q­5w were isolated in 58­78% yield
(Table 2, Entries 17­23).

Furthermore, the reaction was also examined with cyclo-
hexylamine (2e), methyl acetoacetate (1a), and 4-chlorobenzal-
dehyde in the presence of 10mol% BDMS at room temperature,
and it gave the product 5x in 62% yield. All the products were
characterized by IR, 1H and 13CNMR spectra as well as their
elemental analyses. The structure of the product 5n29 was further
confirmed by single-crystal XRD and the ORTEP diagram of
5n and their intermolecular H-bonding interaction through
O­H£O bonds (H£O = 0.821¡, O£O = 2.823¡, <O­
H£O = 172.64°) is shown in Figure 2.

The formation of products 5 may be proposed as follows: ¢-
Keto ester on reaction with bromodimethylsulfonium bromide
gives the intermediate A and HBr in the reaction medium. Then
the liberated HBr catalyzes the formation of enamino ester C
from ¢-keto ester and benzylamine. At the same time, carbanion
B is generated from nitromethane 4 in the presence of benzyl-
amine 2, which reacts instantly with an aromatic aldehyde 3 to
form nitrostyrene D. Subsequently, the enamino ester C reacts

with nitrostyrene D to form Michael adduct E, which undergoes
tautomerization into F. Finally, it gives the intermediate G on
cyclization, which is converted into the desired product 5 with
the elimination of H3NO2 as shown in Scheme 2.

In conclusion, we have devised a simple and efficient
synthetic protocol for the synthesis of substituted pyrrole
derivatives using ¢-keto esters, benzylamines, aromatic alde-

Table 2. Synthesis of substituted pyrrole derivatives28
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Me OR 10 mol% BDMS
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3 4
ArCHO MeNO2

R1NH2

5

room temperature Me

O

RO

S.No Aldehyde (3) R (1) R1 (2) Producta (5)
Time
/h

Yield
/%b

1 4-F-C6H4 1a 2a 5a 7 78
2 4-Cl-C6H4 1a 2a 5b 8 72
3 C6H5 1a 2a 5c 9 70
4 2-Furanyl 1a 2a 5d 8 68
5 4-Cl-C6H4 1a 2b 5e 7 75
6 C6H5 1a 2c 5f 5 76
7 4-Me-C6H4 1a 2c 5g 5 80
8 4-OMe-C6H4 1a 2c 5h 7 68
9 4-NO2-C6H4 1a 2c 5i 8 70
10 4-Br-C6H4 1a 2c 5j 6 78
11 4-F-C6H4 1a 2c 5k 5 82
12 2-Naphthyl 1a 2c 5l 8 62
13 4-F-C6H4 1b 2c 5m 5 75
14 3-OH-C6H4 1b 2c 5n 8 60
15 4-Br-C6H4 1c 2c 5o 6 67
16 4-Br-C6H4 1d 2c 5p 7 65
17 4-Cl-C6H4 1a 2d 5q 5 78
18 4-Me-C6H4 1b 2d 5r 5 76
19 3-OH-C6H4 1b 2d 5s 8 60
20 2,4-Di-OMe-C6H3 1b 2d 5t 8 58
21 2-NO2-C6H4 1b 2d 5u 8 67
22 2-F-C6H4 1b 2d 5v 5 68
23 3-F-C6H4 1b 2d 5w 6 62
24 4-Cl-C6H4 1a 2e 5x 9 62

aAll the reactions were performed using ¢-keto ester (1mmol),
benzylamine or substituted benzylamine (1mmol), and alde-
hyde (1mmol) in nitromethane (1mL) with BDMS (10mol%)
at room temperature. bIsolated yield.

(a) (b)

Figure 2. (a) ORTEP diagram of 5n. (b) Intermolecular
H-bonding interactions (CCDC no. is 848584).
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hydes, and nitromethane in the presence of 10mol% BDMS at
room temperature. The advantages of the present protocol are an
ecofriendly metal-free catalyst, mild reaction conditions, good
yields, and compatibility with a wide range of substrates.
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