

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012

Isoindole-BODIPY Dyes as Red to Near-Infrared Fluorophores

Changjiang Yu, Yajun Xu, Lijuan Jiao,* Jinyuan Zhou, Zhaoyun Wang, and Erhong Hao^{*[a]}

chem_201200398_sm_miscellaneous_information.pdf

Contents:

1.	General Methods	2
2.	Crystal Data of Compounds	2
3.	Syntheses and Characterizations of Compounds	7
4.	Copies of ¹ H NMR, ¹³ C NMR for All New Compounds	.12
5.	HRMS for All New Compounds	6 2

1. General Methods

Reagents were purchased as reagent-grade and used without further purification unless otherwise stated. Solvents were used as received from commercial suppliers unless noted otherwise. Toluene was distilled from CaH₂. All reactions were performed in oven-dried or flame-dried glassware unless otherwise stated, and were monitored by TLC using 0.25 mm silica gel plates with UV indicator (60F-254). ¹H- and ¹³C-NMR were obtained on a 300 spectrometer at 298 K. Chemical shifts (δ) are given in ppm relative to CDCl₃ 7.26 (¹H) and 77.16 ppm (¹³C). Coupling constants J are given in [Hz] and the multiplicities are expressed as follows: s = singlet, d = doublet, t = triplet, m = multiplet. High-resolution mass spectras were obtained by using ESI-TOF with positive mode. The isotope peaks were matched with the calculated pattens; only the most abundant peaks for all the compounds are listed.

UV-visible absorption spectra were recorded on a Hitachi U-3010 Spectrophotometer (190-1100 nm scan range). Fluorescence emission spectra were recorded on a Hitachi F-4600 FL Spectrophotometer. Relative quantum efficiencies of fluorescence of BODIPY derivatives were obtained by comparing the areas under the corrected emission spectrum of the test sample in various solvent with that of methylene blue^{1a} or Rhodamin B $(0.49 \text{ in EtOH})^{1b}$. Non-degassed, spectroscopic grade solvents and a 10 mm quartz cuvette were used. Dilute solutions (0.01 < A < 0.05) were used to minimize the reabsorption effects. Quantum yields were determined using the following equation²:

$$\Phi_{\rm X} = \Phi_{\rm S} \left(I_{\rm X}/I_{\rm S} \right) \left(A_{\rm S}/A_{\rm X} \right) \left(\eta_{\rm X}/\eta_{\rm S} \right)^2$$

Where Φ_s stands for the reported quantum yield of the standard, I stands for the integrated emission spectra, A stands for the absorbance at the excitation wavelength and η stands for the refractive index of the solvent being

used ($\eta = 1$ when the same solvent was used for both the test sample and the standard). X subscript stands for the test sample, and S subscript stands for the standard.

2. Crystal Data of Compounds

2.1 Methods and crystal data

Crystals of BODIPYs **3ac**, **3ba**, **5** and **6c** suitable for X-ray analysis were obtained by slow evaporation of their dichloromethane solutions. The vial containing this solution was placed, loosely capped, to promote the crystallization.

Crystal data for BODIPYs **3ac**, **3ba**, **5** and **6c** were collected using a Bruker SMART APEXIIdiffractometer with CCD area detector and multi-layer mirror monochromated Mo-Kα radiation

 $(\lambda = 0.71073 \text{ Å})$ at 293 K.

The structures were solved by the direct method using the SHELXS-974 program and refined by the least-squares method on F^2 , SHELXL-97,³ incorporated in SHELXTL V5.10.⁴ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to idealized positions and were included in structure factors calculations.

CCDC-859405 (**3ac**), 859406 (**3ba**), 859407 (**5**), and 859408 (**6c**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Crystal data for **3ac**: C₂₁H₂₀BF₂N₃, M_w = 363.21, purple, monoclinic, space group P2(1)/n, a = 11.177(1), b = 7.630(1), c = 21.521(4) Å, $\alpha = 90$, $\beta = 97.98$ (0), $\gamma = 90^{\circ}$, V = 1817.6(5) Å³, Z = 4, $D_{calcd} = 1.327$ gcm⁻³, T = 293(2) K, $\mu = 0.093$ mm⁻¹, F(000) = 760, $GooF(F^2) = 1.007$, $R_1 = 0.0408$, $wR^2 = 0.0940$ for I>2 σ (I), $R_1 = 0.0653$, $wR^2 = 0.1074$ for all data, 12536 independent reflections [$2\theta \le 50.0^{\circ}$].

Crystal data for **3ba**: $C_{18}H_{14}BF_2N_3$, $M_w = 321.13$, purple, monoclinic, space group C2/c, a = 27.768(2), b = 7.7158(6), c = 16.7367(1) Å, $\alpha = 90$, $\beta = 119.6960$ (1), $\gamma = 90^\circ$, V = 2993.8(4) Å³, Z = 8, $D_{calcd} = 1.425$ gcm⁻³, T = 293(2) K, $\mu = 0.103$ mm⁻¹, F(000) = 1328, $GooF(F^2) = 1.054$, $R_I = 0.0411$, $wR^2 = 0.0985$ for I>2 σ (I), $R_I = 0.0647$, $wR^2 = 0.1107$ for all data, 12512 independent reflections [$2\theta \le 55.18^\circ$].

Crystal data for **5**: C₁₉H₁₆BF₂N₃, M_w = 335.16, purple, monoclinic, space group P2(1)/n, a = 10.1992(1), b = 7.0097(8), c = 22.155(3) Å, $\alpha = 90$, $\beta = 94.6710(1)$, $\gamma = 90^{\circ}$, V = 1578.7(3) Å³, Z = 4, $D_{calcd} = 1.410$ gcm⁻³, T = 293(2) K, $\mu = 0.101$ mm⁻¹, F(000) = 696, $GooF(F^2) = 1.069$, $R_1 = 0.0704$, $wR^2 = 0.1998$ for I>2 σ (I), $R_1 = 0.0937$, $wR^2 = 0.2194$ for all data, 12128 independent reflections [$2\theta \le 55.12^{\circ}$].

Crystal data for **6c**: $C_{33}H_{32}BF_2N_3O_3$, $M_w = 567.43$, purple, triclinic, space group P1, a = 10.248(6), b = 11.011(7), c = 13.670(9) Å, $\alpha = 73.817(8)$, $\beta = 79.085(9)$, $\gamma = 86.538(9)^\circ$, V = 1454.5(1) Å³, Z = 2, $D_{calcd} = 1.296$ gcm⁻³, T = 293(2) K, $\mu = 0.091$ mm⁻¹, F(000) = 596, $GooF(F^2) = 1.090$, $R_1 = 0.0867$, $wR^2 = 0.2169$ for I>2 σ (I), $R_1 = 0.1820$, $wR^2 = 0.2633$ for all data, 12222 independent reflections [$2\theta \le 55.3^\circ$].

2.2 The packing of BODIPYs 3ac, 3ba, 5 and 6c

Figure S1. Crystal structure of the dimer of BODIPY **3ac** through intermolecular H-bonding. Dashed line was used to show H-bonding.

Figure S2. Intermolecular H-bonding of Crystal structure of **3ba** (top) and its crystal packing structure (bottom). Dashed line was used to show intermolecular H-bonding.

Figure S3. Intermolecular H-bonding of Crystal structure of **5** (top) and its crystal packing structure (bottom). Dashed line was used to show intermolecular H-bonding.

Figure S4. Intermolecular H-bonding of Crystal structure of **6c** (top) and its crystal packing structure (bottom). Dashed line was used to show intermolecular H-bonding.

3. Syntheses and Characterizations of Compounds

Compounds 1 and 2 were synthesized from literature⁵ or purchased from commercial sources.

General procedure for the preparation of BODIPYs 3: To the mixture of compound 1 (0.5 mmol) and pyrrole (5 mmol) were added 20 ml CH₂Cl₂ and POCl₃ (470 \Box l, 5 mmol) in 1 ml CH₂Cl₂ almost at the same time and quickly at ice-cold condition under argon. The reaction mixture was stirred at room temperature and was monitored by TLC. When compound 1 had been consumed, to the reaction mixture was added Et₃N (1 ml) under ice-cold condition, and the mixture was stirred for 10 min before addition of BF₃·OEt₂ (1.2 ml) under ice-cold condition through syringe. The reaction mixture was left stirring for overnight, poured into water and extracted with CH₂Cl₂. Organic layers were combined, and solvent was removed under vacuum. The crude product was purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), affording the desired compound as greenish (or bluish, or reddish) powder.

BODIPY 3aa: To compound **1a** (90 mg, 0.5 mmol) in pyrrole (0.69 ml, 10 mmol) were added 20 ml CH_2Cl_2 and POCl₃ (470 µl, 5 mmol) in 1 ml CH_2Cl_2 almost at the same time and quickly at ice-cold condition under argon. The reaction mixture was stirred at room temperature (35 °C) for 16 h. Reaction was monitored by TLC. When compound **1** had been consumed, to the reaction mixture was added Et_3N (1 ml) under ice-cold condition, and

the mixture was stirred for 10 min before addition of BF₃·OEt₂ (1.2 ml) under ice-cold condition through syringe. The reaction mixture was left stirring for overnight, poured into water and extracted with CH₂Cl₂. Organic layers were combined, and solvent was removed under vacuum. The crude product was purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), affording the desired compound **3aa** as reddish powder in 35% yield (54 mg). ¹H NMR (300 MHz, CDCl₃): δ 10.10(s, 1H), 7.95(d, J = 7.2 Hz, 1H), 7.75(d, J = 7.2 Hz, 1H), 7.41-7.31(m, 2H), 7.14(s, 1H), 7.02(s, 1H), 6.90(s, 1H), 6.80(s, 1H), 6.50(s, 1H), 6.32(s, 1H), 6.14(s, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 150.2, 136.9, 133.4, 132.7, 131.6, 131.4, 131.3, 127.7, 127.5, 125.1, 122.2, 120.6, 120.0, 119.7, 115.8, 114.5, 112.5. HRMS (EI) Calcd. for C₁₇H₁₂N₃BF₂ [M]⁺: 307.1092, found 307.1087.

BODIPY 3ab: To compound **1a** (90 mg, 0.5 mmol) in 2-methylpyrrole (0.42 ml, 5 mmol) were added 20 ml CH_2Cl_2 and $POCl_3$ (470 µl, 5 mmol) in 1 ml CH_2Cl_2 almost at the same time and quickly at ice-cold condition under argon. The reaction mixture was stirred at room temperature (35 °C) for 2 h. Reaction was monitored by

TLC. When compound **1** had been consumed, to the reaction mixture was added Et₃N (1 ml) under ice-cold condition, and the mixture was stirred for 10 min before addition of BF₃·OEt₂ (1.2 ml) under ice-cold condition through syringe. The reaction mixture was left stirring for overnight, poured into water and extracted with CH₂Cl₂. Organic layers were combined, and solvent was removed under vacuum. The crude product was purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), affording the desired compound **3ab** as bluish powder in 41% yield (69 mg). ¹H NMR (300 MHz, CDCl₃): δ 10.59(s, 1H), 8.12(d, J = 7.8 Hz, 1H), 7.78(d, J = 7.5 Hz, 1H), 7.54(t, J = 7.5 Hz, 1H), 7.40(t, J = 7.8, 1H), 7.19(s, 1H), 6.64 (s, 1H), 6.24(s, 1H), 6.13(s, 1H), 2.59 (s, 3H), 2.50(s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 146.8, 138.5, 136.6, 132.1, 131.7, 131.4, 130.6, 127.0, 125.0, 121.5, 121.2, 120.6, 119.5, 114.8, 114.4, 111.6, 14.5, 14.0. HRMS(EI) calcd. for C₁₉H₁₇N₃BF₂ [M+H]⁺: 336.1478, found 336.1473.

BODIPY 3ac: Prepared using the procedure above by reacting compound $1a^3$ (90 mg, 0.5 mmol) with 2, 4dimethylpyrrole (0.5 ml, 5 mmol) under POCl₃ (470 µl, 5 mmol) using the same procedure described above (35 °C) for 2 h, and purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), the desired compound **3ac** was obtained as bluish powder in 43% yield (78 mg). ¹H NMR (300 MHz, CDCl₃): δ 9.70(s, 1H), 7.82-7.77(m, 2H), 7.49(d, J = 7.2 Hz, 1H), 7.34-7.26(m, 2H), 6.03-5.98 (m, 2H), 2.50 (s, 3H), 2.40(s, 3H), 2.30(s, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 149.4, 147.8, 136.2, 134.7, 134.6, 131.2, 131.0, 130.5, 130.1, 127.2, 125.8, 125.7, 119.1, 118.5, 116.7, 113.6, 112.3, 14.5, 13.7, 11.4. HRMS (EI) Calcd. for C₂₁H₂₀N₃BF₂ [M]⁺: 363.1718, found 363.1714.

BODIPY 3ad: Prepared using the procedure above by reacting compound $1a^3$ (90 mg, 0.5 mmol) with 2, 4dimethyl-3-ethylpyrrole (0.65 ml, 5 mmol) under POCl₃ (470 µl, 5 mmol) using the same procedure described above (35 °C) for 2 h, and purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 4/1, v/v), the desired compound **3ad** was obtained as greenish powder in 38% yield (79 mg). ¹H NMR (300 MHz, CDCl₃): δ 9.64(s, 1H), 7.81-7.74(m, 2H), 7.46(d, J = 7.2 Hz, 1H), 7.31-7.22(m, 2H), 2.52-2.35(m, 10H), 2.45-2.22(m, 6H), 1.16(d, J = 7.5 Hz, 3H), 1.09(d, J= 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 147.5, 146.9, 136.0, 132.0, 131.0, 130.3, 130.1, 129.7, 129.6, 125.9, 125.2, 125.2, 124.9, 119.0, 117.8, 112.9, 17.9, 17.5, 15.3, 15.0, 13.0, 12.0, 9.6. HRMS (EI) Calcd. for $C_{25}H_{28}N_3BF_2[M]^+$: 419.2344, found 419.2347.

BODIPY 3ae: Prepared using the procedure above by reacting compound $1a^3$ (165 mg, 0.92 mmol) with 3methylindole (1.2 g, 9.2 mmol) under POCl₃ (0.86 ml, 9.2 mmol) using the same procedure described above (35 °C) for 8.5 h, and purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), the desired compound **3ad** was obtained as brown powder in 22% yield (95 mg). ¹H NMR (300 MHz, CDCl₃): δ 10.06(s, 1H), 8.00(d, J = 4.2 Hz, 1H), 7.89(d, J = 7.2 Hz, 1H), 7.72-7.66(m, 4H), 7.54-7.53(m, 2H), 7.42-7.37(t, J = 6.6 Hz, 1H), 7.29-7.21(m, 3H), 7.06(s, 1H), 2.61-2.59(m, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 152.8, 132.0, 131.4, 131.4, 127.7, 127.5, 127.4, 127.2, 127.0, 126.7, 126.1, 125.6, 125.1, 122.9, 122.5, 120.7, 120.5, 120.1, 120.0, 119.5, 115.8, 114.1, 113.1, 111.9, 109.7, 12.0, 9.3. HRMS (EI) Calcd. for C₂₇H₂₁N₃BF₂[M]⁺: 436.1791, found 436.1782.

BODIPY 3ba: Prepared using the procedure above by reacting compound **1b** (97 mg, 0.5 mmol) with pyrrole (0.69 ml, 10 mmol) under POCl₃ (470 µl, 5 mmol) using the same procedure described above for 16h, the crude product was purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), affording the desired compound **3ba** as reddish powder in 42% yield (67 mg). ¹H NMR (300 MHz, CDCl₃): δ 10.79(s, 1H), 8.19(d, J = 7.8 Hz, 1H), 8.00(d, J = 7.2, 1H), 7.59(t, J = 7.5 Hz, 1H), 7.48-1.30(m, 4H), 6.90(s, 1H), 6.51-6.43(m, 2H), 2.76(s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 149.1, 136.4, 133.6, 132.4, 132.0, 131.3, 130.8, 126.7, 126.2, 125.7, 122.9, 121.6, 119.7, 118.3, 114.1, 111.9, 16.5. HRMS (EI) Calcd. for C₁₈H₁₄N₃BF₂[M]⁺: 321.1249, found 321.1242.

BODIPY 3bc: Prepared using the procedure above by reacting compound **1b** (97 mg, 0.5 mmol) with 2, 4dimethylpyrrole (0.5 ml, 5 mmol) under POCl₃ (470 µl, 5 mmol) using the same procedure described above (35 °C) for 2 h, the crude product was purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), affording the desired compound **3bc** as blue powder in 43% yield (81 mg). ¹H NMR (300 MHz, CDCl₃): δ 9.52(s, 1H), 8.00(d, J = 8.1 Hz, 1H), 7.78(d, J = 8.1 Hz, 1H), 7.49(t, J = 7.5 Hz, 1H), 7.30(t, J = 7.5 Hz, 1H), 6.01-5.98(m, 2H), 2.85(s, 3H), 2.53(s, 3H), 2.48-2.38(m, 9H), 2.23(s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 147.7, 135.5, 134.9, 133.3, 131.0, 130.1, 126.7, 126.2, 125.7, 124.8, 122.4, 119.4, 117.8, 112.6, 111.9, 16.9, 16.7, 14.3, 14.1, 13.6. HRMS (EI) Calcd. for C₂₂H₂₂N₃BF₂[M]⁺: 377.1875, found 377.1882.

BODIPY 3bd: Prepared using the procedure above by reacting compound **1b** (97 mg, 0.5 mmol) with 2, 4dimethy-3-ethyllpyrrole (0.65 ml, 5 mmol) under POCl₃ (470 µl, 5 mmol) using the same procedure described above (35 °C) for 2 h, and purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), the desired compound **3bd** was obtained as greenish powder in 40% yield (87 mg). ¹H NMR (300 MHz, CDCl₃): δ 9.46(s, 1H), 8.00(d, J = 8.4 Hz, 1H), 7.76(d, J = 8.1 Hz, 1H), 7.46(t, J = 7.8 Hz, 1H), 7.29(d, J = 7.8 Hz, 1H), 2.88(s, 3H), 2.50-2.34(m, 13H), 2.18(s, 3H), 1.16(t, J = 7.5 Hz, 3H), 1.06(t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 146.0, 145.3, 135.3, 133.9, 132.3, 131.4, 129.7, 129.6, 128.7, 126.3, 124.3, 123.6, 122.3, 117.0, 17.9, 17.2, 16.9, 15.2, 13.9, 12.5, 12.1, 11.8. HRMS (EI) Calcd. for C₂₆H₃₀N₃BF₂[M]⁺: 433.2501, found 433.2506.

Dipyrromethene 4: To compound **1a** (179 mg, 1 mmol) in 20 ml CH₂Cl₂ were added 2,4-dimethylpyrrole (103 μ l, 1 mmol) in 1 ml CH₂Cl₂, and POCl₃ (94 μ l, 1 mmol) in 1 ml CH₂Cl₂ at ice-cold condition under argon. The reaction mixture was stirred in ice-cold condition for 30 min. The starting material disappeared according to TLC. After that, the mixture was quenched by Et₃N (1.2 ml), poured into water and extracted with CH₂Cl₂. Organic layers were combined, dried and was removed under vacuum. The crude product was purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), affording the desired compound **4** as reddish powder in 90% yield (230 mg). ¹H NMR (300 MHz, CDCl₃): δ 10.81(s, 1H), 7.76(d, J = 7.5 Hz, 1H), 7.62(d, J = 7.5 Hz, 1H), 7.44(t, J = 7.2 Hz, 1H), 7.34(t, J = 7.2 Hz, 1H), 7.10(s, 1H), 5.88(s, 1H), 2.38(s, 3H), 2.28(s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 152.8, 140.3, 138.4, 137.6, 133.0, 130.8, 128.4, 127.1, 125.8, 120.5, 118.7, 114.8, 111.6, 13.8, 11.4. HRMS (EI) calcd for C₁₅H₁₃N₂CI [M] ⁺: 256.0767, found 256.0774.

BODIPY 5: To compound **4** (128 mg, 0.5 mmol) in 20 ml CH₂Cl₂ were added pyrrole (0.69 ml, 10mmol), and POCl₃ (470 μ l, 5 mmol) in 1 ml CH₂Cl₂ at ice-cold condition under argon. The reaction mixture was stirred at room temperature for 12 h. To the reaction mixture was added Et₃N (1 ml), and the mixture was stirred for 10 min before addition of BF₃·OEt₂ (1.2 ml) through syringe. The reaction mixture was left stirring for overnight, poured into water and extracted with CH₂Cl₂. Organic layers were combined, and solvent was removed under vacuum. The crude product was purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), affording the desired compound **5** as greenish powder in 48% yield (80 mg). ¹H NMR (300 MHz, CDCl₃): δ 10.73(s, 1H), 8.12(d, J = 8.1 Hz, 1H), 7.81(d, J = 7.8 Hz, 1H), 7.51(t, 7.5 Hz, 1H), 7.40-7.33(m, 2H), 6.49(s, 1H), 5.99(s, 1H), 2.54(s, 3H), 2.27(s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 149.1, 146.4, 136.2, 134.6, 131.0, 130.8, 130.4, 130.2, 126.6, 125.5, 124.8, 122.7, 119.3, 118.3, 116.8, 113.6, 111.7, 14.5, 11.3. HRMS (EI) Calcd. for C₁₉H₁₆N₃BF₂ [M]⁺: 335.1405, found 335.1408.

Monostyryl-BODIPY 6a: To compound **3ac** (40 mg, 0.11 mmol) and ethyl-2-(4-formyphenoxy)acetate (46mg, 0.22 mmol) in 20 ml toluene were added piperidine (1 ml) through syringe, and a crystal of p-TsOH. The solution was refluxed over its boiling point up to $140 \Box$ for 14 h in a round-bottomed flask and any water formed during the reaction was removed by using a Soxhlet extractor containing anhydrous CaCl₂. Reaction was monitored by TLC. When **3ac** had been consumed, the resulting mixture was cooled to room temperature, poured into water and extracted with CH₂Cl₂. Organic layers were combined, and solvent was removed under vacuum. The crude product was purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v) and then recrystallized from CH₃OH, affording the desired compound **6a** (52 mg) in 87% yield. ¹H NMR (300 MHz, CDCl₃): δ 9.71(s, 1H), 7.85-7.77(m, 2H), 7.50-7.47(m, 3H), 7.41(s, 1H), 7.33(t, J = 7.5 Hz, 1H), 7.11(d, J = 12.9 Hz, 1H), 6.91-6.89(m, 2H), 6.62(s, 1H), 6.07(s, 1H), 4.65(s, 2H), 4.29(q, J = 6.9 Hz, 2H), 2.45(s, 3H), 2.32(s, 6H), 1.31(t, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 168.9, 158.1, 148.6, 147.5, 135.8, 134.9, 134.8, 132.9, 132.0, 131.1, 130.0, 128.5, 127.3, 125.8, 119.3, 118.7, 118.3, 115.1, 113.9, 112.9, 112.2, 65.7, 61.6, 14.5, 14.3, 13.8, 11.4. UPLC MS (EI) Calcd. for C₃₂H₃₁N₃O₃BF₂[M + H]⁺: 554.2421, found 554.2419.

Monostyryl-BODIPY 6b : Prepared using the procedure above from compound **3ad** (40 mg, 92 µmol), ethyl-2-(4-formyphenoxy)acetate (38 mg, 184 µmol), piperidine (1 ml), and a crystal of p-TsOH in toluene (20 ml), and purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), the desired compound **6b** was recrystallized from CH₃OH and obtained as greenish power(17 mg) in 30% yield. ¹H NMR (300 MHz, CDCl₃): δ 9.56(s, 1H), 8.03(d, J = 8.4, 1H), 7.79 (d, J = 8.1Hz, 1H), 7.55-7.47(m, 4H), 7.32(t, J = 7.5 Hz, 1H), 7.03-6.89(m, 2H), 4.65(s, 2H), 4.29(q, J = 7.2 Hz, 2H), 2.91(s, 3H), 2.70(q, J = 7.5 Hz, 2H), 2.50(q, J = 7.5 Hz, 2H), 2.43(s, 3H), 2.35(s, 3H), 2.20(s, 3H), 1.33-1.15(m, 9H). ¹³C NMR (75 MHz, CDCl₃): δ 169.0, 157.8, 143.5, 135.5, 132.2, 132.0, 131.7, 131.6, 130.7, 130.3, 130.1, 128.3, 126.7, 124.9, 124.5, 122.8, 119.1, 117.2, 115.0, 65.7, 61.6, 18.5, 18.1, 17.3, 15.4, 14.9, 14.3, 13.7, 12.8, 12.1. UPLC MS (EI) Calcd. for C₃₇H₄₁N₃O₃BF₂[M + H]⁺: 624.3204, found 624.3200.

Monostyryl-BODIPY 6c: Prepared using the procedure above from compound **3ac** (40 mg, 106 µmol), ethyl-2-(4-formyphenoxy)acetate (44 mg, 212µmol), piperidine (1 ml), and a crystal of p-TsOH in toluene (20 ml), and purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), the desired compound **6c** was recrystallized from CH₃OH and obtained as reddish power (20 mg) in 33% yield. ¹H NMR (300 MHz, CDCl₃): δ 9.60(s, 1H), 7.96(d, J = 8.1 Hz, 1H), 7.76(d, J = 7.8 Hz, 1H), 7.55-7.52(m, 2H), 7.35-7.18(m, 4H), 7.01-6.98(m, 2H), 6.88(d, J = 16.5 Hz, 1H), 6.03-5.98(m, 2H), 4.69(s, 2H), 4.31(q, J = 7.2 Hz, 2H), 2.50(s, 3H), 2.40(s, 3H), 2.28-2.26(m, 6H), 1.33(t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 168.9, 158.6, 148.2, 147.1, 137.6, 135.8, 134.3, 133.8, 131.8, 129.9, 129.4, 128.4, 126.3, 125.9, 125.1, 122.8, 120.7, 118.9, 118.2, 115.4, 112.2, 65.5, 61.7, 16.6, 14.4, 14.3, 13.7. UPLC MS (EI) Calcd. for C₃₃H₃₃N₃O₃BF₂ [M + H]⁺: 568.2578, found 568.2573.

Distyryl-BODIPY 6d: Prepared using the procedure above from compound **3bc** (40 mg, 106 µmol), ethyl-2-(4-formyphenoxy)acetate (88 mg, 424 µmol), piperidine (1 ml), and a crystal of p-TsOH in toluene (20 ml), and purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 1/1, v/v), the desired compound **6d** was recrystallized from CH₃OH and obtained as greenish (33 mg) in 41% yield. ¹H NMR (300 MHz, CDCl₃): δ 9.60(s, 1H), 7.98(d, J = 7.8 Hz, 1H), 7.76(d, J = 7.5 Hz, 1H), 7.55-7.47(m, 5H), 7.35-7.19(m, 4H), 7.12-6.98(m, 3H), 6.91-6.86(m, 2H), 6.61(s, 1H), 6.07(s, 1H), 4.69(s, 2H), 4.64(s, 2H), 4.35-4.25(m, 4H), 2.45(s, 3H), 2.32(s, 3H), 2.27(s, 3H), 1.36-1.26(m, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 168.9, 168.8, 158.7, 158.0, 147.5, 146.7, 137.7, 136.1, 135.9, 134.0, 133.0, 131.9, 131.8, 131.4, 131.2, 130.1, 129.9, 128.7, 128.5, 128.4, 126.3, 125.9, 125.2, 123.0, 120.7, 118.3, 116.0, 115.4, 115.0, 112.4, 110.1, 65.7, 65.5, 61.7, 61.6, 16.9, 14.3, 14.2, 13.8. UPLC MS (EI) Calcd. for C₄₄H₄₃N₃O₆BF₂ [M + H]⁺: 758.3208, found 758.3212.

Monostyryl-BODIPY 6e: Prepared using the procedure above from compound **3ba** (40 mg, 0.12 mmol), ethyl-2-(4-formyphenoxy)acetate (50 mg, 0.24 mmol), piperidine (1 ml), and a crystal of p-TsOH in toluene (20 ml), and purified from chromatograph (silica gel, petroleum/CH₂Cl₂ = 2/1, v/v), the desired compound **6e** was recrystallized from CH₃OH and obtained as reddish power (46 mg) in 75% yield. ¹H NMR (300 MHz, CDCl₃): δ 10.85(s, 1H), 8.20(d, J = 7.8 Hz, 1H), 7.95(d, J = 7.8 Hz, 1H), 7.60-7.22(m, 9H), 7.02-6.99(m, 2H), 6.89(s, 1H), 6.53(s, 1H), 6.43(s, 1H), 4.70(s, 2H), 4.31(q, J = 6.9 Hz, 2H), 1.34(d, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 158.9, 138.8, 136.4, 132.8, 132.7, 132.1, 130.1, 128.8, 127.2, 127.0, 126.5, 125.7, 123.5, 122.1, 120.4,

120.1, 119.8, 115.4, 114.2, 112.1, 65.5, 61.7, 14.3. UPLC MS (EI) Calcd. for $C_{29}H_{25}N_3O_3BF_2$ [M + H]⁺: 512.1952, found 512.1954.

3. Copies of ¹H NMR and ¹³C NMR spectra for all new compounds

¹H NMR compound 4 in CDCl₃

¹³C NMR of compound **4** in CDCl₃

¹H NMR compound **3aa** in CDCl₃

¹H NMR compound **3ad** in CDCl₃

¹H NMR compound **3**ae in CDCl.

 $^1\mathrm{H}$ NMR compound **3bc** in CDCl₃

¹³C NMR of compound **6b** in CDCl₃

¹³C NMR of compound **6c** in CDCl₃

 $<^{168.93}_{168.84}$

¹³C NMR of compound **6e** in CDCl₃

4. HRMS for all the compounds:

MS for 3ab

MS for 3ac

MS for 3ba

MS for 5

825.38458

8876065.0

12.43

E:\data\20110715\20110715_HESI+_B15

2011-7-15 15:47:03

20110715_HESI+_B15#13 RT: 0.17 AV: 1 NL: 5.67E6 T: FTMS + p ESI Full ms [300.00-1000.00]

E:\data\20110715\20110715_HESI+_B16	
-------------------------------------	--

2011-7-15 15:50:49

20110715_HESI+_B16 #11 RT: 0.14 AV: 1 NL: 3.65E7 T: FTMS + p ESI Full ms [300.00-1000.00]

	MS	for	6c
--	----	-----	----

2011-7-15 16:12:09

20110715_HESI+_B13_2 #27 RT: 0.37 AV: 1 NL: 1.65E6 T: FTMS + p ESI Full ms [300.00-1000.00]

20110715 HESI+ B13 2#27 RT: 0.37

ZUIIU/IS_HES	SI+_BIS_Z#Z/	RI: 0.57				
T:FTMS + p	ESI Full ms	[300.00-1	000.00]	_		
m/z	Intensity	Relative	Theo. Mass	Delta	Composition	
				(mmu)		
529.56653	124533768.0	34.44	529.49485	71.68	С 30 Н 62 О N 3 В F 2	
530.56989	44569376.0	12.33	530.48555	84.34	С31 Н 62 О N 3 F 2	
531.57312	7801877.5	2.16	531.47412	99.00	C 29 H 60 O 2 N 3 B F 2	
539.55072	1894403.6	0.52	539.47920	71.52	C31 H 60 O N 3 B F 2	
566.13947	19571828.0	5.41	566.14633	-6.87	C 39 H 18 N 3 F 2	
567.14288	4945627.5	1.37	567.13890	3.98	C 35 H 19 O 3 N 3 F 2	
568.25732	1661030.9	0.46	568.25776	-0.43	C 33 H 33 O 3 N 3 B F 2	
597.55383	1970983.1	0.55	597.49994	53.90	Сз7 Н 62 N з В F 2	
739.22388	2806393.8	0.78	739.28123	-57.35	C 47 H 36 O 3 N 3 B F 2	
799.31812	1708005.6	0.47				
799.35858	361595264.0	100.00				
799.38135	1955425.0	0.54				
799.39331	2077300.3	0.57				
800.36176	193412880.0	53.49				
801.36481	52463520.0	14.51				
802.36774	9265345.0	2.56				
813.37402	2208199.3	0.61				
821.34045	4454998.5	1.23				
822.34387	1916674.8	0.53				
958.46375	10092923.0	2.79				
959.46722	6473624.5	1.79				
960.46997	2232604.8	0.62				
					•	

MS for 6d

T: FTMS + p	ESI Full ma	s [300.00-	-T000.00]		
m/z	Intensity	Relative	Theo. Mass	Delta	Composition
				(mmu)	
318.30063	750033.7	27.74	318.28866	11.97	С16 Н35 N3 В F2
432.23849	1145575.5	42.36	432.24171	-3.22	C26 H29 N3 B F2
511.52002	2704256.0	100.00	511.48429	35.73	Сзо Н60 Nз В F2
512.19543	707165.6	26.15	512.19516	0.28	C 29 H 25 O 3 N 3 B F 2
512.50397	667674.3	24.69	512.49211	11.85	Сзо Н61 № 3 В F2
512.52325	954484.6	35.30	512.49211	31.14	C30 H61 N3 B F2
529.56696	2064903.9	76.36	529.49485	72.10	C 30 H 62 O N 3 B F 2
530.57031	766265.7	28.34	530.48555	84.77	C 31 H 62 O N 3 F 2
539.55115	2433335.5	89.98	539.47920	71.95	С31 Н60 О N 3 В F2
540.55457	859908.3	31.80	540.48703	67.54	C31 H61 O N 3 B F2
	•				

References:

1. (a) J. Olmsted, J. Phys. Chem. 1979, 83, 2581. (b) K. G. Casey, E. L. Quitevis, J. Phys. Chem. 1988, 92, 6590.

2. A. T. R. Williams, S. A. Winfield, J. N. Miller, Analyst 1983, 108, 1067.

3. SHELXL-97, Program for the Refinement of Crystal Structure, University of Gottingen, Germany, 1997.

4. SHELXTL 5.10 (PC/NT-Version), *Program Library for Structure Solution and Molecular Graphics*, Bruker Analytical X-ray Systems, Madison, WI (**1998**).

5. R. Bonnett, K. A. McManus, J. Chem. Soc., Perkin Trans. 1, 1996, 2461.