Tetrahedron Letters 53 (2012) 6682-6684

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of dialkyl and diaryl benzylphosphonates through a ZnI₂-mediated reaction

Rebekah M. Richardson, Rocky J. Barney, David F. Wiemer*

Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242-1294, United States

ARTICLE INFO

ABSTRACT

Article history: Received 22 August 2012 Revised 21 September 2012 Accepted 24 September 2012 Available online 29 September 2012

This paper is dedicated in honor of Professor Henri-Jean Cristau on the occasion of his 70th birthday.

Keywords: Phosphonate Synthesis Zinc iodide Arbuzov reaction

For many years the Horner-Wadsworth-Emmons (HWE) condensation has remained a popular reaction for the synthesis of α , β -unsaturated esters.^{1,2} In its original incarnation,³ the condensation of an α -phosphonoester with an aldehyde was shown to favor the formation of the trans olefin isomer. More recent modifications, including those reported by Breuer,⁴ Savignac,⁵ Stille,⁶ and perhaps especially Ando,⁷ have allowed preferential formation of the cis olefin isomer in a variety of cases when specific phosphonate esters are employed. This stereocontrol has only increased the value of the phosphonate reagents and the popularity of this strategy for the synthesis of α , β -unsaturated esters. Furthermore, other applications of phosphonates in carbon-carbon bond formation have been reported as well.^{1,2} For example, the applications of benzylic phosphonates in stilbene synthesis have been recognized for many years,⁸ and this strategy has been particularly useful to us in the synthesis of natural stilbenes such as the schweinfurthins⁹ and pawhuskins.¹⁰

In contrast to the many studies on the scope and stereochemistry of the HWE condensation, strategies for phosphonate synthesis have not changed a great deal over the years.^{1,2} The Arbuzov reaction is easily the most commonly employed strategy, but recent reports have described a Lewis acid mediated approach to the preparation of diethyl phosphonates (Scheme 1).^{11,12} Our studies¹¹ have suggested that this is a general reaction for benzylic and allylic alcohols, and offered some mechanistic insight. However, limitations with respect to the nature of the phosphite component remained unclear. Given the increasing application of more hindered phosphonate esters in HWE reactions and our longstanding interest in phosphonate chemistry,¹³ the potential use of this process toward the preparation of other phosphonate esters was of interest.

Several trialkyl and two triaryl phosphites have been tested for their reactivity in the zinc iodide medi-

ated conversion of benzyl alcohol to the corresponding phosphonates. Most react smoothly to afford the

desired phosphonate diesters, including hindered and nonracemic phosphites. The implications of this

reactivity on the reactions involved in the transformation are discussed.

Benzyl alcohol was selected as the test compound because it gave good yields under relatively mild conditions in reactions with $ZnI_2/P(OEt)_3$.¹¹ Several other trialkyl and triaryl phosphites now have been examined under standard reaction conditions (Table 1, entries 2–8). Attempted preparation of bis(1,1,1-trifluoroethyl) benzylphosphonate (entry 2) from the corresponding phosphite (**4**) through this methodology was not successful under the standard conditions, which may be due to the strong electron withdrawing nature of the 1,1,1-trifluoroethyl substituents combined with the steric hindrance these substituents engender. In somewhat surprising contrast, the reaction of triisopropyl phosphite

Scheme 1. Conversion of benzyl alcohol to diethyl benzylphosphonate.

© 2012 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +1 319 335 1365; fax: +1 319 335 1270. *E-mail address:* david-wiemer@uiowa.edu (D.F. Wiemer).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.09.114

Table 1Synthesis of varied esters of benzylphosphonate through a Znl2 mediated reaction

(5) with benzyl alcohol in THF gave a moderate yield of diisopropyl benzylphosphonate (6, entry 3), and in DMF at a higher temperature the transformation became virtually quantitative (entry 4). Even triphenyl phosphite (7) in DMF gave an attractive yield of diphenyl benzylphosphonate (8, entry 5). While the ZnI₂-mediated reaction of benzyl alcohol with *o*-tolylphosphite (9) proceeded in poor yield in DMF, and the product proved very difficult to isolate even when toluene was utilized, a 34% yield of the very sterically hindered *o*-tolyl phosphonate **10** was achieved (Table 1, entry 6).

Because phosphonate esters prepared from nonracemic alcohols have been employed in a number of studies,¹⁴ the applicability of this methodology in the preparation of such compounds was also examined. Synthesis of one nonracemic phosphite was accomplished through the reaction of (S)-2-methyl-1-butanol (15) with PCl₃ in the presence of pyridine to give the new trialkylphosphite 11 in modest yield (Scheme 2). Through a parallel process the reaction of (S)-citronellol (16) with PCl₃, gave the new trialkylphosphite 13 in moderate yield. Both these nonracemic phosphites reacted smoothly with benzyl alcohol under the standard reaction conditions. When heated at reflux in THF with benzyl alcohol and ZnI₂, phosphite **11** gave the desired phosphonate **12** in 81% yield. Phosphite 13, derived from citronellol, also reacted smoothly to afford phosphonate 14 in comparable yield (76%). These results certainly suggest that nonracemic phosphites derived from other primary alcohols would undergo parallel reactions.

Of the examples listed in Table 1, perhaps most surprising are the attractive results obtained in the isopropyl and phenyl series, as well as observation of even modest yields of product with the *o*-tolyl phosphite. The bulky nature of these nucleophiles implies that a standard Arbuzov mechanism is unlikely, both because these phosphites are relatively poor nucleophiles and because after formation of a tetrasubstituted phosphorus intermediate, the ester substituents are not readily susceptible to an $S_N 2$ attack by a halide ion. For example, when benzyl bromide was treated under Arbuzov conditions with triphenyl phosphite and variations in solvent,

Scheme 3. A deuterium labeling experiment.

temperature, and reaction duration, only traces of the diphenyl benzylphosphonate product were observed based on the analysis of the ³¹P NMR spectra. While the preparation of diisopropyl benzylphosphonate has been reported in 70% yield under standard Arbuzov conditions,¹⁵ the phenyl analogue required a nickel catalyst to be obtained in good yield (92%),¹⁶ and the *o*-tolyl has not been reported prior to this study.

It has been suggested¹¹ that this transformation might involve the formation of a tetracoordinate zinc species¹⁷ which undergoes C–P bond formation and the loss of ZnO through an S_N 1-like process. The observed loss of stereochemistry in the reaction with (*S*)-1-phenylethanol supports an S_N 1-like process,¹¹ and a final Arbuzov-like reaction would afford the observed product **2**. To study this reaction sequence in more detail, a number of additional experiments have been conducted.

To examine further the first component of this transformation, an isotopic labeling experiment was envisioned with a deuterated alcohol (Scheme 3). After preparation of the acrylate **18**¹⁸ through a Knoevenagel condensation of methyl phenylacetate (17) and formaldehyde, the allylic alcohol could be obtained easily through the reduction of ester **18** with LiAlH₄ or DIBAL, albeit in low yield. When the resulting allylic alcohol was treated under the standard reaction conditions, the expected phosphonate was obtained. Even though the product phosphonate was obtained in low yield, this system offered a reasonable test of the reaction sequence. Therefore, reduction of ester 18 was conducted with LiAlD₄/AlCl₃ to obtain the desired isotopically labeled alcohol 19 (Scheme 3). Subsequent treatment with zinc iodide and triethyl phosphite in THF provided a mixture of both the methylene deuterated (20) and the vinyl deuterated (21) phosphonates, and analysis of the NMR spectra suggested a 56:44 ratio of 20, 21 (Scheme 3). Formation of these products might be explained by a mixture of S_N2 and $S_N 2'$ reactions, but an $S_N 1$ -like mechanism may be a more fitting explanation.

The observed reactivity of the aryl phosphites in this transformation sheds some light on the second half of the reaction sequence. For the diethyl phosphonates and perhaps for the diisopropyl phosphonates, formation of a tetracoordinate zinc species (**22**), loss of zinc oxide, and a direct Arbuzov reaction on an intermediate such as **23** would explain formation of phosphonate

Figure 1. A possible reaction sequence for the zinc-mediated transformations.

3 (Fig. 1, Path A). However, loss of an aryl iodide through a simple S_N^2 mechanism is unlikely, and the low yields for the formation of compound **8** under traditional Arbuzov conditions support that view. Instead (Path B), after the formation of a parallel zinc complex (**24**) from the aryl phosphite and loss of zinc oxide to generate the C–P bond (**25**), it is possible that exchange with unreacted benzyl alcohol affords an intermediate (**26**) that is capable of a final Arbuzov reaction to afford phosphonate **8**. However, if this type of exchange were involved the exchange process would have to be catalytic in terms of the benzyl alcohol, because an excess of this reagent was not employed and yields are well above the 50% that might be expected if an equivalent were needed for the second step. Thus there are mechanistic aspects of this transformation that still would benefit from further studies.

In conclusion, these studies have determined that the zinc iodide mediated transformation of benzylic alcohols to phosphonates is viable with both trialkyl and triaryl phosphites. Because it allows access to the hindered phosphonate esters that have been employed in newer variations of the Horner-Wadsworth-Emmons condensation, including both hindered and nonracemic esters, the reaction is relatively broad in scope and may be useful in preparation of a variety of reagents.

Acknowledgments

Financial support in the form of a Presidential Fellowship (to RMR) from the University of Iowa Graduate College, and as a Research Program of Excellence from the Roy J. Carver Charitable Trust is gratefully acknowledged.

Supplementary data

Supplementary data (experimental procedures and/or spectral data for compounds **6**, **8**, **10–14**, and **18–21**) associated with this article can be found, in the online version, at http://dx.doi.org/ 10.1016/j.tetlet.2012.09.114.

References and notes

- 1. Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863–927.
- 2. Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415-430.
- (a) Horner, L.; Hoffmann, H. M. R.; Wippel, H. G. Chem. Ber. 1958, 91, 61–63; (b) Wadsworth, W. S.; Emmons, W. D. J. Org. Chem. 1961, 83, 1733–1738.

- 4. Breuer, E.; Bannet, D. M. Tetrahedron Lett. 1977, 18, 1141-1144.
- 5. (a) Patois, C.; Savignac, P. Synlett **1991**, 517–519; (b) Patois, C.; Savignac, P. *Tetrahedron Lett.* **1991**, 32, 1317–1320.
- 6. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405-4408.
- (a) Ando, K. J. Org. Chem. **1999**, 64, 8406–8408; (b) Ando, K. J. Org. Chem. **1998**, 63, 8411–8416; (c) Ando, K. J. Org. Chem. **1997**, 62, 1934–1939; (d) Ando, K.; Oishi, T.; Hirama, M.; Ohno, H.; Ibuka, T. J. Org. Chem. **2000**, 65, 4745–4749; (e) Ando, K.; Narumiya, K.; Takada, H.; Teruya, T. Org. Lett. **2010**, *12*, 1460–1463.
- (a) Bachelor, F. W.; Loman, A. A.; Snowdon, L. R. Can. J. Chem. **1970**, 48, 1554– 1557; (b) Moody, C. J.; Warrellow, G. J. J. Chem. Soc. Perkin Trans. 1 **1990**, 2929– 2936; (c) Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C. M.; Hamel, E. J. Med. Chem. **1991**, 34, 2579–2588.
- Schweinfurthin isolation and structure determination: (a) Beutler, J. A.; Shoemaker, R. H.; Johnson, T.; Boyd, M. R. J. Nat. Prod. **1998**, 61, 1509–1512; (b) Yoder, B. J.; Cao, S.; Norris, A.; Miller, J. S.; Ratovoson, F.; Razafitsalama, J.; Andriantsiferana, R.; Rasamison, V. E.; Kingston, D. G. I. J. Nat. Prod. **2007**, 70, 342–346; (c) Thoison, O.; Hnawia, E.; Gueritte-Voegelein, F.; Sevenet, T. *Phytochemistry* **1992**, 1439–1442; Synthesis: (d) Treadwell, E. M.; Cermak, S. C.; Wiemer, D. F. J. Org. Chem. **1999**, 64, 8718–8723; (e) Neighbors, J. D.; Beutler, J. A.; Wiemer, D. F. J. Org. Chem. **2005**, 70, 925–931; (f) Mente, N. R.; Wiemer, A. J.; Neighbors, J. D.; Beutler, J. A.; Hohl, R. J.; Wiemer, D. F. Bioorg. Med. Chem. Lett. **2007**, 17, 911–915; (g) Mente, N. R.; Neighbors, J. D.; Wiemer, D. F. J. Org. Chem. **2008**, 73, 7963–7970; (h) Topczewski, J. J.; Neighbors, J. D.; Wiemer, D. F. J. Org. Chem. **2009**, 74, 6965–6972; (i) Topczewski, J. J.; Kodet, J. G.; Wiemer, D. F. J. Org. Chem. **2011**, 76, 909–919; (j) Topczewski, J. J.; Wiemer, D. F. Tetrahedron Lett. **2011**, 52, 1628–1630.
- Pawhuskin isolation and structure determination: (a) Belofsky, G.; French, A. N.; Wallace, D. R.; Dodson, S. L. J. Nat. Prod. 2004, 67, 26–30; Synthesis: (b) Neighbors, J. D.; Salnikova, M. S.; Wiemer, D. F. Tetrahedron Lett. 2005, 46, 1321–1324; (c) Neighbors, J. D.; Buller, M. J.; Boss, K. D.; Wiemer, D. F. J. Nat. Prod. 2008, 71, 1949–1952.
- 11. Barney, R. J.; Richardson, R. M.; Wiemer, D. F. J. Org. Chem. 2011, 76, 2875-2879.
- 12. Rajeshwaran, G. G.; Nandukumar, M.; Sureshbabu, R.; Mohanakrishnan, A. K. Org. Lett. **2011**, *13*, 1270–1273.
- (a) Hammond, G. B.; Calogeropoulou, T.; Wiemer, D. F. Tetrahedron Lett. **1986**, 27, 4265–4268; (b) Calogeropoulou, T.; Hammond, G. B.; Wiemer, D. F. J. Org. Chem. **1987**, 52, 4185–4190; (c) Lee, K.; Wiemer, D. F. J. Org. Chem. **1991**, 56, 5556–5560; (d) Baker, T. J.; Wiemer, D. F. J. Org. Chem. **1998**, 63, 2613–2618; (e) Jung, K. Y.; Hohl, R. J.; Wiemer, A. J.; Wiemer, D. F. Bioorg. Med. Chem. **2008**, 8, 2501–2509; (f) Du, Y.; Wiemer, D. F. J. Org. Chem. **2002**, 67, 5701–5708; (g) Chen, X.; Wiemer, A. J.; Wiemer, D. F. J. Org. Chem. **2002**, 67, 9331– 9339; (h) Smits, J. P.; Wiemer, D. F. J. Org. Chem. **2011**, 76, 8807–8813.
- (a) Strand, D.; Norrby, P. O.; Rein, T. J. Org. Chem. 2006, 71, 1879–1891; (b) Sano, S.; Kujime, E.; Takemoto, Y.; Shiro, M.; Nagao, Y. Chem. Pharm. Bull. 2005, 53, 131–134; (c) Rein, T.; Pedersen, T. M. Synthesis 2002, 579–594; (d) Sano, S.; Yokoyama, K.; Teranishi, R.; Shiro, M.; Nagao, Y. Tetrahedron Lett. 2002, 43, 281–284; (e) Pedersen, T. M.; Jensen, J. F.; Humble, R. E.; Rein, T.; Tanner, D.; Bodmann, K.; Reiser, O. Org. Lett. 2000, 2, 535–538; (f) Rein, T.; Reiser, O. Acta Chem. Scand. 1996, 369–379.
- 15. Chakraborty, S. K.; Engel, R. Synth. Commun. 1991, 21, 1039-1046.
- 16. Yao, Q.; Levchik, S. Tetrahedron Lett. 2006, 47, 277-281.
- 17. Sardarian, A. R.; Shahsavari-Fard, Z. Synth. Commun. 2007, 37, 289-295.
- 18. Hin, B.; Majer, P.; Tsukamoto, T. J. Org. Chem. 2002, 67, 7365-7368.

6684