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Abstract A green and simple approach for the N-Boc

protection on structurally diverse amines under ultrasound

irradiation is described. Selective N-Boc protection was

achieved in excellent isolated yield in a short reaction time

at room temperature. Mild conditions, inexpensive and an

easily available reagent, and absence of any auxiliary

substances are the main advantages of this procedure.
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Introduction

In modern synthetic chemistry, finding a suitable strategy

for protection and deprotection of functional groups con-

stitutes one of the most challenging tasks. Protection of the

amine group is very important due to their presence in

various biologically active compounds [1–3]. The tert-

butoxycarbonyl (Boc) group has a widely useful func-

tionality for the protection of amine among various

protecting groups. The greatest attention is due to the

extreme stability of the N-Boc group toward catalytic

hydrogenolysis and the extreme resistance to basic and

nucleophilic conditions [4, 5], and its labile nature under

several chemical transformations [1].

Several methods have been described to introduce the

Boc protecting group, using di-tert-butyl dicarbonate,

(Boc)2O, under a variety of conditions. N-Boc protection is

frequently reported by base-catalysed reactions using

DMAP [6], aq. NaOH [5], NaHMDS [7], or Lewis acids-

catalysed reactions, such as ZrCl4 [8], LiClO4 [9], HClO4/

SiO2 [10], Cu(BF4)2�9H2O [11], Zn(ClO4)2�6H2O [12],

yttria-zirconia [13], La(NO3)3�6H2O [14], montmorillonite

K-10 [15], amberlyst-15 [16], H3PW12O40 [17], and sul-

famic acid [18]. Many of these methods suffer from

disadvantages such as acidity, high cost, toxicity, corro-

siveness, and requirement of auxiliary substances in the

isolation of the product [19].

In recent years, the emergence of the sustainable devel-

opment of ‘‘green chemistry’’ has led to new solutions to

existing problems in protecting group chemistry. Ionic liquids,

as eco-friendly solvents, catalysts and reagents in green syn-

thesis [20], such as 1-methylimidazolium tetrafluoroborate

[(HMIm)BF4] [21], 1,1,3,3-tetramethylguanidine acetate

[TMG][Ac] [22], 1,3-disulfoimidazolium hydrogen sulfate

[Dsim]HSO4 [23], and 1-alkyl-3-methylimidazolium cation

are employed for N-Boc protection [24]. Furthermore, water

has attracted much attention as a green solvent. An environ-

mentally benign approach is described where the N-Boc

derivatives were prepared chemoselectively in water [25].

In our previous work, eco-sustainable methods for pro-

tection/deprotection of amines and alcohols with t-Boc

group were carried by fusion [26], using heteropolyanion

[27], and in water [28–30]. More recently, Dighe et al. [31]

have reported a green approach for the synthesis of Boc-

protected amines under microwaves without using of sol-

vents and catalysts.
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In the last decade, the sonochemical approach has been

widely used in various types of organic transformations

[32]. This method is not only simple and efficient but also

can assist in preserving green chemistry concepts [33].

Sonochemistry offers a more efficient and facile method

for a large variety of syntheses in comparison to classical

protocols, e.g., an N-sulfonylation reaction using Zn-Al-

hydrotalcites solid base catalyst under ultrasound irradia-

tion in ethanol has been developed [34].

In continuation of our interest to improve a facile process

under green conditions not including catalysts and solvents,

we report here the use of ultrasonic irradiation for selective

tert-butoxycarbonylation of various amine derivatives.

Results and discussion

Herein we studied the N-tert-butoxycarbonylation of

structurally diverse amines using ultrasound irradiation. In

an initial attempt, we reacted 1 mmol of aniline with

1.1 mmol of di-tert-butyl dicarbonate in the absence of any

solvent or catalyst; after 5 min the reaction was completed

with an excellent yield (Scheme 1).

To find the effect of ultrasound, the same reaction was

carried out under the same conditions in the absence of

ultrasound irradiation. No reaction occurs after 5 h work-

ing time, this shows the essential role of ultrasound

irradiation. This excellent result encourages us to extend

this study to various structurally amines.

To optimize our protocol, we also applied our reaction

conditions to a number of primary and secondary aromatic

and aliphatic (cyclic and acyclic) amines (Scheme 2). In all

cases we obtained the N-Boc products in short reaction times

with quantitative yields (Table 1, entries 1–11). No com-

petitive side reactions lending formation of isocyanate [35],

urea [6], and N,N-di-Boc derivatives [36] were detected by

TLC of the crude products (entries 1–8).

In order to explore the generality of this method, we also

attempted the protection of b-aminoalcohol under the same

reaction conditions (Table 1, entries 12–15). A notable che-

moselectivity of the protection has been established where the

amine functional was only protected without competitive

formation of O-Boc or oxazolidinone derivatives [6].

The mildness of this procedure was next illustrated by a

range of a-aminoesters (entries 16–20), the reactions

worked very well, a methyl ester group was resisted and the

optically pure NH-Boc derivative was confirmed by optical

rotation and comparison with the literature [37, 38], where

the configuration of the chiral center is not affected under

reaction conditions.

To increase the scope of this reaction, we attempted the

N-tert-butoxycarbonylation to sulfamides synthesized from

a-aminoesters [39–41]. In view of their importance, they

were used as substrates (Table 1, entries 21–25) and were

tested in this method to verify electron-withdrawing effect

of substituents on the formation of pure NH-Boc products.

All N-protected sulfamides were obtained in excellent

yields and the reaction preserves stereochemical integrity

of N-Boc amino acids [42].

The presented results demonstrate the specific ultrasonic

effect on N-tert-butoxycarbonylation giving pure product

with quantitative yields in a few minutes.

The ultrasonic energy applying without any base or

acid catalyst to the reaction generates the acoustic cavi-

tation mechanical effect when sonic waves propagate

through the medium. In solids, both longitudinal and

transverse waves can be transmitted whereas in liquids

only longitudinal waves can be transmitted [43–45].

Vibrations of molecules generate compressions and rar-

efactions which give rise to the phenomenon of bubble

formation and collapse in the reaction mixture [amine

and reactant (Boc)2O] and facilitate the nucleophilic

attack of the amino functional on the carbonyl group.

During cavitation, the chemical bonds break, and carbon

dioxide and the tert-butanol were eliminated to afford the

N-Boc amine (Scheme 3).

In conclusion, the ultrasound irradiation allowed for the

highly chemoselective, simple, efficient, environmentally

benign N-Boc protection of various aliphatic and aromatic

amine derivatives under solvent free conditions, in short

reaction times and excellent isolated yields without for-

mation of isocyanate, urea, N,N-di-t-Boc, or O-t-Boc as

side products. In contrast to conventional energy sources of

traditional methods suffering from harsh conditions, this

easier manipulation delineates the scope of this technique

and offers potential in different applications in organic

transformations.

Scheme 1

NH2

(Boc)2O, )))

Solvent-free, r.t.

NHBoc

Scheme 2

R1R2NH
(Boc)2O , )))

Solvent-free, r.t.
R1R2NBoc

R1 and R2 = H, alkyl, or aryl
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Table 1 N-tert-Butoxycarbonylation of amines under ultrasound irradiation

Entry Substrate Product Time /min M.p. /°C

1 5
132

(132 [14])

2 3
92-94

(94-96 [14])

3 3 34-36

4 3
146

(146 [14])

5 5
56-58

(52-54 [14])

6 4 80-82

7 2
64-66

(65-67 [42])

8 2 30-32

9 6 29-30

10 4
71-73

(70-71 [42])

11 4 29-30

12 2 32-33

13 2 Oil
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Table 1 continued

14 2 104-106

15 2
96-98

(96-97 [42])

16 2
40-41

(39-41 [43])

17 2 Oil [43]

18 2 33-35

19 2 29-30

20 2 109

21 6
89-90

[27]

22 6
67-68

[27]

23 6 75-77

24 7
131-132

[27]

25 7 78-80

Entry Substrate Product Time /min M.p. /°C
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Experimental

All commercial chemicals were used without further

purification. Sonication was performed in a FUNGILAB

ultrasonic bath with a frequency of 40 kHz and a power of

250 W. All reactions were monitored by thin layer chro-

matography (TLC) on silica Merck 60 F254 percolated

aluminum plates. 1H and 13C NMR spectra were recorded

in a 250 or 300 MHz Bruker spectrometer. Chemical shifts

are reported in d units (ppm) with tetramethylsilane (TMS)

as a reference. All coupling constants (J) are reported in

Hertz. Multiplicity is indicated as s (singlet), d (doublet), t

(triplet), q (quartet), m (multiplet). Optical rotations were

measured on a JUSCO DIP-370 digital polarimeter.

General procedure for tert-butoxycarbonylation

of amines

Amine (1 mmol) and di-tert-butyl dicarbonate [(Boc)2O,

1.1 mmol] were placed in a glass tube under neat condi-

tions and were sonicated for a suitable time (as indicated in

Table 1). All reactions were performed in a water bath at

room temperature. After completion of the reaction (as

indicated by TLC), 5 cm3 of diethyl ether was added to the

mixture, the resulting tert-butanol was freely soluble in

diethyl ether and the N-Boc product was crystallized.

Purification of the product was accomplished by recrys-

tallization from diethyl ether.

N-(tert-Butoxycarbonyl)-2-methoxyaniline

(3, C12H17NO3)

White solid, m.p.: 34–36 �C; 1H NMR (300 MHz, CDCl3):

d = 1.50 (s, 9H), 3.75 (s, 3H), 6.56 (s, 1H, NH), 6.81–7.26

(m, 4H, Ar) ppm; 13C NMR (74 MHz, CDCl3): d = 28.4 (3

CH3), 55.4 (CH3), 80.1 (C), 114.1 (CH), 116.1 (CH), 120.6

(CH), 131.5 (CH), 139.8 (C), 153.4 (C), 155.6 (C = O).

N-(tert-Butoxycarbonyl)-2-phenylethylamine

(6, C13H18NO2)

White solid, m.p.: 80–82 �C; 1H NMR (300 MHz, CDCl3):

d = 1.44 (d, J = 6.1 Hz, 3H), 1.53 (s, 9H), 2.18 (m, 1H),

4.79 (s, 1H, NH), 7.11–7.53 (m, 5H, Ar) ppm; 13C NMR

(74 MHz, CDCl3): d = 23.5 (CH3), 28.7 (3 CH3), 47.5

(*CH), 80.1 (C), 126.5 (CH), 127.9 (2 CH), 128.7 (2 CH),

142.4 (C), 157.6 (C = O) ppm.

N-(tert-Butoxycarbonyl)propylamine (8, C8H17NO2)

White solid, m.p.: 30–32 �C; 1H NMR (300 MHz, CDCl3):

d = 0.80 (t, J = 6.0 Hz, 3H), 1.47 (s, 9H), 1.59 (m, 2H),

2.96 (t, J = 5.8 Hz, 2H, CH2-NH), 4.55 (s, 1H, NH) ppm;
13C NMR (74 MHz, CDCl3): d = 11.5 (CH3), 24.8 (CH2),

27.7 (3 CH3), 46.3 (CH2), 80.1 (C), 156.9 (C = O) ppm.

N-(tert-Butoxycarbonyl)diphenylamine (9, C17H19NO2)

White solid, m.p.: 29–30 �C; 1H NMR (300 MHz, CDCl3)

d = 1.49 (s, 9H), 6.82–7.31 (m, 10H, 2 Ph) ppm; 13C NMR

(74 MHz, CDCl3): d = 27.2 (3 CH3), 83.0 (C), 117.5 (4

CH), 120.6 (2 CH), 129.1 (4 CH), 143.1 (2C), 146.7

(C = O) ppm.

N-(tert-Butoxycarbonyl)-1,2,3,4-tetrahydroisoquinoline

(11, C14H19NO2)

White solid, m.p.: 29–30 �C; 1H NMR (300 MHz, CDCl3):

d = 1.54 (s, 9H), 2.85 (t, J = 7.8 Hz, 2H), 3.66(t,

J = 7.8 Hz, 2H), 4.59 (s, 2H), 7.12-7.28 (m, 4H, Ar)

ppm; 13C NMR (74 MHz, CDCl3): d = 28.4 (3 CH3), 31.7

(CH2), 49.9 (CH2), 53.9 (CH2), 81.0 (C), 128.3 (CH), 129.1

(CH), 131.1 (CH), 134.7 (CH), 145.6 (C), 147.9 (C), 156.0

(C = O) ppm.

N-(tert-Butoxycarbonyl)-2-hydroxyethylamine

(12, C7H15NO3)

White solid, m.p.: 32–33 �C; 1H NMR (250 MHz, CDCl3):

d = 1.45 (s, 9H, N-t-Bu), 3.25 (q, J = 5.2 Hz, 2H, CH2-

NH), 3.65 (t, J = 5.1 Hz, 2H, CH2-OH), 5.25 (s, 1H, NH)

ppm; 13C NMR (62 MHz, CDCl3): d = 28.2 (3 CH3), 43.6

(CH2-NH), 62.5 (CH2-OH), 80.0 (C), 157.3 (C = O) ppm.

(S)(-)-N-(tert-Butoxycarbonyl)valinol (13, C10H21NO3)

Oil; 1H NMR (300 MHz, CDCl3): d = 0.92 (d,

J = 8.5 Hz, 3H), 0.94 (d, J = 8.5 Hz, 3H), 1.44 (s, 9H),

1.86 (m, 1H, CH), 3.39 (m, 2H), 4.96 (m, 1H, *CH), 5.35

(s, 1H, NH) ppm; 13C NMR (CDCl3,74 MHz): d = 18.3

(CH3), 19.36 (CH3), 28.2 (3 CH3), 57.8 (CH), 60.2 (CH2),

63.4 (*CH), 79.1(C), 156.6 (C = O) ppm.

(S)(-)-N-(tert-Butoxycarbonyl)leucinol (14, C11H23NO3)

White solid, m.p.: 104–106 �C; 1H NMR (250 MHz,

CDCl3): d = 0.92 (d, J = 7.5 Hz, 6H), 1.27 (m, 2H), 1.5

(s, 9H), 1.65 (dd, J = 5.7, 7.0 Hz, 2H, CH2-OH), 1.90 (m,

1H), 4.25 (m, 1H, *CH), 4.80 (d, J = 8.3 Hz, 1H, NH)

ppm; 13C NMR (62 MHz, CDCl3): d = 21.4 (2 CH3), 23.7

Scheme 3
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(CH), 27.9 (3 CH3), 42.0 (CH2), 45.3 (*CH), 64.2 (CH2),

83.7 (C), 151.8 (C = O) ppm.

(S)(-)-N-(tert-Butoxycarbonyl)serine methyl ester

(18, C9H16NO5)

White solid, m.p.: 33–35 �C; 1H NMR (250 MHz, CDCl3):

d = 1.47 (s, 9H), 3.68 (s, 3H, OCH3), 4.43 (dd, J = 7.8,

6.0 Hz, 2H, CH2), 4.61 (m, 1H, *CH), 5.10 (d, J = 8.0 Hz,

1H, NH) ppm; 13C NMR (62 MHz, CDCl3): d = 28.8 (3

CH3), 54.0 (CH3), 61.0 (CH2), 69.3 (*CH), 79.5 (C), 157.0

(C = O), 172.0 (C = O) ppm.

(S)(-)-N-(tert-Butoxycarbonyl)cysteine methyl ester

(19, C9H16NO5S)

White solid, m.p.: 29–30 �C; 1H NMR (250 MHz, CDCl3):

d = 1.47 (s, 9H), 3.23 (dd, J = 8.0, 6.8 Hz, 2H, CH2), 3.71

(s, 3H, OCH3), 4.81 (m, 1H, *CH), 5.50 (d, J = 8.0 Hz,

1H, NH) ppm; 13C NMR (62 MHz, CDCl3): d = 28.8 (3

CH3), 40.0 (CH2), 54.0 (CH3), 60.3 (*CH), 80.5 (C), 157.2

(C = O), 171.8 (C = O) ppm.

N-(tert-Butoxycarbonyl)glycine methyl ester

(20, C8H15NO4)

White solid, m.p.: 109 �C; 1H NMR (250 MHz, CDCl3):

d = 1.49 (s, 9H), 3.75 (d, J = 6.0 Hz, 2H, CH2), 3.71 (s,

3H, OCH3), 6.10 (t, J = 8.0 Hz, 1H, NH) ppm; 13C NMR

(62 MHz, CDCl3): d = 28.5 (3 CH3), 49.0 (CH2), 52.9

(CH3), 80.5 (C), 157.2 (C = O), 171.8 (C = O) ppm.

(S)(-)-N-(tert-Butoxycarbonylaminosulfonyl)isoleucine

methyl ester (23, C12H24N2O6S)

White solid, m.p.: 75–77 �C; 1H NMR (250 MHz, CDCl3):

d = 0.90 (t, J = 6.2 Hz, 3H, CH3), 0.96 (d, J = 5.8 Hz,

3H, CH3), 1.55 (s, 9H), 1.71 (m, 2H, CH2), 1.87 (m, 1H,

CH), 3.70 (s, 3H, OCH3), 4,25 (m, 1H, *CH), 5.80 (d,

J = 8.9 Hz, 1H, NH-*C), 7.60 (s,1H, NH-Boc) ppm; 13C

NMR (62 MHz, CDCl3): d = 20.4 (CH3), 21.7 (CH3), 24.6

(CH2), 28.1 (3 CH3), 42.8 (CH), 53.1 (CH3), 55.0 (*CH),

80.7 (C), 148.8 (C = O), 171.7 (C = O) ppm.

(S)(-)-N-(tert-Butoxycarbonylaminosulfonyl)methionine

methyl ester (25, C11H22N2O6S2)

White solid, m.p.: 78–80 �C; 1H NMR (250 MHz, CDCl3):

d = 1.48 (s, 9H), 2.18 (s, 3H, CH3), 2.27 (m, 2H, CH2),

2.67 (t, J = 6.5 Hz, 2H, CH2), 3.38 (m, 1H, *CH), 3.70 (s,

3H, OCH3), 6.30 (d, J = 8.4 Hz, 1H, NH-*C), 7.80 (s, 1H,

NH-Boc) ppm; 13C NMR (62 MHz, CDCl3): d = 23.8

(CH3), 28.7 (3 CH3), 29.6 (CH2), 30.1 (CH2), 53.2

(CH3), 51.8 (*CH), 80.1 (C), 158.2 (C = O), 171.5

(C = O) ppm.

Acknowledgments This work was generously supported by the
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