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Abstract: Synthesis of alkyne-linked glycoamino acids via ring-
closing alkyne metathesis is investigated. Two different strategies
are described to attach alkynylamino acids to an alkynyl sugar, ei-
ther via a linker at O-4 or at O-9 of the alkynyl sugar. Ring-closing
alkyne metathesis of the O-4 linked diynes failed to proceed, but
alkyne-linked glycoamino acids of different chain length were ef-
fectively synthesized via attachment at O-9.
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Rarely a novel synthetic transformation attained wide ap-
plication in synthetic organic chemistry as rapidly as the
olefin-metathesis reaction for the synthesis of unsaturated
carbo- and heterocycles. In particular, the preparation of
the first efficient metathesis catalyst by Schrock,1 and the
efforts of Grubbs, who developed air-stable catalysts with
much broader functional group compatibility,2 led to an
explosion in number of applications of olefin metathesis
in the mid 1990s.

A conceptually similar transformation is alkyne metathe-
sis, first reported by Pennella et al. in the late 1960s3 and
applied in the synthesis of organic macrocycles by Fürst-
ner et al.4 The inherent advantages of alkyne over alkene
metathesis reside in the fact that RCAM is particularly
useful for large (>12-membered) rings without high dilu-
tion and cannot lead to E,Z-mixtures. More than that, un-
der the proper conditions the resulting triple bond can be
stereoselectively reduced to a desired E- or Z-olefin.
However, due to the lack of a stable and generally appli-
cable catalyst, alkyne metathesis lags far behind olefin
metathesis in popularity. Often, temperatures as high as
400 °C are required when heterogeneous silica-bound
tungsten oxides are applied. Mortreux and co-workers later
developed5 a soluble Mo(CO)6 catalyst able to perform at
lower temperatures (160 °C), but only internal acetylenes
undergo metathesis, while terminal acetylenes lead exclu-
sively to polymerization.6 Fürstner et al. developed sever-
al molybdenum catalysts of the general type [Mo{N(t-
Bu)(Ar)}3],

7 but a major drawback of these complexes is
incompatibility with oxygen, nitrogen, moisture, acidic
protons, and secondary amides. The most widely applica-
ble catalyst [(t-BuO)3WCCMe3] (13) was developed by

Schrock et al.,8 a catalyst that operates under fairly mild
conditions, sometimes ambient temperature, and effects
up to several hundred catalytic turnovers per minute.

In the past decade, ring-closing alkyne metathesis
(RCAM) has been regularly applied in the total synthesis
of natural products.9 In a collaborative effort, we have also
shown that RCAM can be successfully applied in the syn-
thesis of diaminosuberic acid derivatives, with an all-car-
bon chain mimicking the natural cystine bridge.10 Along
the same line, we showed11 that conformationally restrict-
ed b-turn peptide mimetics can be obtained by performing
RCAM on a dialkyne-containing linear peptide, an ap-
proach later adapted by Liskamp et al.12 in the synthesis of
a mimic of the lantibiotic nisin Z.

The examples above demonstrate the versatility of RCAM
for the synthesis of cycloalkynes or Z-configured alkenes.
Based on these observations, we became interested in the
synthesis of alkyne-linked glycoamino acids via RCAM
of alkynyl glucoside 3 and 2-butynyl glycine 4
(Scheme 1). The resulting alkyne-linked glycoamino ac-
ids 1 were projected as chemically and metabolically sta-
ble all-carbon glycopeptide isosteres. Moreover, the
alkyne-linked glycoamino acids can be stereoselectively
reduced, giving selective access to E- or Z-configured alk-
ene-linked derivatives from a common precursor. Similar
C-glycoamino acids have earlier been prepared via olefin
metathesis by Westermann et al.13 However, with longer
chains, mixtures of E- and Z-cycloalkenes were formed
upon ring closure.

Two retrosynthetic disconnections were devised for the
assembly of alkyne-linked glycoamino acid 1 by RCAM
of a 2-propynyl sugar 3 with L-2-butynyl glycine 4
(Scheme 1). In one case, the amino acid is connected at
the former anomeric center of the carbohydrate (C-4 of
glycosylacetylene 2a), in the other case at the former 6-
position (C-9 of 2b).

First, the route of RCAM of diynes linked via C-4 was in-
vestigated. To this end, the known lactone 514 was con-
verted into propynyl glucoside 6 (Scheme 2) by
subjection to nucleophilic addition of the in situ generated
Li-acetylide from 1-bromopropene and two equivalents n-
BuLi.15

It is known that RCAM is suitable for the formation of cy-
cloalkynes of ring size 12 or larger.16 Therefore, a spacer
between the alkynyl sugar and 2-butynyl glycine was pro-
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Scheme 1 Retrosynthesis
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Scheme 2 Synthesis of anomeric coupled linkers
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Scheme 3 Coupling of amino acid to anomeric linker and RCAM
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jected, connected at the newly generated acetal at C-4
(former C-1 of gluconolactone). Three different diols
were investigated as linkers. Firstly, hemiacetal 6 was
condensed with diethyleneglycol under the action of a
Lewis acid (TMSOTf) in the presence of a drying agent
(MgSO4).

17 However, despite the fact that a large excess
of diethyleneglycol was added (5 equiv), compound 7
could not be obtained in a yield exceeding 18%, especially
due to incomplete conversion and the formation of
dimers. The five-fold excess of diethyleneglycol is appar-
ently not sufficient to prevent double glycosylation with
carbohydrate 6. A similar result was obtained by addition
of 1,4-benzenedimethanol instead of diethyleneglycol (8,
24%), whereas a slight increase in yield was observed for
ortho-benzenedimethanol to afford the desired glycoside
9 in 33% yield.

An alternative mode of introduction of a linker, not in-
volving dehydrative condensation with excess diol, en-
tails nucleophilic attack of 6 at a suitable electrophile. A
suitable approach appeared the application of cyclic sul-
fate technology, with the inherent advantage that only sin-
gle addition is possible and a free alcohol is liberated for
esterification with the amino acid. Thus, 1,2-benzene-
dimethanol was converted into cyclic sulfate 1018 as de-
scribed by O’Brien et al.19 It was reasoned that conversion
of 6 into a good nucleophile could be effected by deproto-
nation with a strong base. However, a more direct ap-
proach was followed, involving addition of cyclic sulfate
10 to the alkoxide formed in situ by acetylide addition to
lactone 5 (Scheme 3). Subsequent hydrolysis of O-sulfate
with sulfuric acid and water proceeded in a one-pot proce-
dure leading to the desired alcohol 9 in 52% overall yield
from lactone 5. Compound 9 was isolated as an a,b-mix-
ture in a ratio of 3:4.

Next, Boc-protected 2-butynyl glycine 1120 was coupled
to the free hydroxyl of 9 under the action of DCC and
DMAP, leading to diyne 12. Compound 12 is suitably
geared for ring-closing alkyne metathesis and was dis-
solved in toluene and degassed before addition of the
tungsten-based catalyst 13. After heating the reaction
mixture to 80 °C for 30 minutes, TLC analysis showed the

disappearance of starting material and the formation of a
less lipophilic product. Unfortunately, analysis of the
formed product after workup and silica gel purification
showed that only cross-metathesis had occurred, giving
rise to dimer formation.21 Since the ring size of the desired
product (12-ring) is sufficiently large to enable formation
of a cycloalkyne (as indicated by Fürstner’s rule),16 an al-
ternative explanation for the lack of ring closure may be
found in steric hindrance of the tertiary anomeric center in
vicinity to the sugar alkyne.

Since RCAM of a diyne linked via the anomeric center
was not successful, another strategy was considered to at-
tach 2-butynyl glycine to one of the alcohols of the carbo-
hydrate. An additional advantage of such a strategy is that
a late-stage deoxygenation of the anomeric carbon (C-4)
is avoided. The O-9 position (former O-6) was considered
most amenable for selective deprotection. Thus, the C-4
hemiacetal of 6 was first deoxygenated under the action of
BF3·OEt2 and Et3SiH yielding stereoselectively the b-con-
figured alkynyl glucoside 14 (Scheme 4).22 Selective re-
moval of the benzyl group at O-9 by acetolysis (H2SO4,
Ac2O), followed by removal of the resulting acetyl gave
the desired glucosyl acetylene 15 with a free primary hy-
droxyl.23 Introduction of the linker was performed under
similar conditions as above, involving deprotonation of
the alcohol by KHMDS in THF, and subsequent addition
of cyclic sulfate 10, leading to chain-extended compound
16.24 Diimide-mediated esterification of 16 with Boc-pro-
tected 2-butynyl glycine proceeded uneventfully, afford-
ing the RCAM precursor 17 in good yield.25

Diyne 17 was now subjected to RCAM as described ear-
lier. Thus, thorough drying and degassing was executed to
avoid premature decomposition of the sensitive catalyst.
Much to our satisfaction, prolonged treatment of 17 with
the tungsten-based RCAM catalyst 13 led to the cyclized
alkyne 18 in 80% yield (entry 1, Table 1).26 The structure
of cycloalkyne 18 was corroborated by NMR and mass
spectral analysis.26 We were interested if the rate of
RCAM depends on the a-configuration of the amino acid.
Therefore, racemic 2-butynyl glycine (±)-11 was attached
to the carbohydrate derivative 16 and subjected to ring

Scheme 4 Synthesis of glucoamino acid 16
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closure. No difference in reaction rate between the two
epimers could be observed, leading to a 1:1 mixture of
diastereomeric cycloalkynes 20. Some L-diastereomeric
glycoamino acids were also prepared by applying L-3-
pentynyl glycine and L-4-hexynyl glycine20 to the synthet-
ic sequence of esterification–RCAM (entries 3 and 4, re-
spectively). In both cases, the desired cycloalkynes were
successfully formed, although extension of the amino acid
side chain led to reduced yields, i.e. giving the corre-
sponding cyclic acetylenes from 3-pentynyl glycine and
4-hexynyl glycine in yields of 62% and 29%, respectively.

In conclusion, acetylene-linked glycoamino acids were
successfully prepared by application of ring-closing
alkyne metathesis. To this end, alkynyl sugars and alkynyl-
amino acids were coupled via a benzenedimethanol link-
er, derived from cyclic sulfate 10. Attachment points for
the amino acid were either the newly formed anomeric
center at C-4 or the primary hydroxyl at C-9. Performing
RCAM on the anomerically linked dialkyne led exclu-
sively to dimerization and failed to yield cycloalkyne
product, presumably due to steric hindrance. Linkage via
O-9, however, before subjection to RCAM proceeded
smoothly for 2-butynyl glycine of different configuration
and chain lengths, leading to the desired glucoamino acids
with ring sizes varying between 15 and 17. Further pro-
cessing of the ring-closed alkynyl glycoamino acids 18,

22, and 24 as versatile isosteres of glycoamino acids is
currently under way.
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Hz, 1 H), 1.39 (s, 9 H). 13C NMR (50 MHz, CDCl3): 
d = 171.1, 155.2, 138.5, 138.1, 138.0, 138.0, 137.5, 132.8, 
130.2, 128.9, 128.6, 128.6, 128.5, 128.4, 128.2, 128.1, 
128.0, 128.0, 127.9, 127.8, 85.9, 82.2, 81.9, 81.4, 80.4, 79.5, 
78.3, 75.9, 75.3, 75.3, 71.8, 69.7, 69.3, 65.2, 53.5, 28.4, 23.9. 
[a]D

20 –30.0 (c 0.26, CHCl3). IR (film): n = 3321, 3062, 
3032, 2967, 2907, 2868, 2258, 1701. ESI-HRMS: m/z calcd 
for C45H49NNaO9 [M + Na]: 770.3305; found: 770.3366.

(27) Leone, A.; Consiglio, G. Helv. Chim. Acta 2005, 88, 210.
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