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Abstract 

In continuation with our previous work in anti-TB research area, in the present study we have demonstrated 

the structural diversity of quinolylhydrazides as potent antituberculars. The compound library was synthesized by 

molecular hybridization approach and tested in vitro against M. tuberculosis H37Rv strains. Among the designed 

conjugates, the most promising molecules were found to exhibit 100% Growth Inhibition (GI) at MIC <6.25 µg/mL. 

Moreover, several analogs in the designed series were also turned out as excellent antituberculars. To probe the 

structural characteristics influencing on the SAR, the classification model was generated using a binary QSAR 

approach termed recursive partitioning (RP) analysis. The significant features outlined by the RP model act as a 

guide in order to design the „lead‟ compound. 

 

Keywords: Quinolones, Hydrazides, Mtb, H37Rv, MABA, Binary QSAR 

Mycobacterium tuberculosis (Mtb), the pathogen remains one of the most fatal infectious 

disease followed by the AIDS.
1-3

 According to WHO statistics one third of the world‟s 

populations have been exposed to TB bacterium and new infections occurs at a rate of one per 

second.
4-7

 Control and prevention of TB is a major task nowadays. Despite the need for better TB 

therapies no new clinical candidates have been developed in the last few decades.
8,9 

Currently, 

TB is treated with a schedule of four drugs combination (e.g. isoniazide, rifampin, pyrazinamide, 

and ethambutol) and the treatment lasting up to 6-9 months.
10,11

 There are several demerits of the 

existing treatment, such as exceedingly lengthy therapy, host toxicity, ineffectiveness against 

resistance strains etc.
12

 Moreover, the drugs utilized for curing TB shows potential side effects 

such as thrombocytopenia, neuropathy, rashes fever, and drug induced hepatitis.
13

 Furthermore, 

the evolution of its new virulent forms, multidrug resistant (MDR-TB) and extensively drug 

resistant (XDR-TB) have become a major threat of mankind.
14

 The XDR-TB is virtually 

untreatable using current therapeutics and without strengthening of the current TB controls 

measures.
15

 The significant challenges for TB control are increasing number of 

immunocompromized individuals with HIV infections, who are highly susceptible to the 

disease.
16

 Consequently, there is a pressing need to develop a novel, potent, and fast-acting 

antituberculosis drugs having minimal toxicity profile that would administered in conjunction 

with antireteroviral drugs.
17,18 

Currently, the global TB development pipeline has nine drugs.
19

 

Furthermore, various quinoline based motifs are also at preclinical and clinical stages for TB 

drug development. The fluoroquinolones, such as gatifloxacin and moxifloxacin targets DNA 

topoisomerase IV and DNA gyrase can be utilized as anti-TB agents, however, they often suffer 

from the resistance. The TMC207 is a highly potent anti-TB agent which is currently in phase II 

clinical trials (Figure 1).
20-22
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Figure 1: Quinoline based scaffolds at various stages for TB drug development (1). 

In this context our group has investigated a wide range of heterocycles
23-27

 as promising 

antituberculars. Among them the 3D-QSAR study and other in silico analysis based rational 

design of tetrahydropyrimidine
24

 was identified as a „lead‟ molecule. Inspired by these findings, 

in the current paper, we have envisioned for the synthesis of quinolylhydrazides as potent anti-

TB agents by fragment based approach. 

 

Scheme 1: Synthesis of 3-(2-phenylhydrazono)quinoline-2,4-(1H,3H)-dione derivatives. 

At the outset, the synthetic strategy for the preparation of molecularly diverse hydrazides 

of quinolones is depicted in Scheme 1. The target molecules were prepared by straightforward 

Meerwein arylations.
28

 The 4-hydroxyquinolones bearing electron-rich, electron-deficient as well 

as sterically hindered substituents were efficiently coupled with the corresponding diazonium 
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salts at lower temperature, afforded compounds 4-82 in moderate to good yields with a very high 

functional group tolerance (see supporting informations). The antimycobacterial activities of 

synthesized derivatives were assessed by employing the microplate alamar blue assay (MABA) 

against Mtb H37Rv strains
29

 utilizing rifampicin as a reference drug.  

Table 1: In vitro activity of compounds 4-82 against M. tuberculosis H37Rv strains. 

 

Compds 
Substitutions aGI  

(%) 

bMIC 

(μg/mL) 
cCLogP Compds 

Substitutions 
aGI 

(%) 

bMIC 

(μg/mL) 
cCLogP 

R Ring A Ring B R Ring A Ring B 

4 H 4-Br 3-NO2 100 <6.25 2.643 44 H 4-F 3-Cl 50 <6.25 2.893 

5 H 2-Ph 3-NO2 100 <6.25 3.668 45 H 2,3-di Me 2-NO2 48 >6.25 2.728 

6 H H 2-Cl 100 <6.25 2.750 46 H 3-Cl 3-Cl 47 >6.25 3.463 

7 H 4-F 3-NO2 100 <6.25 1.923 47 H 4-F 2-NO2 46 >6.25 1.923 

8 H H 2-NO2 99 <6.25 1.780 48 H 2-Me, 4-OMe 2-NO2 45 >6.25 2.198 

9 H 4-Cl 2-NO2 99 <6.25 2.493 49 H 3-Me H 42 >6.25 2.536 

10 H 2-Me, 3-Cl 3-NO2 98 <6.25 2.728 50 H 3-Cl H 41 >6.25 2.750 

11 H 4-Cl 4-Cl  98 <6.25 3.463 51 H 2-Me, 4-OMe 2,5-di Cl 40 >6.25 3.881 

12 H 4-COMe 2, 3-di Cl 98 <6.25 2.782 52 Me 2-Me, 4-OMe 2-NO2 40 >6.25 3.074 

13 H H H 97 <6.25 2.037 53 H 3-Cl 2-Me 39 >6.25 3.249 

14 Me 2-Me H 97 <6.25 3.412 54 Me 4-Cl H 38 >6.25 3.626 

15 H 2-OMe 3-NO2 96 <6.25 1.699 55 H 4-OMe 2-NO2 37 >6.25 1.699 

16 H 3-NO2 4-Cl 96 <6.25 2.493 56 H 4-OMe 2,5-di Cl 36 >6.25 3.382 

17 H 3-Me 2-NO2 95 <6.25 3.035 57 H 2-Ph 2-NO2 35 >6.25 3.668 

18 H 3, 4-di Cl 4-Cl 95 <6.25 4.056 58 H 4-Me 2-Cl 34 >6.25 3.249 

19 Me 2-NO2 H 94 <6.25 3.412 59 H 3-Cl 2,5-di Cl 32 >6.25 4.176 

20 H 4-Me 3-NO2 92 <6.25 2.279 60 H 2-OMe 2-NO2 32 >6.25 1.699 

21 H 4-NO2 4-Cl 91 <6.25 2.493 61 H 3-Me 2-Me 31 >6.25 3.035 

22 H 4-NO2 2, 3-di Cl 89 <6.25 3.086 62 H 2-Cl 3-Me 31 >6.25 3.249 

23 H 4-COMe 2-NO2 89 <6.25 1.219 63 H 4-COMe 4-Cl 29 >6.25 2.189 

24 H H 2, 3-di Cl 85 <6.25 3.343 64 H 3-NO2 2,3-di Cl 27 >6.25 3.086 

25 H 3-Cl, 4-F 2-NO2 85 <6.25 2.636 65 H 4-COMe 2-Cl 24 >6.25 2.189 

26 H 3-Cl 2-NO2 82 <6.25 3.249 66 H 3-NO2 2-Cl 24 >6.25 2.493 

27 H 3-Cl 2, 3-di Cl 82 <6.25 4.056 67 H 2,6-di Me 2-NO2 22 >6.25 2.778 

28 H 2-NO2 2-NO2 80 <6.25 2.279 68 H 3,4-di Cl 2-Cl 21 >6.25 4.056 

29 H 3-F 2, 3-di Cl 80 <6.25 3.468 69 H 2,3-di Cl 3-NO2 21 >6.25 3.206 

30 H 4-F 2, 5-di Cl 80 <6.25 3.606 70 Me 4-NO2 H 20 >6.25 2.656 

31 H 3, 4-di Cl 2-NO2 79 <6.25 3.086 71 Me 4-COMe H 20 >6.25 2.352 

32 H H 3-Cl 76 <6.25 2.750 72 H 3-Me 3-NO2 19 >6.25 2.279 

33 H 3-Me 3-Me 76 <6.25 3.035 73 H 4-OMe 2,3-di Cl 14 >6.25 3.262 

34 H 4-F 4-Cl 71 <6.25 2.893 74 H 2,6-di Me 4-Cl 13 >6.25 3.748 

35 H 4-Cl, 5-F 3-NO2 70 <6.25 2.636 75 H 2-Me, 4-OMe 4-Cl 12 >6.25 3.168 

36 H 4-NO2 2-NO2 65 <6.25 1.523 76 H 4-Me 2,5-di Cl 11 >6.25 3.962 

37 H 2-NO2 4-Cl 64 <6.25 2.493 77 Me 4,5-di Cl H 10 >6.25 4.125 

38 H 3-Me 2, 3-di Cl 62 <6.25 3.842 78 H 2-Cl 2-Cl 7 >6.25 3.463 

39 H 4-Cl 2-NO2 61 <6.25 2.493 79 H 4-COMe 3-Cl 6 >6.25 2.189 

40 H 3-NO2 2-NO2 60 <6.25 1.523 80 H 4-OMe 3-Cl 4 >6.25 2.669 

41 H 2-Me, 3-Cl 2-NO2 56 <6.25 2.992 81 H 4-NO2 3-Cl 1 >6.25 2.493 

42 H 4-OMe 4-Cl 55 <6.25 2.669 82 H H 4-OMe 0 >6.25 1.699 

43 H 4-Me 2, 3-di Cl 54 <6.25 3.842        
a
Growth Inhibition (GI) of virulent strains of M. tuberculosis; 

b
MIC of Rifampicin: 0.015–0.125 μg/mL against M. 

tuberculosis H37Rv (97% inhibition); 
c
CLogP is calculated on ChemDraw Ultra 12.0. 
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The structure activity relationship (SAR) of the molecular diversity is summarized in Table 1. 

The GI values were obtained in the range of 0-100% at MIC <6.25 and >6.25 µg/mL. The 

presence of versatile substituents on quinolylhydrazide skeleton was significantly affected on 

antitubercular activity. The unsubstituted analog 13 was found to be considerably potent (97% 

GI at MIC <6.25µM). Next, the influence of hydrophilic or lipophilic variants on the parent 

structure was probed. The analogs in which ring B constituted with NO2 group, compounds 4, 6-

10, 15, 17, and 20 displayed superior activity. The compound 28 has shown 80% GI while, 36 

and 40 exhibited almost 2-fold reductions in anti-TB activity. In the same context, the NO2 

containing quinolylhydrazides, for instance 41, 45, 47, 48, 55, 57, 60, 67, 69, and 72 were found 

to be weakly actives. On the contrary, the presence of NO2 group in ring A, in lieu of ring B, 

among the compounds 16, 21, 22, 37, 64, 66, and 81, only few analogs, such as 16, 21, 22 

exhibited good activity. This trend has clearly indicated that not only the presence of NO2 but its 

site-selectivity in the particular ring is also essential to generate a „lead‟ molecule. Among N
1
 

methylated analogs, compounds 14 and 19 were proven to be actives. While, in comparison 

between 48 and 52 suggested that the N-methylation have not essential to design the potent 

antitubercular. We next scrutinized di-halogenated surrogates 11, 18, 27, 46, 59, 68, and 78 have 

shown GI ranging from 7-98%, nevertheless CLogP were observed <5. The analogs 11 and 18 

were found to be notably promising, while up to 4-fold reduction in anti-TB activity was 

observed within rest of the halogenated analogs. The incorporation of fluorine group may alter 

many of the physical properties of organic molecules, such as lipophilicity, metabolic stability, 

and conformational characteristics. For these reasons, we have rationally incorporated F group in 

conjunction with Cl either in ring A or B in compounds 29, 30, 34, and 44, nevertheless, no 

profound biological activities were noticed. Consequently, we may conclude that the blending of 

F and Cl was proven to be crucial in a search of prominent antitubercular of this class. In 

comparison between two sterically hindered analogs, compound 5 demonstrated 100% GI while, 

dramatic loss in activity was noticed in other regio-isomer 57. When both rings comprising with 

Me group, compound 33 has shown satisfactory reduction in activity while 61 was found to be 

weakly potent. The molecules 38, 42, 43, 53, 62 exhibited moderate to poor activity. Notably 

promising compound 12 bearing COMe and Cl groups in rings A and B respectively. The least 

potent analog in the series, compound 82 constituted with OMe group in ring B, nevertheless 

CLogP is 1.699. In comparisons, the molecules 23, 63, 65, and 79 in which 4-COMe in ring A 
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and NO2 or Cl in ring B, a mere analog 23 was found active, whilst the biological profile of rest 

of the analogs were reduced up to 4-fold. The combination of OMe or Me and Cl, compounds 

56, 58, 73-76 were found weakly potent. Finally, the effect of compound polarity was estimated 

by calculating the CLogP. The thumb rule for CLogP to a drug-like molecule must be less than 

„5‟ to by-pass a cell barrier. The CLogP seems to correlate some extent with lipophilicity and 

was found in the range of 1.219-4.176. Despite the lower potency, none of the analog has shown 

CLogP less than 5. Thus, from the SAR results we may confirm that the influences of electron 

density of the substituents, lipophilicity, as well as stereo-electronic properties are indispensable 

to design a „lead‟ structure.  

Next, to classify this dataset, a binary QSAR utilising the recursive partitioning (RP) 

analysis was performed. The RP is a simple statistical data analysis technique that seeks to 

decipher the elusive relationships in dataset involving thresholds, interactions, and non-

linearities. The RP has an advantage of classifying biological activity data by considering an 

appropriate descriptors recursively. The non-linearity in the data impede the analysis that is 

based on linearity such as multiple linear regression (MLR), principal component analysis (PCA) 

or partial least squares (PLS) regression. The RP analysis is inherently faster than other grouping 

techniques for instance, clustering and the 2D nature makes facile for the data which is difficult 

to sieve in to usable divisions of classification. Furthermore, it has to be pointed out that the RP 

analysis is meant to identify the common characteristics of the binding modes in the data set and 

to recognize other compounds those fit the acquired rules.
30

 The tree display of the SAR results 

help to identify the decisive factors that may categorize the dataset in to molecular classes with 

higher and lower potency. The algorithm accounts for all possible binary splits for each 

descriptor and to identify the optimal by splitting criterion–a Boolean function BN(M) of the 

molecular descriptors, returning „true‟ or „false‟. The resulting subsets recursively split further 

with every new subset representing a node at which the splitting criterion is associated. The 

branches of the tree signify the truth values taken by the splitting criteria. The true response to 

any given splitting criteria follows a branch to the downside while the false response follows a 

branch to the upside in the partition tree. There can be several nodes consisting only „active‟ 

molecules each representing different structural classes of known active. The goal is to produce 

the RP model with decision tree in which the final terminal nodes contain either only „active‟ or 
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only „inactive‟ molecules or in other words to produce terminal subsets of maximal homogeneity 

with respect to the measured activities of their members. 

We probed a set of 79 molecules (compounds 4-82) for the RP analysis. The 

classification model was generated using the CSAR recursive partitioning technique incorporated 

in Cerius2 (version 4.8, Accelrys Inc)
31

 software. The numerical descriptors that encode 

topological, geometric/structural, electronic, and thermodynamic properties were considered for 

deriving the RP model
32

 and decision tree was generated from the results of the RP. The 

antitubercular activities of the molecules under study were described in terms of their growth 

inhibition (GI) values ranging from 0-100%. The entire dataset was split in to two classes as 

inactive (0) and active (1) with the class 1 containing 38 less active compounds having GI values 

<50% while the class 2 consisting 41 active compounds having GI values ≥50%. The correlation 

matrices were built for the descriptors and the descriptors with zero variance as well as columns 

containing 95% of zero values were eliminated. Moreover, the descriptors having cross-

correlation coefficient >0.5 were eliminated as they have represented nearly same information. 

The resulting uncorrelated descriptors were used as independent variables (X) while the 

biological activity served as the dependent variable (Y) for the RP analysis. The activity classes 

were weighted equally (weighing by classes) wherein an active node is a node in which the 

fraction of actives exceeds the fraction of active molecules over the entire dataset (in case of 

weighing by observables a node with more than half of the members being active will be 

considered „active‟). The inactives categorized in an „active‟ node while the actives classified in 

„inactives‟ nodes are accounted as „misclassified‟. The splits were scored using Twoing rule 

scoring function to minimize the misclassification costs; the pruning factor was varied from 0 to 

3; the values for maximum tree depth were varied between 5 and 10 while default values were 

used for maximum number of generic splits (30) and the number of knots per variable (20). The 

classification model was validated using cross validation, with the number of cross-validation 

groups set to 5. 

The classification model was developed using 2D as well as 3D-physicochemical 

descriptors by varying the parameters discussed above seeking to improve the following 

parameters: „Class % Observed Correct‟, a measure of intra-class prediction accounting for the 

compounds predicted correctly to be in respective classes as a percentage of a total number of 

compounds observed to be in each class; ‘Overall % Predicted Correct’, so-called overall 
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prediction is the percent of ratio of a total number of compounds correctly classified to the 

number of compounds predicted in that class providing information on the accuracy of an overall 

prediction; the ‘enrichment factor’ for a specific class is the ratio of percentage of compounds 

correctly predicted belong to that class over the original percentage of compounds belonging to 

that class. The statistical results of the RP analysis are summarized in Table 2.
33

  

Table 2. Statistical results of recursive partitioning model. 

Class Value 
Number of 

Compounds 
% 

Class % 

Obs Correct 

Overall % 

Pred Correct 
Enrichment 

1 0 38 48.10 100 100 2.08 

2 1 41 51.90 100 100 1.93 

The results of the RP analysis were displayed as decision tree derived from the RP 

process splitting the whole dataset in to smaller subsets (nodes). The RP progresses sequentially 

examining all the descriptor variables to identify the best criterion for splitting the dataset in to 

„active‟ or „inactive‟ class. The 18-leaf RP decision tree was obtained for the quinolylhydrazides 

as depicted in Figure 2. The decision tree looks like the horizontal dendrogram formed with 18 

terminal and 17 non-terminal nodes in which Class 1 (0) is plotted using Red while Class 2 (1) 

using Green. The terminal nodes 1, 3, 5, 7, 10, 12, 15, 17, and 18 represents class 2 (i.e. active) 

while the terminal nodes 2, 4, 6 8, 9, 11, 13, 14, and 16 represents class 1 (i.e. inactive). The 

analysis of decision tree shows that in class 1, i.e. the class of „inactives‟, 38 out of the 38 

compounds were correctly classified as belonging to class 1. For class 2 which is the class of 

„actives‟, all 41 compounds were correctly classified as actives represented 100% intra-class 

predictivity. The overall prediction was represented by „Overall % Predict Correct‟ was found to 

be 100% signified the accuracy of prediction when entire data set was being predicted with the 

RP model. The enrichment factor (2.08 for class 1 and 1.93 for class 2) also indicates that the RP 

model is statistically significant and can be used to classify new compound library. To evaluate 

the predictability and to avoid over fitting of data, the model was subjected to 5-fold cross-

validation. This procedure leaves out 5% of the dataset and builds the model using remaining 

molecules which are then utilized to predict the activity of eliminated subset. The statistics of 

cross-validation are depicted in Table 3. 
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Figure 2. An 18-leaf decision tree derived from the Recursive Partitioning (RP) for prediction of antitubercular 

activity classes. Those marked 1:1, 2:0, 3:1, 4:0, 5:1, 6:0, 7:1, 8:0, 9:0: 10:1, 11:0, 12:1, 13:0, 14:0, 15:1, 16:0, 17:1 

and 18:1 correspond to terminal nodes 1-18 and each terminal node corresponds to the value of 1 (active) or 0 

(inactive). 

Table 3. Statistical results of recursive partitioning model for 5-fold cross-validation. 

Class Value 
Number of 

Compound 
% 

Class % 

Obs Correct 

Overall % 

Pred Correct 
Enrichment 

1 0 38 48.10 52.63 55.56 1.16 

2 1 41 51.90 60.98 58.14 1.12 
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The acceptable percentage of classification, 56% and 58% was accomplished for class 1 and 

class 2 with enrichment factor of 1.16 and 1.12, respectively indicated that the classification 

model would be able to classify and predict the activity (class) of new derivatives. The 

statistically significant cross-validation experiment signals for the given data set, a series of n 

partition trees can be derived based on subsets of size (1 - l/n), which correctly represents active 

apart from inactive in remaining l/n dataset. The key elements identified in the validation set 

were consistent with those from the entire set. 

The first primary split was observed on the density (a spatial descriptor reflecting the type 

of atoms and how tightly they are packed in a molecule and also signify transport and melt 

behavior) and its cut-off value was 1.24. The dataset was split in to two branches-those 

molecules with density value less than 1.24 (compound 33) followed a branch to downside while 

those (compound 46) with density value above cut-off followed a branch to upside. The 

molecules with density greater than 1.24 were divided on the basis of area at the cut-off value of 

342.76 with molecule (compound 6) having an area greater than the cut-off values formed the 

branch to upside while those (compound 40) with area less than 342.76 followed a branch 

downside. Six molecules with area greater than 342.76 were further split in to two branches on 

the basis of atomic polarizability (Apol). It is an electronic descriptor and is a measure of the 

relative tendency of charge distribution caused by the presence of nearby ion or dipole. It is also 

related to hydrophobicity and thus to the biological activity. The molecule 12 with Apol greater 

than 15744.63 formed the terminal node 1 and was correctly predicted as active, while the 

molecules 51, 56, 64, 73 and 76 formed the terminal node 2 was correctly classified as inactive 

by the RP model. Forty molecules with area less than 342.76 were split based on Dipole moment 

(Dipole-mag) with cut-off value of 9.96. The dipole moment is an electronic descriptor 

signifying the strength and orientation behavior of the molecule in an electrostatic field which 

can be related to the long-range ligand-receptor recognition and subsequent binding. Ten 

molecules 16, 18, 21, 30, 50, 59, 66, 68, 77, and 81 with Dipole-mag greater than 9.96 followed 

a branch upside while those below cut-off formed a branch downside. These molecules were 

further split using the Dipole-mag with molecules having values greater than 11.72 formed the 

terminal node 3 while, the remaining seven molecules followed a branch downside. The terminal 

node 3 contains the three molecules 16, 18, and 21 which were correctly classified as actives. 

The remaining seven molecules with Dipole-mag less than 11.72 but greater than 9.96 were 
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further split to form the terminal nodes 4 and 5 on the basis of BIC (Bonding Information 

Content). The molecules 50, 59, 66, 68, 77, and 81 with BIC values greater than 0.69 formed the 

terminal node 4 and were predicted as inactive while molecule 30 having BIC less than 0.69 was 

correctly classified as active and formed the terminal node 5. Thirty molecules with Dipole-mag 

less than 9.96 were formed the branch downside were further split on the basis of IC 

(Information Content) values. The molecule 69 with IC value greater than 3.88 formed the 

terminal node 6 was correctly predicted as inactive by the RP model while, the remaining 29 

molecules with IC values less than 3.88 were further split on the basis of Radius of Gyration with 

cut-off of 4.42. Nineteen molecules with Radius of gyration (a spatial descriptor related to the 

size of a molecule) greater than 4.42 formed the terminal node 7 while, the remaining 10 

molecules with the descriptor value less than cut-off followed a branch downside. These were 

again split on the basis of radius of gyration with the molecules having radius of gyration greater 

than 4.41 but less than 4.42 formed the terminal node 8 and was found to contain two molecules 

46 and 47 correctly predicted to be inactive. Eight molecules with Radius of Gyration less than 

4.41 were now split using the descriptor variable density as the splitting criterion with molecule 

78 having the density greater than 1.30 formed the terminal node 9 was correctly predicted as 

inactive. The remaining seven molecules 6, 24, 28, 32, 34, 37, and 44 with density less than 1.30 

formed the terminal node 10 and were correctly classified as active. 

Switching to the first primary split thirty three molecules with density value less than 

1.24 followed a branch downside. These molecules were further split in to two branches based 

on dipole-mag property. The molecules 5, 15, and 20 with Dipole-mag values less than 3.61 

formed the terminal node 18 and were correctly predicted as belonging to active class. The 

remaining 30 molecules followed a branch upside and were split on the basis of density with cut-

off value as 1.12. The compounds 14 and 33 with density less than 1.12 formed the terminal 

node 17 while other twenty eight molecules followed a branch upside in the partition tree. These 

were further split on the basis of BIC with 5 molecules having the property value less than 0.7 

followed a branch downside while those having BIC value greater than 0.7 followed a branch 

upside. A branch having molecules with BIC less than 0.7 was split in to two sub-nodes on the 

basis of Dipole-mag. The molecules 13, 19, and 23 having the Dipole-mag values greater than 

5.69 formed the terminal node 15 while, the molecules 57 and 67 with Dipole-mag property less 

than cut-off value formed the terminal node 16 and were correctly predicted by the RP model. In 
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viewing 23 molecules, out of 28 which showed the BIC value greater than 0.70 were split based 

on their density variable. Fifteen molecules with density values less than 1.21 formed the 

terminal node 14 and were correctly classified as inactive. The remaining eight molecules with 

density greater than 1.21 followed a branch upside and were split on the basis of molecular 

volume (Vm). It is a spatial descriptor representing the molecular volume inside the contact 

surface. It is calculated as a function of conformation and is associated with binding and 

transport of a molecule. Three molecules 17, 42, and 63 with molecular volume less than 267.56 

followed a branch downside and those with descriptor value greater than 267.56 formed the 

terminal node 11 containing the correctly predicted inactive compounds 55, 60, 65, 79, and 80. 

The molecules 17, 42, and 63 were further split based on strain energy with correctly predicted 

active molecules 17 and 42 forming the terminal node 12 while molecule 63 having strain energy 

less than 8.15 formed the terminal node 13. Thus, the RP approach is sequentially dividing the 

dataset on the basis of their physico-chemical descriptor, which help to identify the variables 

need to be modified in order to arrive at the active molecule.  

In conclusion, we have demonstrated the synthesis as well as antimycobacterial screening 

of a new family of hydrazide. A significant numbers of compounds were found highly potent in 

the preliminary screening assay. Furthermore, the recursive partitioning model derived for the 

quinolylhydrazides encodes the useful information pertaining to chemical environment around 

the molecules. The computational study predictions were also found to be in harmony with 

antimycobacterial activity data. Despite a high degree of structural similarity in the dataset, the 

classification model has been able to break down the large dataset in to a series of subsets those 

are enriched in either active or inactive molecules. This model will be evolved continuously by 

enlarging the dataset to generate a better hypothesis for designing novel candidates targeting 

tuberculosis. Further lead optimization and detailed biological study will be communicated in 

due course.   
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