

Phenanthroline-^tBuOK Promoted Intramolecular C–H Arylation of Indoles with Arl under Transition-Metal-Free Conditions

Xiang-Huan Shan,[†] Bo Yang,[†] Hong-Xing Zheng,[†] Jian-Ping Qu,^{*,‡} and Yan-Biao Kang^{*,†}

[†]Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

[‡]Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China

Supporting Information

ABSTRACT: The first example of phenanthroline-^tBuOK promoted intramolecular radical C–H arylation of N-(2iodobenzyl)indoles without involvement of transition metals has been developed. A variety of substituted 6H-isoindolo [2, 1-a] indoles were prepared by a simple and efficient intramolecular cyclization using 1,10-phenanthroline in the presence of potassium *tert*-butoxide and chlorobenzene. This strategy provides a fast and versatile access to isoindolo[2,1-a]indole derivatives for the synthesis of pharmaceuticals and organic electroluminescent (EL) materials.

I soindolo[2,1-*a*]indole represents an important and ubiquitous heterocyclic frameworks in the medical chemistry¹ and material chemistry (Figure 1).² The preparation of

material for organic light-emitting diodes

Figure 1. Selected examples for pharmaceuticals, biologically active compounds, and organic electroluminescent (EL) materials.

isoindolo[2,1-*a*]indoles has gained considerable research interest. Catalytic intramolecular direct arylation of N-(2-iodobenzyl)indoles involving transition metals³⁻⁵ provides a fast access to isoindolo[2,1-*a*]indoles albeit with the problem of removal heavy metals residues in the products limiting its application in pharmaceutical synthesis. Therefore, a transition-metal-free cyclization is highly desired.

Tributyltin hydride promoted intramolecular six- and sevenmembered radical cyclization afforded the corresponding heterocycles in moderate to good yield.⁶ However, the intramolecular five-membered radical cyclization,⁷ especially in the case of 6H-isoindolo [2, 1-a] indole synthesis, suffered from low yield due to the direct reductive dehalogenation of the staring materials (Scheme 1).^{7b}

The base-promoted homolytic radical aromatic substitution $(BHAS)^{8-10}$ approach has recently emerged since Itami^{8a}

Received: October 29, 2018

reported that potassium *tert*-butoxide could effect the addition of haloarenes to electron-deficient aromatic rings in 2008. 1,10-Phenanthrolines have been proved to be a useful additive to assist the potassium *tert*-butoxide induced intramolecular radical cross coupling of arenes and alkenes to construct fused heterocycles, but they normally focused on the electron-rich arenes or simple arenes.⁹ Moreover, despite the fact that intermolecular transition-metal-free C–H arylation of heterocycles have been reported,¹¹ intramolecular transition-metalfree C–H arylation of heterocycles is scarce.

On the basis of our studies on self-hydrogen transferring rearrangement^{12a} and hydrodehalogenation^{12b} promoted by potassium *tert*-butoxide, we developed the first example of intramolecular C–H arylation of indoles and azaindoles, in which 1,10-phenanthroline assists intramolecular cyclization of the aryl radical onto C2 of indoles to give fused isoindolo [2,1-a] indoles in up to 90% yield (Scheme 1, down), while the reported intermolecular transition-metal-free arylation of indoles normally occurred on the C3¹¹ or N-position^{11c} of indoles. Herein, we present our result in details.

The reaction conditions were first investigated as shown in Table 1. In our early work, we noted that 10-40% of 1,10-

Table 1. Reaction Conditions

			L (x mol %) base (y mol% toluene, 90 °]
entry	I.	a r	hase	v	2a M	$2a (\%)^{b}$
1	11	0.4	tD. OV	,	0.1	2u (/0)
1		0.4	buOK	4.0	0.1	48
2	L2	0.4	BuOK	4.0	0.1	0
3	L3	0.4	^{<i>t</i>} BuOK	4.0	0.1	47
4	L4	0.4	^t BuOK	4.0	0.1	47
5	-	_	^t BuOK	4.0	0.1	0
6	L1	0.4	^t BuONa	4.0	0.1	-
7	L1	0.4	^t BuOLi	4.0	0.1	0
8	L1	0.4	КОН	4.0	0.1	0
9 ^c	L1	0.4	^t BuOK	4.0	0.1	62
10 ^c	L1	0.4	^t BuOK	2.0	0.1	70
11 ^c	L1	0.4	^t BuOK	2.0	0.05	75
12 ^c	L1	0.1	^t BuOK	2.0	0.05	74
13 ^{c,d}	L1	0.1	^t BuOK	2.0	0.05	83
$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $						
L1		L	2 1	_3	L4	

^{*a*}Conditions: **1a** (0.5 mmol), L ($x \mod \%$), base ($y \mod \%$), 90 °C, toluene, argon, 12 h. ^{*b*}Determined by ¹H NMR using dibenzyl ether as internal standard. ^{*c*}PhCl instead of toluene as solvent. ^{*d*}For 24 h.

phenanthroline L1 could assist the radical allylic isomerization of allylic alcohol.^{11a} By screening the organic additives L1–L4 (entries 1–4), 1,10-phenanthroline turned out to be the best in current radical cyclization of 1-(2-iodobenzyl)-1*H*-indole (1a). Without additive, the reaction could not occur (entry 5). We also investigated other bases, such as lithium *tert*-butoxide, sodium *tert*-butoxide, and potassium hydroxide, but they were ineffective for the radical cyclization (entries 6–8). Using chlorobenzene as solvent, yield improved from 48% to 62% (entry 1 vs 9). Finally, using 10 mol % L1 (1,10-Phen) and 2.0 equiv of potassium *tert*-butoxide in the presence of chlorobenzene at 90 $^{\circ}$ C for 24 h afforded the optimal yield (83%, entry 13).

After establishing the standard reaction conditions, the substrate scope of radical cyclization was then investigated. Several N-(2-iodobenzyl) indoles bearing an electron -donating group on the benzyl group have been subjected to the standard conditions, and generally good yields were obtained (Scheme 2, 2b-2d). The effect of substituted groups on the indole was also investigated (Scheme 2, 2f-2v). High yields were achieved with N-(2-iodobenzyl) indoles bearing both electron-donating groups and electron-withdrawing groups except that when 4-CN indole was employed 2p was obtained in moderate yield. Bromide, chloride, and fluoride are tolerated

Scheme 2. Substrate Scope^a

^aReaction conditions: 1 (0.5 mmol), 1,10-Phen (10 mol %), ^bBuOK (1 mmol), PhCl (10 mL), 90 °C, under argon. ^bPhCl (5 mL). ^{ct}BuOK (1.5 mmol). ^{dt}BuOK (1.25 mmol), 100 °C.

Organic Letters

though there are competing dehalogenation reactions (2h-i, 2l-o, 2q, 2v).

A comparison of the optimized transition-metal-free reaction conditions with previously reported Pd-catalyzed methods, which was successful in intermolecular C–H arylation, was investigated using 1a as model substrate (Table 2). However, poor yields were obtained using Pd-catalysts in previous reports.^{15–17}

Table 2. Comparison of Catalyst Systems[§]

[§]Reaction conditions: ^{*a*}1a (0.5 mmol), 1,10-Phen (10 mol %), ¹BuOK (1 mmol), PhCl (10 mL), 24 h, 90 °C, under argon. ^{*b*}1a (0.5 mmol), Pd(OAc)₂ (5 mol %), PPh₃ (20 mol %), MgO (1.2 equiv), dioxane, DMF, 12 h, 150 °C, under argon. ^{*c*}1a (0.5 mmol), Pd(OAc)₂ (6 mol %), PPh₃ (6 mol %), Et₃N (2.0 equiv), DMF, 5 h, 100 °C, under argon. ^{*d*}1a (0.5 mmol), Pd(OAc)₂ (30 mol %), Et₃N (3.0 equiv), CH₃CN, 40 h, 80 °C, under argon. ^{*e*}Isolated yield.

A gram-scale synthesis of 2a is demonstrated in eq 1. In a typical procedure,¹⁸ 1.23 g of 2a was obtained in 75% as a white solid.

A radical process of this cyclization was confirmed by radical trapping experiments. Radical scavengers such as TEMPO totally inhibit the cyclization of **1a** to **2a** (Scheme 3). TEMPO was recovered quantitatively after the control reaction, indicating TEMPO was not destroyed by KO^tBu.

Scheme 3. Radical Trapping Experiments

A proposed mechanism is illustrated in Scheme 4 on the basis of former reports.^{8,10,13,14} The reaction of 1,10-Phen and

Scheme 4. Possible Mechanism

^tBuOK generates an electron donor L1-dianion with the formation of **A**, followed by the intramolecular radical addition to afford intermediate **B**.¹⁰ The deprotonation of radical **B** affords radical anion **C**. The SET between **C** and **1** yields target product **2** with the regeneration of radical **A**.

In conclusion, an efficient radical C–H functionalization of C2 on N-(2-iodobenzyl) indoles has been developed with the assistant of 1,10-phenanthroline in the presence of potassium *tert*-butoxide. A variety of substituted 6*H*-isoindolo[2,1-*a*]-indoles were prepared by this simple intramolecular cyclization. This strategy provides a fast and versatile access to isoindolo[2,1-*a*]indole derivatives. We anticipate that this approach could be applied in other organic transformations, especially in a transition-metal-free radical process for the synthesis of pharmaceuticals and EL materials.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.8b03449.

Experimental procedures and NMR spectra (PDF)

Accession Codes

CCDC 1875985 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: ybkang@ustc.edu.cn. *E-mail: ias jpqu@njtech.edu.cn.

ORCID 🔍

Jian-Ping Qu: 0000-0002-5002-5594 Yan-Biao Kang: 0000-0002-7537-4627 Notes

notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (21672196, 21602001, 21831007, U1463202), and the Fundamental Research Funds for the Central Universities of China (WK2060190086) for financial support.

REFERENCES

(1) (a) Faust, R.; Garratt, P. J.; Jones, R.; Yeh, L.-K.; Tsotinis, A.; Panoussopoulou, M.; Calogeropoulou, T.; Teh, M.-T.; Sugden, D. J. Med. Chem. 2000, 43, 1050. (b) Scopton, A.; Kelly, T. R. J. Org. Chem. 2005, 70, 10004. (c) Ikegashira, K.; Oka, T.; Hirashima, S.; Noji, S.; Yamanaka, H.; Hara, Y.; Adachi, T.; Tsuruha, J. I.; Doi, S.; Hase, Y.; Noguchi, T.; Ando, I.; Ogura, N.; Ikeda, S.; Hashimoto. J. Med. Chem. 2006, 49, 6950. (d) Nirogi, R. V.; Kambhampati, R.; Kothmirkar, P.; Konda, J.; Bandyala, T. R.; Gudla, P.; Arepalli, S.; Gangadasari, N. P.; Shinde, A. K.; Deshpande, A. D.; Dwarampudi, A.; Chindhe, A. K.; Dubey, P. K. J. Enzyme Inhib. Med. Chem. 2012, 27, 443.

(2) (a) Lin, T.-S. U.S. Patent No. US20030228487 A1, Dec 11, 2003. (b) Kim, D. S.; Lee, S. H.; Park, J. H.; Moon, S. Y.; J. Ju, U. J.; Byun, H.; Park, B. R.; Oh, D. H.; Lee, B. S.; Kim, D. H.; Choi, D. H.; Lee, G. M. Korean Patent No. 2013126399, 2013.

(3) (a) Kozikowski, A. P.; Ma, D. Tetrahedron Lett. 1991, 32, 3317.
(b) Roesch, K. R.; Larock, R. C. Org. Lett. 1999, 1, 1551. (c) Roesch, K. R.; Larock, R. C. J. Org. Chem. 2001, 66, 412. (d) Campeau, L.-C.; Thansandote, P.; Fagnou, K. Org. Lett. 2005, 7, 1857. (e) Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581. (f) Barbero, N.; SanMartin, R.; Dominguez, E. Tetrahedron Lett. 2009, 50, 2129. (g) Laha, J. K.; Cuny, G. D. J. Org. Chem. 2011, 76, 8477. (h) Shen, Z.; Ni, Z.; Mo, S.; Wang, J.; Zhu, Y. Chem. - Eur. J. 2012, 18, 4859. (i) Nervig, C. S.; Waller, P. J.; Kalyani, D. Org. Lett. 2012, 14, 4838. (j) Laha, J. K.; Dayal, N.; Singh, S.; Bhimpuria, R. Eur. J. Org. Chem. 2014, 2014, 5469. (k) Dodonova, J.; Tumkevicius, S. Synthesis 2017, 49, 2523.

(4) (a) Barbero, N.; SanMartin, R.; Domínguez, E. Org. Biomol. Chem. 2010, 8, 841. (b) Cerna, I.; Pohl, R.; Klepetarova, B.; Hocek, M. J. Org. Chem. 2010, 75, 2302.

(5) Kaldas, S. J.; Cannillo, A.; McCallum, T.; Barriault, L. Org. Lett. 2015, 17, 2864.

(6) (a) Allin, S. M.; Bowman, W. R.; Elsegood, M. R. J.; McKee, V.; Karim, R.; Rahman, S. S. *Tetrahedron* **2005**, *61*, 2689. (b) Clyne, M. A.; Aldabbagh, F. Org. Biomol. Chem. **2006**, *4*, 268. (c) Lynch, M.; Hehir, S.; Kavanagh, P.; Leech, D.; O'Shaughnessy, J.; Carty, M. P.; Aldabbagh, F. Chem. - Eur. J. **2007**, *13*, 3218.

(7) (a) Caddick, S.; Aboutayab, K.; Jenkins, K.; West, R. I. J. Chem. Soc., Perkin Trans. 1 **1996**, 1, 675. (b) Fiumana, A.; Jones, K. Tetrahedron Lett. **2000**, 41, 4209.

(8) (a) Yanagisawa, S.; Ueda, K.; Taniguchi, T.; Itami, K. Org. Lett. 2008, 10, 4673. (b) Liu, W.; Cao, H.; Zhang, H.; Zhang, H.; Chung, K. H.; He, C.; Wang, H.; Kwong, F. Y.; Lei, A. J. Am. Chem. Soc. 2010, 132, 16737. (c) Sun, C.-L.; Li, H.; Yu, D.-G.; Yu, M.; Zhou, X.; Lu, X.-Y.; Huang, K.; Zheng, S.-F.; Li, B.-J.; Shi, Z.-J. Nat. Chem. 2010, 2, 1044. (d) Shirakawa, E.; Itoh, K.-I.; Higashino, T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 15537. (e) Okura, K.; Teranishi, T.; Yoshida, Y.; Shirakawa, E. Angew. Chem., Int. Ed. 2018, 57, 7186.

(9) (a) Sun, C.-L.; Gu, Y.-F.; Huang, W.-P.; Shi, Z.-J. Chem. Commun. 2011, 47, 9813–9815. (b) Rueping, M.; Leiendecker, M.; Das, A.; Poisson, T.; Bui, L. Chem. Commun. 2011, 47, 10629.
(c) Roman, D. S.; Takahashi, Y.; Charette, A. B. Org. Lett. 2011, 13, 3242. (d) Bhakuni, B. S.; Kumar, A.; Balkrishna, S. J.; Sheikh, J. A.; Konar, S.; Kumar, S. Org. Lett. 2012, 14, 2838. (e) De, S.; Ghosh, S.; Bhunia, S.; Sheikh, J. A.; Bisai, A. Org. Lett. 2012, 14, 4466.

(10) (a) Barham, J. P.; Coulthard, G.; Emery, K. J.; Doni, E.; Cumine, F.; Nocera, G.; John, M. P.; Berlouis, L. E. A.; McGuire, T.; Tuttle, T.; Murphy, J. A. J. Am. Chem. Soc. **2016**, 138, 7402. (b) Zhou, S.; Anderson, G. M.; Mondal, B.; Doni, E.; Ironmonger, V.; Kranz, M.; Tuttle, T.; Murphy, J. A. Chem. Sci. **2014**, 5, 476. (c) Nocera, G.; Young, A.; Palumbo, F.; Emery, K. J.; Coulthard, G.; McGuire, T.; Tuttle, T.; Murphy, J. A. J. Am. Chem. Soc. **2018**, 140, 9751. (d) Xu, Z.; Gao, L.; Wang, L.; Gong, M.; Wang, W.; Yuan, R. ACS Catal. **2015**, 5, 45.

(11) (a) Ackermann, L.; Dell'Acqua, M.; Fenner, S.; Vicente, R.; Sandmann, R. Org. Lett. **2011**, *13*, 2358. (b) Kumar, S.; Rathore, V.; Verma, A.; Prasad, C. D.; Kumar, A.; Yadav, A.; Jana, S.; Sattar, M.; Meenakshi; Kumar, S. Org. Lett. **2015**, *17*, 82. (c) Chen, J.; Wu, J. Angew. Chem., Int. Ed. **2017**, *56*, 3951.

(12) (a) Zheng, H.-X.; Xiao, Z.-F.; Yao, C.-Z.; Li, Q.-Q.; Ning, X.-S.; Kang, Y.-B.; Tang, Y. *Org. Lett.* **2015**, *17*, 6102. (b) Zheng, H.-X.; Shan, X.-H.; Qu, J.-P.; Kang, Y.-B. *Org. Lett.* **2017**, *19*, 5114.

(13) (a) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2011, 50, 5018-5022. (b) Yanagisawa, S.; Itami, K. ChemCatChem 2011, 3, 827. (c) Yi, H.; Jutand, A.; Lei, A. Chem. Commun. 2015, 51, 545. (d) Kawamoto, T.; Fukuyama, T.; Ryu, I. J. Am. Chem. Soc. 2012, 134, 875. (e) Tang, X.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 814.

(14) Shirakawa, E.; Hayashi, T. Chem. Lett. 2012, 41, 130.

(15) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050.

(16) Chen, Z. Y.; Wu, L. Y.; Fang, H. S.; Zhang, T.; Mao, Z. F.; Zou,
Y.; Zhang, X. J.; Yan, M. Adv. Synth. Catal. 2017, 359, 3894–3899.
(17) Signori, A. M.; Latocheski, E.; Albuquerque, B. L.; Faggion, D.;

Bisol, T. B.; Meier, L.; Domingos, J. B. New J. Chem. 2015, 39, 1574.

(18) Typical procedure: 1a (8 mmol, 2.67 g), 1,10-phenanthroline (0.8 mmol, 144 mg) and 'BuOK (16 mmol, 1.79 g) were weighed directly into a Schlenk tube and dried under high vacuum for 15 min, followed by the addition of PhCl (160 mL). The resulting reaction mixture was stirred at 90 °C and monitored by TLC. The reaction was quenched by H₂O and extracted with CH₂Cl₂. The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, concentrated and purified on silica gel chromatography with petroleum ether/CH₂Cl₂/EtOAc (100:20:1) to yield 1.23 g of 2a in 75% as a white solid.