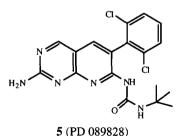


PII: S0960-894X(97)00445-9

DISCOVERY AND STRUCTURE-ACTIVITY STUDIES OF A NOVEL SERIES OF PYRIDO[2,3-d]PYRIMIDINE TYROSINE KINASE INHIBITORS

Cleo J. C. Connolly,^a James M. Hamby,^a Mel C. Schroeder,^a Mark Barvian,^a Gina H. Lu,^b Robert L. Panek,^b Aneesa Amar,^c Cindy Shen,^c Alan J. Kraker,^c David W. Fry,^c Wayne D. Klohs,^c and Annette M. Doherty^a

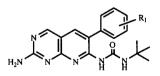

Departments of ^aChemistry, ^bVascular and Cardiac Diseases, and ^cCancer Research, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105.

Abstract: The inhibition of tyrosine kinase-mediated signal transduction pathways represents a therapeutic approach to the intervention of proliferative diseases such as cancer, atherosclerosis, and restenosis. A novel series of pyrido[2,3-d]pyrimidine inhibitors of the PDGFr, bFGFr, and c-Src tyrosine kinases was developed from compound library screening and lead optimization.¹ In addition, highly selective inhibitors of the FGFr tyrosine kinase were also discovered and developed from this novel series of pyrido[2,3-d]pyrimidines. The syntheses, biological evaluation, and structure-activity relationships of this series are reported. © 1997 Elsevier Science Ltd

Introduction: Protein tyrosine kinases (PTKs) catalyze the selective transfer of a phosphate group from ATP to a tyrosine hydroxyl residue of a substrate protein. Tyrosine phosphorylation is a critical event in growth factor mediated signal transduction and PTKs are key components of this process.² The aberrant overexpression of receptor PTKs or their cognate ligands has been implicated in the pathogenesis of proliferative diseases. For example, strong evidence exists for the role of the platelet-derived growth factor (PDGF) and the basic fibroblast growth factor (bFGF) in such diseases as restenosis,³ atherosclerosis,⁴ and cancer.⁵ FGF is also reputed to be a potent angiogenic factor for which tumor cells are dependent upon to grow and metastasize.⁶ In addition, elevated levels of pp60^{e-Sre}(c-Src), a nonreceptor cytoplasmic PTK, has been associated with a variety of human malignancies.^{7,8} Thus, given the critical role of these PTKs in the propagation of abnormal mitogenic growth signaling, inhibitors of the PDGF receptor (PDGFr), FGF receptor (FGFr) and c-Src tyrosine kinases represent a potential therapeutic strategy for controlling a variety of proliferative disorders.

Results and Discussion: Screening of our compound library for inhibitors of the PDGF and FGF receptor tyrosine kinases led to the discovery of a novel pyrido[2,3-*d*]pyrimidine tyrosine kinase inhibitor, **5**, PD 089828 (see Figure 1). Compound **5** inhibited PDGFr and FGFr tyrosine kinase activity with IC₅₀ values of 1.25 and 0.14 μ M, respectively. Upon further evaluation, **5** was also found to inhibit the cytosolic c-Src tyrosine kinase activity with an IC₅₀ value for inhibition in the submicromolar range (see Table 1). A structure–activity relationship (SAR) study focusing on phenyl substitution in the 6-position was initiated to determine structural requirements for optimizing potency of these three kinases and enzyme selectivity at this position (see Table 1).

FIGURE 1.



The SAR study generally revealed that either 2- or 2,6-disubstituted phenyl moieties in the 6-position possessing either methyl or halogen substituents resulted in an increase in PDGFr, FGFr, and c-Src tyrosine kinase inhibitory activity relative to the unsubstituted parent compound, 4. The greatest increases in activities were realized with the 2,6-disubstituted compounds (8, 9, and 15) which were a log order more potent against PDGFr and FGFr tyrosine kinases and several orders of magnitude more potent against the c-Src tyrosine kinase compared to 4. Tyrosine kinase activity was least affected by a 2,6-difluoro substitution (compound 10) in the phenyl ring producing only a modest increase in FGFr-TK and c-Src kinase activity. Larger groups in the 2-position of the phenyl ring such as ethyl (compound 22), or methoxy (compound 24), resulted in a decrease in activity against PDGFr-TK and FGFr-TK with little or no effect on c-Src activity. Substitutions in the 4-position of the phenyl ring resulted in a loss or decrease in activity against all three kinases as exemplified by 14, 26 and 27. However, the 2,4,6-trimethyl analog, 18, retained similar tyrosine kinase activity relative to the 2,6-diMe analog, 15, even though it contained a methyl substituent in the 4-position.

Most interestingly, substitutions at the 3- and 5-positions of the phenyl ring showed a high degree of selectivity for the FGFr tyrosine kinase relative to that of the other kinases (see Table 2). Initially, the 3,5-dimethyl analog, **17**, was synthesized and displayed selectivity for the FGFr-TK ($IC_{50} = 1.13 \mu M$) relative to the PDGFr-TK ($IC_{50} = 52.9 \mu M$) and the c-Src tyrosine kinase ($IC_{50} > 50 \mu M$). This interesting finding led us to investigate further the effects of 3,5-substitution on FGFr selectivity. The 2,3,5,6-tetramethyl analog, **19**, was selective for FGFr-TK with an IC_{50} value of 0.71 μM and was inactive against PDGFr and c-Src tyrosine kinases. Compared to **19**, the 3,5-dimethoxy analog, **28**, was an order of magnitude more potent against the FGFr-TK with an IC_{50} value of 0.06 μM . Similar to **19**, **28** was inactive against the PDGFr-TK and c-Src tyrosine kinases (Table 3). Increasing the size of the 3,5-dialkoxy substituents from 3,5-diOMe (**28**) to 3,5-diOEt (**30**) retained FGFr-TK selectivity but was accompanied by a decrease in potency for inhibition of the FGFr-TK ($IC_{50} = 1.65 \mu M$ for **30** vs $IC_{50} = 0.06 \mu M$ for **28**). The 3,5-diEt (**23**) and 3,5-diNMe₂ (**31**) analogs were also selective but less potent than compound **28**. The 3,5-diF (**11**) analog revealed a decrease in potency and showed no selectivity against FGFr-TK while the 3,5-diCF₃ (**12**) analog was inactive against PDGFr, FGFr, and c-Src tyrosine kinases.

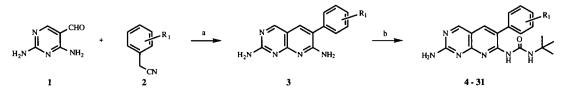
Structure-Activity Relationships:

Table 1. Substituted Phenyl Analogs

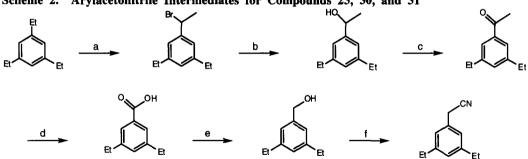
No.	R ₁	PDGFr-TK (IC ₅₀ , μM) ¹⁰	FGFr-TK (IC ₅₀ , μM) ¹⁰	c-SRC-TK (IC ₅₀ , μM) ¹⁰
4	Н	13.24	8.0	19.33
5	2,6-diCl	1.25	0.14	0.22
6	2,3-diCl	2.26	0.16	4.41
7	2,3,6-triCl	2.96	0.11	1.41
8	2,6-diBr	1.42	0.29	0.21
9	2-Br, 6-Cl	0.62	0.18	0.21
10	2,6-diF	1.67	0.11	0.80
11	3,5-diF	8.97	1.10	1.35
12	3,5-diCF ₃	>50	>50	>50
13	2-Me	1.05	1.40	0.41
14	4-Me	6.31	1.67	17.50
15	2,6-diMe	0.34	0.40	0.11
16	2,3-diMe	6.05	0.34	4.17
17	3,5-diMe	52.90	1.13	>50
18	2,4,6-triMe	1.47	0.27	0.36
19	2,3,5,6-tetraMe	> 50	0.71	> 50
20	2,3,4,5,6-pentaMe	>50	1.62	>50
21	2,6-diMe, 3-OCH ₂ CH ₂ NEt ₂	11.81	0.89	1.65
22	2-Et	4.48	11.22	10.43
23	3,5-diEt	>50	7.76	>50
24	2-OMe	4.48	11.22	10.43
25	3-OMe	22.93	0.36	36.40
26	4-OMe	2.89	3.97	>50
27	3,4-diOMe	>50	20.25	>50
28	3,5-diOMe	> 5 0	0.06	>50
29	3-OEt	23.00	0.67	>50
30	3,5-diOEt	>50	1.65	>50
31	3,5-diNMe ₂	>50	16.00	>50

Since compounds **19** and **28** were the most potent and selective inhibitors of the FGFr-TK from this series, they were selected for further profiling against an expanded panel of protein kinases. As seen in Tables 1 and 2, compounds **19** (PD 162628) and **28** (PD 166866) retained their high degree of selectivity for the FGFr-

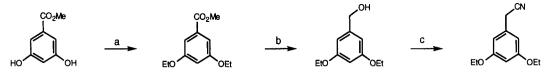
TK relative to this expanded panel of enzymes. In contrast, the initial lead, compound 5, showed broad activity against this panel of enzymes. The highly FGF-selective compound, **28**, was further evaluated for its ability to inhibit FGF-stimulated human umbilical vein endothelial cells (HUVECs) growth. HUVECs has shown to be dependent upon FGF for growth.¹¹ In a 4-day growth delay assay,¹² compound **28** inhibited FGF-stimulated HUVEC growth with an IC_{s0} of 0.059 μ M.


Table	2.	FGFr	Selective	TK	Inhibitor	Profile

Kinase (IC ₅₀ , μM) ¹⁰	5 PD 089828	19 PD 162628	28 PD 166866
MAPK	7.1	>50	>50
CDK4	>50	>40	>40
EGFr	0.45	6.68	50
InsR	>50	>50	>50
РКС	50	>50	>50


Synthesis: Compounds 4-31 were prepared according to the general method described in Scheme 1.¹³ The previously reported aldehyde 1^{14-16} was condensed with an appropriately substituted phenylacetonitrile (2) in refluxing 2-ethoxyethanol under basic conditions (0.4 equiv sodium hydride) to afford the corresponding 2,7-diamino-(6-aryl)-pyrido[2,3-d]pyrimidine (3) in variable yields (27–97%). Subsequently, a suspension of 3 in DMF at room temperature was treated with 1.1 equiv of NaH, stirred for 1 h, followed by the addition of *tert*-butylisocyanate to afford the desired target compounds 4-31 in yields ranging from 30–70%.

Scheme 1. Pyrido[2,3-d]pyrimidine Analogs


(a) NaH, 2-ethoxyethanol, 27-98% yield; (b) i. NaH, DMF; ii. t-BuNCO, 30-70% yield.

Generally, the substituted phenylacetonitrile intermediates used in this work were obtained from commercial sources or prepared according to literature methods.^{1,13,14,17} However, several of the intermediates used in this study were novel, and therefore syntheses were developed to access them. Scheme 2 describes the synthetic routes used to prepare these heretofore unknown substituted phenylacetonitriles, which were used to prepare compounds **23**, **30**, and **31**.



Scheme 2. Arylacetonitrile Intermediates for Compounds 23, 30, and 31

(a) NBS, CCl4 (88%); (b) BaCO3 dioxane/H₂O (quantitative); (c) 8 N Jones reagent, acetone (53%); (d) Br_2 , NaOH/H₂O, dioxane (90%); (e) LAH, THF (92%); (f) i. SOCl₂, benzene; ii. KCN, 95% EtOH (45%).

(a) K₂CO₃, Etl, acetone (82%); (b) LAH, THF (82%); (c) PPh₃, DEAD, acetone cyanohydrin (35%).

(a) i. H2, Ra/Ni, MeOH, ii. 37% HCHO iii. Ra/Ni (77%); (b) LAH, THF (94%); (c) PPh3, DEAD, acetone cyanohydrin (30%).

Biological Evaluation: The following enzyme assays were run according to previously reported literature procedures: PDGFr-TK/FGFr-TK,¹⁸ c-Src,¹⁹ MAPK,²⁰ EGFr,²¹ InsR,²² and PKC.²³ The CDK4 assay²⁴ and HUVEC growth delay assay¹² were performed in our laboratories.

Conclusions: Compound library screening to identify leads with PDGFr and FGFr tyrosine kinase inhibitory activity led to the discovery of a novel series of pyrido[2,3-*d*]pyrimidine compounds with PDGFr, FGFr, and c-Src TK enzyme inhibitory activity. SAR studies focusing on modifications at the 6-phenyl moiety of the initial lead produced a series of broadly active potent TK inhibitors. This study also led to the development of a novel series of 2-amino-6-(3,5-disubstituted-phenyl)-pyrido[2,3-*d*] pyrimidin-7-yl]-3-*tert*-butyl-urea analogs which are highly selective and potent inhibitors of the FGFr tyrosine kinase.

References and Notes:

- 1. Blankley, C. J.; Doherty, A. M.; Hamby, J. M.; Panek, R. L.; Schroeder, M. C.; Showalter, H. D. H.; Connolly, C. WO PCT Appl. 9615128, 1996; *Chem. Abstr.* 1995, 125, 114688.
- 2. Fry, D. W.; Bridges, A. J. Curr. Opin. Biotech. 1995, 6, 662.
- 3. Bornfeldt, K. E. Trends Cardiovasc. Med. 1996, 6, 143.

- 4 Reidy, M. A.; Bendeck, M. P. In Coronary Restenosis: From Genetics to Therapeutics: Feuerstein, G., Ed.; Dekker: New York, 1997, Vol. 28, pp 55-67.
- 5 Fry, D. W. Expert Opin. Invest. Drugs 1994, 3, 577.
- 6
- 7
- Klein, S.; Roghani, M.; Rifkin, D. B. *EXS* **1997**, *79*, 159. Brunton, V. G.; Ozanne, B. W.; Paraskeva, C.; Frame, M. C. Oncogene **1997**, *14*, 283. Verbeek, B. S.; Vroom, T. M.; Adriaansen-Slot, S. S.; Ottenhoff-Kalff, A. E.; Geertzema, J. 8. G. N.; Hennipman, A.; Rijksen, G. J. Pathol. **1996**, 180, 383. Connolly, C. J. C.; Hamby, J. M.; Schroeder, M.C.; Lu, G. H.; Panek, R. L.; Amar, A.; Shen,
- 9 C.; Kraker, A. J.; Doherty, A. M. 211th ACS National Meeting: New Orleans, LA, March 1996. MEDI 193.
- 10. IC_m values reported for kinase inhibition represent the means of at least two separate experiments each done in triplicate with typical variations of less than 30% between replicate values.
- 11. Garfinkel, S.; Hu, X.; Prudovsky, I. A.; McMahon, G. A.; Kapnik, E. M.; McDowell, S. D.; Maciag, T. J. Cell Biol. 1996, 134, 783.
- 12. HUVEC growth delay assay conditions: HUVECs were grown in EGM culture medium supplemented with 10 ng/mL human recombinant epidermal growth factor, 1 mg/mL hydrocortisone, 2% fetal bovine serum, 50 mg/mL gentamicin, 50 ng/mL amphotericin-B, 12 mg/mL bovine brain extract, and 10 mg/mL heparin. Experiments were preformed with HUVECs between passage 3 and 5. HUVECs were seeded in a 96-well cell culture plate at a concentration of 1800 cells/well. Cells were allowed to attach overnight in a 37 °C, 5% CO₂ incubator after which concentrations of compounds were added to wells and cells were incubated with the indicated compounds for 4 days. The effect of the compounds was determined with sulphorhodamine B as previously described in the following reference: Skehan, P.; Stoneng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.; Bokesch, H.; Kenney, S.; Boyd, M. J. Natl. Cancer Inst. 1990, 82, 1107.
- 13. Bennett, L. R.; Blankley, C. J.; Fleming, R. W.; Smith, R. D.; Tessman, D. K. J. Med. Chem. 1981, 24, 382
- 14. Blankley, C. J.; Boschelli, D. H.; Doherty, A. M.; Hamby, J. M.; Klutchko, S.; Panek, R. L. WO PCT Appl. 9634867, 1996; Chem. Abstr. 1996, 126, 59965.
- 15. Gossett, L. S.; Shih, C. J. WO PCT Appl. 9509845, 1995; Chem. Abstr. 1995, 123, 286711.
- 16. Stuart, A.; Paterson, T.; Roth, B.; Aig, E. J. Med. Chem. 1983, 26, 667.
- 17. Boyer, J.; Bruylants, A. Bull. Soc. Chim. Fr. 1958, 453.
- 18. (a) PDGFr-TK/FGFr-TK inhibition assay conditions: Escobedo, J. A.; Keating, M. T.; Ives, H. E. J. Biol. Chem. 1988, 263, 1482. (b) Lu, G. H.; Connors, R.; Panek, R.; FASEB Meeting, Anaheim, CA, Spring 1994, Abstract 253.
- 19. C-Src tyrosine kinase inhibition assay conditions: Thompson, A. M.; Fry, D. W.; Kraker, A. J.; Denny, W. A.; J. Med. Chem. 1994, 37, 21.
- MAPK inhibition assay conditions : Alessi, D. R.; Cuenda, A.; Cohen, P.; Dudley, D. T.; Saltiel, A. R. J. 20. Biol. Chem. 1995, 270, 27489.
- EGFr tyrosine kinase inhibition assay conditions: Fry, D. W.; Kraker, A. J.; McMichael, A.; Ambroso, L. 21. A.; Nelson, J. M.; Leopold, W. R.; Connors, R. W.; Bridges, A. J. Science 1994, 265, 1093.
- 22. For insulin receptor (InsR) tyrosine kinase inhibition assay conditions see: Fry, D. W.; Kraker, A. J.; Connors, R. C.; Elliot, W. L.; Nelson, J. M.; Showalter, H. D. H.; Leopold, W. R. Anti-Cancer Drug Des. 1994, 9, 331.
- 23. Protein kinase C (PKC) inhibition assay conditions: Martiny-Baron, G.; Kazanietz, M. G.; Mischak, H.; Blumberg, P. M.; Kochs, G.; Hug, H.; Marme, D.; Schachtele, C. J. Biol. Chem. 1993, 268, 9194.
- 24. CDK4 inhibition assay conditions: The total volume in 96-well Millipore filter plates was 0.1 mL with a final concentration of 20 mM TRIS (Tris[hydroxmethyl]aminomethane), pH 7.4, 50 mM NaCl, 1 mM dithiothreitol, 10 mM MgCl₂, 25 μ M ATP (containing 0.25 μ Ci of [³²P]ATP), 20 ng of recombinant CDK4/cyclin D, 1 µg of retinoblastoma and appropriate dilutions of inhibitor. All components except the ATP are added to the wells and the plate is placed on a plate mixer for 2 min. The reaction is started by adding [^{32}P]ATP and the plate is incubated at 25 °C for 15 min. The reaction terminated by addition of 0.1 mL 20% trichloroacetic acid (TCA). The plate is kept at 4 °C for at least 1 h to allow the substrate to precipitate. The wells are then washed 5 times with 0.2 mL of 10% TCA and 32 P incorporation determined with a β -plate counter.

(Received in USA 30 June 1997; accepted 25 August 1997)