Preparation, Reaction, and Catalysis of the New **Ruthenium Carbamato Complex** Et₂NCO₂RuH(CO)(PCy₃)₂

Tetsuo Tsuda*,† and Moto-o Shiro*,‡

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Kyoto 606-8501, Japan, and X-ray Research Institute, Rigaku Corporation, Matsubara 3-9-12, Akishima, Tokyo 196-8666, Japan

Received April 26, 1999

Summary: CO₂ promoted the RuCl₃·3H₂O-catalyzed dimerization of phenylacetylene (2) in the presence of PR_3 (R = Bu, Cy) and Et_2NH to afford 1,4-diphenyl-1-buten-3-yne (3). $Et_2NCO_2RuH(CO)(PCy_3)_2$ (4) and $(PhC \equiv C)_2Ru$ - $(CO)(PCy_3)_2$ (5) were isolated by the RuCl₃· $3H_2O/PCy_3/$ Et_2NH/CO_2 and 4/2 reactions, respectively, and catalyzed the dimerization of $\boldsymbol{2}$ to afford $\boldsymbol{3}$ with the concomitant formation of a poly(phenylacetylene).

One of us developed recently transition-metal-catalyzed alkyne cycloaddition polymerization¹ as a new and useful method of polymer synthesis using the transitionmetal-catalyzed monoyne cycloaddition as a polymerforming elementary reaction. We are therefore interested in the monoyne reaction effected by an easily accessible transition-metal catalyst. Synthesis of enol carbamate 1 by the RuCl₃·3H₂O-catalyzed phenylacetylene (2)/Et₂NH/CO₂ reaction was previously reported (eq 1).2 On the basis of a finding that addition of a PBu₃

$$\begin{array}{c} \text{PhC} = \text{CH} & \frac{\text{RuCl}_3 \cdot 3\text{H}_2\text{O}}{\text{catalyst}'} \\ & \hline \text{Et}_2\text{NH/CO}_2 & \text{Et}_2\text{NCO}_2\text{CH} = \text{CHPh} \end{array} \tag{1}$$

ligand to the reaction mixture suppressed almost completely the formation of 1 and, instead, effected the dimerization of 2 to afford 1,4-diphenyl-1-buten-3-yne (3), the RuCl₃·3H₂O/PBu₃ system was suggested to be an efficient catalyst for the alkyne dimerization.2

We examined the dimerization of 2 by the RuCl₃· 3H₂O/PR₃ catalytic system together with related reactions involving Et₂NH and/or CO₂. The RuCl₃·3H₂O/ PBu₃ system was ineffective, but the RuCl₃·3H₂O/PCy₃ system ($PCy_3 = tricyclohexylphosphine$) formed **3**. CO_2 promoted the RuCl₃·3H₂O-catalyzed formation of 3 in the presence of PR₃ and Et₂NH (eq 2). On the basis of

2
$$\frac{\text{RuCl}_3 \cdot 3\text{H}_2\text{O-}}{\text{PR}_3 \text{ catalyst/}} \text{PhC} = \text{CCH=CHPh}$$

$$\text{PR}_3 \cdot \text{PBu}_3, \text{PCy}_3$$

$$(2)$$

these findings, the new ruthenium carbamato complex Et₂NCO₂RuH(CO)(PCy₃)₂ (4) was isolated by the one-

1989, 54, 1518.

 $(PCy_3)_2$ (5) by the 4/2 reaction with CO_2 evolution (Scheme 1). The complexes 4 and 5 exhibited a dual catalytic activity to effect the dimerization and polymerization of 2 concomitantly to afford 3 and poly-(phenylacetylene) (6) (eq 3). These findings indicate that

pot RuCl₃·3H₂O/PCy₃/Et₂NH/CO₂ reaction, along with

the ruthenium bis(alkynyl) complex (PhC≡C)₂Ru(CO)-

$$2 \frac{\text{4 or 5}}{\text{catalyst}} \quad 3 + \frac{\text{CPh=CH}_{n}}{6}$$
 (3)

the role of CO₂ in the CO₂-promoted RuCl₃·3H₂Ocatalyzed formation of 3 is the facile generation of the catalytically active ruthenium bis(alkynyl) complex 5 via the ruthenium carbamato complex 4.

The results of the RuCl₃·3H₂O-catalyzed head-to-head dimerization of 2 to form 3 under various conditions are summarized in Table 1. The RuCl₃·3H₂O/PBu₃ system was ineffective (entry 4), but addition of Et₂NH produced **3** (entry 5). In contrast, the RuCl₃·3H₂O/PCy₃ system exhibited a considerable activity (entry 10), but addition of Et2NH had no effect (entry 11). It is noteworthy that further addition of CO_2 increased the catalytic activity of the RuCl₃·3H₂O/PBu₃ and PCy₃/Et₂-NH systems (entries 7, 12) without significant formation of the carboxylated product 1. Various ruthenium catalysts are reported for the alkyne head-to-head dimerization.3 All these ruthenium catalysts are the preformed ruthenium hydrido complexes or their derivatives. Thus, the composite RuCl₃·3H₂O/PR₃/Et₂NH/ CO_2 system (R = Bu, Cy) is a new and unique catalyst, although its efficiency is not high.

The RuCl₃·3H₂O-catalyzed dimerization of **2** promoted by Et₂NH/CO₂ suggests intermediacy of a ruthenium carbamato complex. The new ruthenium carbamato complex Et₂NCO₂RuH(CO)(PCy₃)₂ (4)⁴ was isolated in

Kyoto University.

[‡] Rigaku Corporation.

^{(1) (}a) Tsuda, T. In *The Polymeric Materials Encyclopedia*; Salamone, J. C., Ed.; CRC: Boca Raton, FL, 1996; Vol. 3, p 1905, and Vol. 5, p 3525. (b) Tsuda, T. In *Recent Research Developments in Macromolecules Research*; Research Signpost: Trivandrum, 1997; Vol. 2, p 23. (2) Mahe, R.; Sasaki, Y.; Bruneau, C.; Dixneuf, P. H. *J. Org. Chem.*

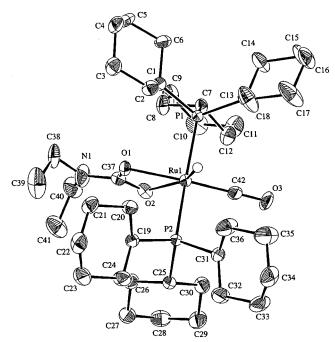
^{(3) (}a) Dahlenburg, L.; Frosin, K.-M.; Kerstan, S.; Werner, D. *J. Organomet. Chem.* **1991**, *407*, 115. (b) Bianchini, C.; Peruzzini, M.; Zanobini, F.; Frediani, P.; Albinati, A. *J. Am. Chem. Soc.* **1991**, *113*, 5453. (c) Bianchini, C.; Frediani, P.; Masi, D.; Peruzzini, M.; Zanobini, F. *Organometallics* **1994**, *13*, 4616 and references therein. (d) Rappert, T.; Yamamoto, A. *Organometallics* **1994**, *13*, 4984. (e) Yi, C. S.; Liu, N. Organometallics 1996, 15, 3968.

N. Organometallics **1996**, 15, 3968.

(4) Characteristic spectral data of **4**: IR (cm⁻¹; Nujol) 2061 (RuH), 1897 (CO), 1521, 1497 (NCO₂); ¹H NMR (δ , ppm; C₆D₆) –17.1 (t, ²J(HP) = 19.3 Hz, RuH); ¹³C NMR (δ , ppm; C₆D₆) 163.9 (NCO₂), 208.0 (t, ²J(CP) = 14.1 Hz, CO). Anal. Calcd for C₄₂H₇₇NO₃P₂Ru: C, 62.50; H, 9.62; N, 1.74. Found: C, 62.25; H, 9.54; N, 1.62. The PCy₃ ligand plays an important role in the formation of **4**: preparation of the ruthenium carbamata complex without PCy₃ by the RuCl₂3H₂O(Et.NH/CO₃). carbamato complex without PCy3 by the RuCl3·3H2O/Et2NH/CO2 reaction was unsuccessful.

Scheme 1

 $\begin{array}{c} \text{RuCl}_3 \bullet 3\text{H}_2\text{O/PCy}_3/\text{Et}_2\text{NH} \\ \downarrow \quad \text{CO}_2 \\ \text{Et}_2\text{NCO}_2\text{RuH(CO)(PCy}_3)_2 \ \textbf{4} \\ \textbf{2} \ \downarrow \ \text{-CO}_2 \\ \text{(PhC \equiv C)}_2\text{Ru(CO)(PCy}_3)_2 \ \textbf{5} \end{array}$


Table 1. RuCl₃·3H₂O-Catalyzed Dimerization of Phenylacetylene (2) To Afford 1,4-Diphenyl-1-buten-3-yne (3) (Eq 2)^a

	amt of 2 , mmol	amt of RuCl ₃ •3H ₂ O, mmol	PR ₃ , PR ₃ /	amt of Et ₂ NH,	amt of CO ₂ ,	vield of
entry			$\mathbf{R}\mathbf{u}^b$	mmol	kg/cm ²	(Z)-3, % ^c
1	1	0.05	0	0	0	1.2
2	1	0.05	0	2	0	5.2
3	1	0.05	0	2	50	4.3^d
4	1	0.05	PBu_3 , 2	0	0	2.6
5	1	0.05	PBu ₃ , 2	2	0	33
6	2	0.1	PBu_3 , 1	4	50	15^{e}
7	1	0.05	PBu ₃ , 2	2	50	43^f
8	1	0.05	PBu ₃ , 4	2	50	22
9	2	0.1	PBu ₃ , 2	4	50	53
10	1	0.05	PCy ₃ , 2	0	0	36
11	1	0.05	$PCy_3, 2$	2	0	34
12	1	0.05	$PCy_3, 2$	2	50	48 g
13	1	0.05	PPh ₃ , 2	2	50	37

^a Conditions: solvent, toluene 2 mL; reaction temperature, 100 °C; reaction time, 20 h; CO₂, initial pressure at room temperature in a 50 mL stainless steel autoclave. ^b Molar ratio. ^c Based on 2 and determined by GC using bibenzyl as an internal standard. ^d Et₂NCO₂CH=CHPh (1) ((Z)-1/(E)-1 = 4.3) was concomitantly formed in 37% yield. ^e Conditions: solvent, toluene 4 mL. 1 was formed in 11% yield. ^f(Z)-3/(E)-3 = 3.2. 1 was formed in 2.0% yield. ^g(Z)-3/(E)-3 = 3.5. 1 was formed in 3.4% yield.

moderate yield as colorless prismatic crystals from an ethanol-insoluble part of the reaction mixture formed by the one-pot $RuCl_3\cdot 3H_2O/PCy_3/Et_2NH/CO_2$ reaction without **2**. The transition-metal carbamato complexes represent a class of compounds of considerable interest. Transition-metal amide/ $CO_2^{5a,d-f}$ and transition-metal halide/ $R_2NH/CO_2^{5g,i}$ reactions are the two common preparative methods of transition-metal carbamato complexes $(R_2NCO_2)_nM$. Thus, the formation of **4** containing the CO and hydrido ligands generated concomitantly by the one-pot $RuCl_3\cdot 3H_2O/PCy_3/Et_2NH/CO_2$ reaction is unique. 6

The molecular structure of **4** determined by X-ray diffraction analysis is shown in Figure 1.⁷ The ruthenium atom has a distorted-octahedral geometry. The bond lengths relevant to the bidentate carbamato ligand along with the small O1–Ru1–O2 bond angle were

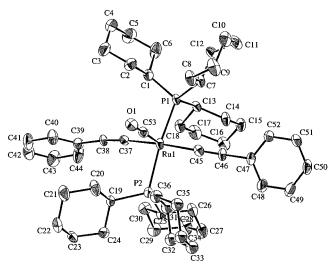
Figure 1. ORTEP structure (50% thermal ellipsoid probability) of Et₂NCO₂RuH(CO)(PCy₃)₂ (**4**). H atoms are omitted for clarity, except for Ru1–H.

similar to those of the Me_2NCO_2 ligand of $[Me_2NCO_2-Ru(PMe_2Ph)_4]PF_6.8$

Interestingly, it was found that addition of **2** to **4** in toluene at 50 °C evolved CO_2 gas in 44 and 50% yields after 0.5 and 4 h, respectively. The ruthenium bis-(alkynyl) complex $(PhC\equiv C)_2Ru(CO)(PCy_3)_2$ (**5**)⁹ was isolated in good yield as prismatic crystals containing one THF solvent molecule per two ruthenium atoms by the reaction of **4** with **2** (**2**/**4** = 6, $PCy_3/4 = 2$, toluene, reflux) and subsequent recrystallization from a THF/hexane solution (Scheme 1). The formation of a $PhC\equiv C-Ru$ bond by the reaction of a R_2NCO_2-Ru bond with **2** is unprecedented.

The molecular structure of $\bf 5$ determined by X-ray diffraction analysis is shown in Figure 2. 10 The geometry around the ruthenium center is a distorted square pyramid: the ruthenium atom deviates from the P1-C37-P2-C45 plane by 0.237(1) Å toward the CO ligand. Change of the bidentate carbamato ligand of $\bf 4$ into the monodentate alkynyl ligand of $\bf 5$ with concomitant generation of one vacant coordination site in the presence of an excess amount of PCy3 is noteworthy in

^{(5) (}a) Chandra, G.; Jenkins, A. D.; Lappert, M. F.; Srivastava, R. C. J. Chem. Soc. A 1970, 2550. (b) La Monica, G.; Cenini, S.; Porta, F.; Pizzotti, M. J. Chem. Soc., Dalton Trans. 1976, 1777. (c) Tsuda, T.; Washita, H.; Watanabe, K.; Miwa, M.; Saegusa, T. J. Chem. Soc., Chem. Commun. 1978, 815. (d) Tsuda, T.; Watanabe, K.; Miyata, K.; Yamamoto, H.; Saegusa, T. Inorg. Chem. 1981, 20, 2728. (e) Chetcuti, M. J.; Chisholm, M. H.; Folting, K.; Haitoko, D. A.; Huffman, J. C. J. Am. Chem. Soc. 1982, 104, 2138. (f) Joslin, F. L.; Johnson, M. P.; Mague, J. T.; Roundhill, D. M. Organometallics 1991, 10, 2781. (g) Bacchi, A.; Dell'Amico, D. B.; Calderazzo, F.; Giurlani, U.; Pelizzi, G.; Rocchi, L. Gazz. Chim. Ital. 1992, 122, 429 and references therein. (h) Srivastava, R. S.; Singh, G.; Nakano, M.; Osakada, K.; Ozawa, F.; Yamamoto, A. J. Organomet. Chem. 1993, 451, 221. (i) Dell'Amico, D. B.; Calderazzo, F.; Gingl, F.; Labella, L.; Strahle, J. Gazz. Chim. Ital. 1994, 124, 375


⁽⁶⁾ Some routes are possible for the ruthenium-mediated conversion of CO₂ into CO; see: Fu, P-f.; Khan, M. A.; Nicholas, K. M. *J. Organomet. Chem.* **1996**, *506*, 49, and references therein. Gas chromatographic analysis of the reaction mixture formed by the RuCl₃· $3H_2O/PCy_3/Et_2NH/CO_2$ reaction indicated the insignificant formation of O=PCy₃, which excludes the deoxygenation of CO₂ by PCy₃.

⁽⁷⁾ Crystal structure data for 4: $C_{42}H_{77}NO_3P_2Ru$, colorless, monoclinic, $P2_1/c$ (No. 14), a=20.398(6) Å, b=9.588(3) Å, c=24.566(5) Å, $\beta=113.75(2)^\circ$, Z=4, R=0.041, GOF = 1.30. One of the N-ethyl groups, C38 and C39 in Figure 1, is disordered at the two locations close to each other with an occupancy ratio of 4:6 (the location shown in Figure 1).

⁽⁸⁾ Ashworth, T. V.; Nolte, M.; Singleton, E. *J. Organomet. Chem.* **1976**, *121*, C57.

⁽⁹⁾ Characteristic spectral data of $5 \cdot 0.5$ THF: IR (cm⁻¹; Nujol) 2074 (C=C), 1920 (CO), 1594 (Ph); ¹H NMR (δ , ppm; C_6D_6) 7.04 (t, J=7.4 Hz, 1 H, Ph), 7.27 (t, J=7.6 Hz, 2 H, Ph), 7.76 (d, J=8.3 Hz, 2 H, Ph); ¹³C NMR (δ , ppm; THF- C_8): 122.8, 125.1, 128.6, 129.9, 130.0 (t, ² J(CP) = 14.1 Hz), 130.2, 130.4, 130.8, 207.1 (t, ² J(CP) = 12.6 Hz). Anal. Calcd for $C_{55}H_{80}O_{1.5}P_2Ru$: C, 71.17; H, 8.69. Found: C, 70.90; H 8.69

⁽¹⁰⁾ Crystal structure data for $\mathbf{5} \cdot 0.5$ THF: $C_{55}H_{80}O_{1.5}P_2$ Ru, yellow, monoclinic, P_2I_1/n (No. 14), a = 20.907(3) Å, b = 22.683(4) Å, c = 10.522-(1) Å, $\beta = 90.32(1)$ °, Z = 4, R = 0.050, GOF = 1.35. One of the cyclohexyl rings, C31–C36 in Figure 2, is disordered at the two locations close to each other with an equal probability.

Figure 2. ORTEP structure (50% thermal ellipsoid probability) of $(PhC \equiv C)_2Ru(CO)(PCy_3)_2 \cdot 0.5THF$ (5·0.5THF). H atoms and free solvent are omitted for clarity.

Table 2. Formation of 1,4-Diphenyl-1-buten-3-yne
(3) by the Phenylacetylene (2) Dimerization
Catalyzed by Ruthenium Carbamato Complex 4
and Bis(alkynyl) Complex 5^a

$$\begin{array}{c} \text{2PhC} = \text{CH} \xrightarrow{\text{4 or 5} \atop \text{catalyst}} \text{PhC} = \text{CCH} = \text{CHPh} \\ \textbf{3} \end{array}$$

amt of 4 or 5,	amt of PCy ₃ ,	yield of 3 , $\%^b$				
mmol	mmol	solvent	\overline{z}	\overline{E}	3 , Z/E	
4, 0.024	0	toluene	32	1.7	19	
4 , 0.024	0	THF	37	1.6	23	
4 , 0.024	0.1	toluene	52	5.6	9.3	
4 , 0.048	0.2	THF	57	4.9	12	
5 , 0.030^c	0	THF	33	2.0	16	
5 , 0.024	0.1	toluene	49	5.2	9.2	

^a Conditions: **4** or 5/2 = 0.048; solvent, 0.33 mL; temperature, 100 °C; reaction time, 20 h. ^b Yields of (*Z*)- and (*E*)-**3** were determined by GC using bibenzyl as an internal standard. Another product is poly(phenylacetylene) (**6**). ^c 5/2 = 0.06.

comparison to the octahedral ruthenium bis(alkynyl) complexes such as trans- $(Et_3P)_2Ru(C\equiv CPh)_2(CO)_2^{11}$ and cis-(i- $Pr_3P)_2Ru(C\equiv CPh)_2(CO)_2^{12}$ and may be ascribed to steric congestion of the PCy_3 ligand on the basis of a face-to-face arrangement of its two C13-C18 and C25-C30 cyclohexyl rings. The bond lengths relevant to the phenylethynyl ligand were similar to those of trans- $(Et_3P)_2Ru(C\equiv CPh)_2(CO)_2$.

The complexes **4** and **5** catalyzed the dimerization of **2** to afford **3** (Table 2). It may be concluded, therefore, that **4** and **5** are important catalytic species in the dimerization of **2** by the RuCl₃·3H₂O/PCy₃/Et₂NH/CO₂ system. The yield of **3** was not high, although almost complete consumption of the starting **2** was confirmed by ¹H NMR and gas chromatographic analyses of the **2/5** reaction mixture. The ¹H NMR spectrum of the resulting reaction mixture formed by the **5/2** PCy₃/**2**

reaction in THF-d₈ exhibited only the signals of 3 and **5**, except for a broad signal centered at δ 7.1. The latter signal was found to be due to a phenyl group of poly-(phenylacetylene) (6):13a poly(phenylacetylene)s (6) with GPC molecular weights of 3000-6000 were isolated in 15-20% yield14 in the 4- and 5-catalyzed reactions of 2 together with the formation of 3, and their phenyl groups showed the ¹H NMR broad signal at δ 7.1. Thus, the dual catalysis of 4 and 5 with different natures, i.e., the dimerization and polymerization activities, is noteworthy and the ruthenium catalysis is not usual in the transition-metal-catalyzed acetylene polymerization. 13b,c To the best of our knowledge, the alkyne dimerization and polymerization catalyzed by 4 is the first example of catalysis of a transition-metal carbamato complex, although stoichiometric reactions¹⁵ of its carbamato group are well-known.

The isolation of 4 by the RuCl₃·3H₂O/PCy₃/Et₂NH/ CO₂ reaction, its conversion to 5 by 2 with CO₂ evolution, and the catalysis of 4 and 5 for the dimerization of 2 indicate that the role of CO₂ in the CO₂-promoted RuCl₃·3H₂O-catalyzed formation of the noncarboxylated product 3 is the facile generation of the catalytically active ruthenium bis(alkynyl) complex 5^{3c} via the ruthenium carbamato complex 4. CO₂ is previously reported to increase the efficiency and chemoselectivity of the platinum-catalyzed dimerization of butadiene^{16a} and the palladium-catalyzed reaction of butadiene with water, 16b in which the role of CO₂, however, is not clarified. Thus, the present CO₂-promoted rutheniumcatalyzed alkyne dimerization is a good example elucidating the function of CO₂ in a CO₂-promoted transitionmetal-catalyzed organic reaction without CO2 incorporation into a product by the isolation of participating transition-metal species.

Acknowledgment. This work was partly supported by a Grant-in-Aid for Exploratory Research (No. 08875176) from the Ministry of Education, Science, Sports, and Culture of Japan.

Supporting Information Available: Experimental procedures and spectroscopic data of **3–6** together with X-ray structural information on **4** and **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM990306I

⁽¹¹⁾ Sun, Y.; Taylor, N. J.; Carty, A. J. J. Organomet. Chem. 1992, 423, C43.

⁽¹²⁾ Werner, H.; Meyer, U.; Esteruelas, M. A.; Sola, E.; Oro, L. A. *J. Organomet. Chem.* **1989**, *366*, 187.

^{(13) (}a) Simionescu, C. I.; Percec, V. J. Polym. Sci., Polym. Symp. **1980**, 67, 43. (b) Masuda, T. In The Polymeric Materials Encyclopedia; Salamone, J. C., Ed.; CRC: Boca Raton, FL, 1996; Vol. 1, p 32. For the poly(phenylacetylene) formation by the Ru₃{ μ -H}{ μ -C₆H₅N-(C₅H₄N)}(CO)₉/Et₃SiH catalytic system, see: (c) Nombel, P.; Lugan, N.; Mulla, F.; Lavigne, G. Organometallics **1994**, 13, 4673. (14) The low polymer yield may be due to the loss of oligomers and

⁽¹⁴⁾ The low polymer yield may be due to the loss of oligomers and **6** with low molecular weights during the isolation of **6** with higher molecular weights by toluene/ethyl alcohol and toluene/hexane.

^{(15) (}a) Belforte, A.; Dell'Amico, D. B.; Calderazzo, F.; Giurlani, U.; Labella, L. *Gazz. Chim. Ital.* **1993**, *123*, 119. (b) Dell'Amico, D. B.; Calderazzo, F.; Marchetti, F.; Pampaloni, G. In *Aqueous Organometallic Chemistry and Catalysis*; Horvath, I. T., Joo, F., Eds.; Kluwer Academic: Dordrecht. The Netherlands. 1995: p 199.

Academic: Dordrecht, The Netherlands, 1995; p 199.
(16) (a) Kohnle, J. F.; Slaugh, L. H.; Nakamaev, K. I. *J. Am. Chem. Soc.* **1969**, *91*, 5904. (b) Atkins, K. E.; Walker, W. E.; Manyik, R. M. *J. Chem. Soc., Chem. Commun.* **1971**, 330.