Date: 03-07-12 15:43:40

DOI: 10.1002/ejoc.201200521

Regiocontroled S_NAr and Palladium Cross-Coupling Reactions of 2,4,7-Trichloropyrido[3,2-*d*]pyrimidine

Pages: 11

Abdellatif Tikad,^[a,b] Mohamed Akssira,^[b] Stéphane Massip,^[c] Jean-Michel Léger,^[c] Christian Jarry,^[c] Gérald Guillaumet,^{*[a]} and Sylvain Routier^{*[a]}

Keywords: Arylation / Aromatic substitution / Cross-coupling / Amination / Heterocycles

An efficient and original synthesis of various 2,4,7-trisubstituted pyrido[3,2-d]pyrimidines is reported. The first access to and the chemical interest of 2,4,7-trichloropyrido[3,2-d]pyrimidine is described. Double arylations and S_NAr reactions occurred selectively at the C4 and C2 positions of 2,4,7-tri-

Introduction

The pyridopyrimidine scaffold has generated a great number of biologically active compounds, and has recently been used to design effective and original drugs, including an MEK inhibitor,^[1] a bacterial topoisomerase inhibitor,^[2] an HCV inhibitor,^[3] a p38 MAP kinase inhibitor,^[4] glucocerebrosidase inhibitors,^[5] and antimalarial^[6] and cytotoxic agents.^[7]

A recent review surveyed the efforts undertaken to build and functionalize this heterocyclic skeleton. Most substituents are introduced in advance of or during heterocycle generation.^[8] In the general pyridopyrimidine field, the [3,2-*d*] regioisomer is the least well described because of its difficult and costly synthesis. Over the past decade, the regioselectivity of substitution reactions of polyhaloheteroaromatics has been extensively studied.^[9]

At the beginning of our research, we reported an original synthesis of 2,4-dichloro derivative **2** (Table 1), and used it in sequential or one-pot reactions, substituting first at the C4 position and then at C2.^[10] We then used our methodology to modulate the biological activity of reference molecules, and to synthesize original drug-like molecules, mainly using original heterocyclic skeletons and previously unknown synthetic sequences.^[11] As important representa-

[a] Institut de Chimie Organique et Analytique, (1) Université d'Orléans, (2) CNRS UMR 6005,
B. P. 6759, 45067 Orléans Cedex 2, France Fax: +33-2-38417281 E-mail: sylvain.routier@univ-orleans.fr

gerald.guillaumet@unv-orleans.fr

- [b] Laboratoire de Chimie Bioorganique et Analytique, Université Hassan II-Mohammedia,
- B. P. 146, 20650 Mohammedia, Morocco
- [c] Laboratoire de Chimie Physique et minérale, FRE CNRS 3396, UFR de Pharmacie, Université Bordeaux Segalen, UFR de Pharmacie, Université Bordeaux Segalen,
- 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201200521.

chloropyrido[3,2-*d*]pyrimidine. The reactions at the C7 position were achieved under microwave irradiation in a few minutes. A one-step synthesis of a 2,4,7-tris(aminated) derivative was achieved as a highly efficient alternative.

tive examples of inhibitors of CDK and GSK3 kinases are polyarylated and/or polyaminated,^[12] we designed a flexible method to synthesize such compounds from the novel 2,4,7trichloropyrido[3,2-*d*]pyrimidine (**3**). At the 2-, 4- and 7positions, tris(arylation) remains unknown, and one patent reports two tris(aminated) structures.^[13]

We report herein the preparation of novel trichloro derivative **3** and its regioselective functionalization by reactions of two different classes. Several (het)arylations and aminations were achieved in the order C4, then C2, then C7 to give compounds of types **I** and **II** (Figure 1). Complete discrimination between the chlorinated positions was observed in each reaction, and a single-step strategy for tris(amination) was also developed.

Figure 1. General strategy.

Results and Discussion

Selective chlorination of heterocycles in the position β to a nitrogen atom has been observed with [1,10]phenanthroline,^[14] quinoline,^[15] 1,6-naphthyridine,^[16] and 7bromo-2*H*-isoquinolin-1-one;^[17] but to the best of our knowledge, the direct trichlorination of pyrido[3,2-*d*]pyrimidine in a single step has not yet been described. The sole reported trichlorinated [3,2-*d*]pyridopyrimidine is methyl 2,4,8-trichloropyrido[3,2-*d*]pyrimidine-6-carboxylate, which was used recently by Quattropani et al.^[18]

FULL PAPER

During the multigram synthesis of **2**, we observed the formation of the trichloro derivative **3** in a very low 2% yield (Table 1, Entry 1). Prolonging the reaction time to 24 h gave no significant effect. Fortunately, switching from thermal activation to microwave irradiation at 160 °C for 2 h improved the yield of **3** to 39% (Table 1, Entry 3). Increasing the amount of PCl₅ to 6.0 equiv. provided 2,4,7-trichloropyrido[3,2-*d*]pyrimidine (**3**) in 62% isolated yield, with no trace of any other compound (Table 1, Entry 4). It is noteworthy that the POCl₃/PCl₅ system is required for the formation of **3**. When either reagent was used alone, only starting material was detected.

Table 1. Trichlorination of compound 1.

[a] Isolated yields. [b] The reaction was performed in a sealed tube under thermal conditions. [c] Microwave irradiation. [d] Not detected.

Tris[(het)arylation] of 2,4,7-Trichloropyrido[3,2-d]pyrimidine

Having obtained the trichloro derivative **3**, we first performed regioselective arylation at C4. Using a near stoichiometric amount of phenylboronic acid in the presence of potassium carbonate and Pd(PPh₃)₄ (5 mol-%) in toluene at 100 °C, we observed complete consumption of **3** and the formation of the monophenyl derivative **4** in a good 77% yield (Scheme 1). The small amount of diarylated by-product **5** (2%) that was subsequently formed was separated by flash chromatography.

We then envisioned an arylation at the C2 position without any effect on the chlorine atom at C7. The best conditions were obtained by adding ethanol as co-solvent and using sodium carbonate as base (Table 2). The three (methoxyphenyl)boronic acids reacted with **4** in a few hours to give the bis(arylated) compounds **6–8** in good yields. Complete C2 vs. C7 regioselectivity was obtained, and no obvious steric effect of the 2-methoxy group was observed. Table 2. Selective C2 arylations of compound 4.

[[]a] Reaction conditions: $ArB(OH)_2$ (1.05 equiv.), Na_2CO_3 (2.0 equiv.), $Pd(PPh_3)_4$ (5.0 mol-%), toluene/EtOH (2:1), 100 °C. [b] Isolated yields.

The structures of compounds **4** and **8**, resulting from triple 2,4,7 and double 2,7 chlorine differentiation, respectively, were clearly elucidated by single-crystal X-ray crystallography. The two ORTEP representations in Figure 2 clearly show the positions of the chlorine atoms and the aryl insertions.

Figure 2. ORTEP views of compound 4 (left) and 8 (right).

Some conformational differences were observed between compounds **4** and **8**. Firstly, the rms deviation of the pyridopyrimidine bicycles have similar values (0.06 Å and 0.02 Å, respectively). But a slight torsion of the bicycle for compound **4** was observed, with deviations from the leastsquares plane of around 0.1 Å for atoms C-7, N-13 and C-11 [-0.109(5), 0.094(5), -0.094(3) Å, respectively]. Secondly, the angles between these planes and the benzene groups were found to be 28.9(2)° and 45.8(1)° for the respective compounds. In addition, for compound **8**, the angle between the bicycle and the methoxyphenyl substituent shows a quasi-planar geometry with a value of 2.4(1) (see Table S1 in the Supporting Information).

Scheme 1. Selective C4 arylation of 3. Reaction conditions: $ArB(OH)_2$ (1.05 equiv.), K_2CO_3 (1.5 equiv.), $Pd(PPh_3)_4$ (5.0 mol-%), toluene, 100, 2 h, 77% (4), 2% (5).

By starting from 7, the last (het)arylations were first attempted in the presence of a slight excess of boronic acid and K_2CO_3 (Na₂CO₃ gave lower yields) as base (Table 3).

Table 3. Heteroarylation of compound 7.

[a] Isolated yields. [b] Reaction conditions: $(Het)ArB(OH)_2$ (1.2 equiv.), K_2CO_3 (2.0 equiv.), $Pd(PPh_3)_4$ (5.0 mol-%), toluene/ EtOH (2:1), microwave irradiation, 150 °C. [c] Reaction conditions: $(Het)ArB(OH)_2$ (1.2 equiv.), K_2CO_3 (2.0 equiv.), $Pd(PPh_3)_4$ (5.0 mol-%), toluene/EtOH (2:1), 100 °C.

After 12 h, the trisubstituted derivative **9** was isolated in a best yield of 95%. To diminish the reaction time, microwave irradiation was used. After only 5 min at 150 °C, complete reaction was observed, and purification afforded **9** in a similar yield (Table 3, Entries 1a,b).

We then used aryl-, naphthyl-, furyl-, pyridinyl-, thienyland (benzothienyl)boronic acids to synthesise the corresponding desired compounds in excellent yields. Generally, a slight increase in the reaction time to 10 (Table 3, Entries 3, 5, 6) or 15 min (Table 3, Entry 4) was required for complete reaction to be reached. A decrease in yield was observed in only one case (Table 3, Entry 8), which was mainly due to difficulties during the purification of compound **16**.

In summary, this method enabled us to discriminate between the three chlorine atoms of 2,4,7-trichloro[3,2-d]pyrimidine (3) using highly efficient successive Suzuki crosscoupling reactions, which were carried out successively in the sequence C4, C2 and finally C7.

Tris(amination) of 2,4,7-Trichloropyrido[3,2-d]pyrimidine

In the light of this step-by-step discrimination, the versatility of **3** as a building block was next explored through a wide range of S_NAr and Pd-catalyzed *N*-arylations in order to synthesise unknown C2-monoaminated, 2,4-bis(aminated) and finally 2,4,7-tris(aminated) pyrido[3,2-*d*]pyrimidines.

By applying a sequential route, compound **3** was treated first with a stoichiometric amount of benzylamine in the presence of Et_3N in THF at room temperature. C4 amination occurred after a few hours, and compound **17** was isolated in 90% yield (Scheme 2). The second reaction required thermal activation (refluxing dioxane) and the presence of a slight excess of nucleophilic agent to achieve the C2 chlorine displacement by an S_NAr mechanism. Compound **18** was isolated after 12 h in a high 92% yield (Scheme 2), indicating that the S_NAr reactions tolerate base-sensitive functionalities (NH, OH).

Scheme 2. Regioselective double amination of **3** by sequential S_NAr reactions. Reaction conditions: 1st S_NAr : Et₃N (1.05 equiv.), THF, room temp., 4 h, 90%; 2nd S_NAr : ethanolamine (1.2 equiv.), Et₃N (2.0 equiv.), 1,4-dioxane, reflux, 12 h, 92%.

During the first step, no trace of bis(amination), and during the second step, no trace of tris(amination) was observed, emphasizing the lack of reactivity of the 7-Cl vs. 2-Cl and of the 2-Cl vs. 4-Cl atoms. In order to formally establish the regioselectivity of the first S_NAr reaction at the C4 position, an X-ray analysis of the monoaminated derivative 17 was performed. The ORTEP representation (Figure 3) confirms the C4 amination.

Figure 3. ORTEP view of compound 17.

The structural conformation of compound 17 could be compared to that of compound 4. The bicycle shows a torsion for compound 4, whereas it is very close to planar for compound 17 (the latter compound having an rms deviation of 0.01 Å). This is due to less steric hindrance for this latter compound due to the presence of the linker between the pyridopyrimidine core and the phenyl group. For this reason, and also due to a hydrogen bond of the chelate type (see Table S2 in the Supporting Information) between N8-H and N15, the two planes defined by bicycle and phenyl moieties are angled at $89.6(1)^{\circ}$.

FULL PAPER

In addition, the C–Cl bond of **18** was reduced under microwave-assisted palladium dechlorination (Scheme 3). The ¹H and COSY NMR spectra of product **19** clearly indicate the presence of three adjacent pyridinyl H atoms. This supplementary analysis confirms the regioselectivity of the second nucleophilic attack on C2.

Scheme 3. Dechlorination of compound **18**. Reaction conditions: HCO_2H (2.0 equiv.), Et_3N (3.0 equiv.), $Pd(OAc)_2$ (10 mol-%), Xantphos (20 mol-%), THF, 150 °C under microwave irradiation, 15 min, 57%.

To perform the C7 amination of compound **18**, we decided to study the Pd-catalyzed *N*-arylation as an alternative route, because the starting material was fully recovered from the S_NAr reactions. Our initial experiment focused on the C–N bond formation between compound **18** and *p*anisidine (Table 4) under Buchwald conditions,^[19] which had been used in our previous report. Thus, by using Pd(OAc)₂/Xantphos as a catalytic system with K₂CO₃ in refluxing 1,4-dioxane,^[20] the target compound **20** was isolated in a modest 49% yield after 24 h (Table 4, Entry 1).

Table 4. N-Arylation of compound 18 with p-anisidine.

CI N H N HBn 18 NHBn C-7 palladium- C-7 palladium- C-7 palladium- C-7 palladium- C-7 palladium- MeO MeO N N N N N N N N N N N N N N N N N N N						
Entry	Catalytic system ^[a]	Base (equiv.)	Temp. Activating mode	Time	Yield ^[a,b] [%]	
1	Pd(OAc) ₂ / Xantphos	K_2CO_3 (20.0)	reflux thermal	24 h	49	
2	Pd(OAc) ₂ / Xantphos	K_2CO_3 (20.0)	140 °C MW	40 min	68	
3	Pd(OAc) ₂ / Xantphos	K_2CO_3 (2.0)	140 °C MW	50 min	72	
4	Pd(OAc) ₂ / Xantphos	Cs_2CO_3 (2.0)	140 °C MW	1 h	70	
5	none	K ₂ CO ₃ (2.0)	140 °C MW	2 h	n.d. ^[c]	

[a] Isolated yields. [b] Reaction conditions: $Pd(OAc)_2$ (0.1 equiv.), Xantphos (0.2 equiv.), 1,4-dioxane, *p*-anisidine (1.2 equiv.). [c] Not detected; compound **18** was fully recovered.

The use of microwave irradiation and a decrease of the amount of base to 2 equiv. provided **20** in the best 72% yield (Table 4, Entries 2–3). Any change of base resulted in a less efficient reaction, and in the absence of the catalytic system, only starting material was observed; therefore, the possibility of nucleophilic attack at C7 may be excluded (Table 4, Entries 4 and 5).

The scope and limitations of the C7 reactions were found by using various amines (Table 5). Only a few minutes were necessary to achieve the reactions of **18** with (het)arylamines, and compounds **20–27** were isolated in good yields (Table 5, Entries 1–8). All the reactions led to a complete conversion of the starting material into a single product, but difficulties with purification lowered the isolated yields.

Table 5. N-Arylation of compound 18 with various amines.

CI	N ² 18	N N NHBn	Palladium (He catalyzed N-arylation	t)ArHN	
H	Entry	Amines	Compound ^[c]	Time [min]	Yield ^[a] [%]
	1	MeO-	20	50	72
	2	MeO NH ₂	21	50	76
	3	MeO MeO NH ₂	22	50	71
	4	$\rightarrow \sim \sim$	23	60	78
	5		24	60	73
	6	N N N NH ₂	25	60	81
	7	NH ₂	26	60	64
	8	N NH2	27	60	77

[a] Isolated yields. [b] Compound **18** was recovered. [c] Reaction conditions: (Het)ArNH₂ (1.2 equiv.), K_2CO_3 (2.0 equiv.), Pd-(OAc)₂ (0.1 equiv.), Xantphos (0.2 equiv.), 140 °C, microwave irradiation.

One-Pot Reaction of 2,4,7-Trichloropyrido[3,2-d]pyrimidine

Small differences in reaction conditions were found to increase efficiency and selectivity during the tris(arylations). Despite varying the reaction conditions, such as the nature of the base, the solvent, and the activation mode (thermal reaction/microwave irradiation), we were unable to find experimental conditions for successful one-pot tris(arylations).

In the case of tris(aminated) pyrido[3,2-d]pyrimidines, the larger difference between the reactivity of the three chlorine atoms prompted us to attempt an unprecedented one-pot synthesis of these substrates by tandem double $S_NAr/Buchwald N$ -arylation.

After a careful screening of experimental conditions, we found that the first two reactions could be achieved in dioxane in the presence of an excess of triethylamine in a sealed vial. The first S_NAr was achieved at room temperature in the presence of a stoichiometric amount of $BnNH_2$ to preserve the C4 regioselectivity. After complete disappearance of **3** (observed in 5 min), ethanolamine was added, and the reaction mixture was placed under microwave irradiation at 140 °C until the disappearance of intermediate **17** was observed. The completion of the second amination at C2 occurred after 1 h, and led to the in situ formation of **18**.

After cooling, a Buchwald pre-mix [i.e., *p*-anisidine, K_2CO_3 , $Pd(OAc)_2$ and Xantphos] was added to the vial. The crosscoupling reaction was activated under microwave irradiation at 140 °C for an additional 1 h. After a single purification step, the expected 2,4,7-tris(triaminated) derivative **20** was isolated in 64% yield.

This new green one-pot tris(amination) methodology diminished the global reaction time and afforded **20** in fairly good yield after a single purification. Having developed such an innovative alternative method, we were now able to apply the procedure to the synthesis of compounds **21–27**. As shown in Table 6, the target 2,4,7-trisubstituted pyrido[3,2-*d*]pyrimidines **21–27** were isolated in similarly good yields (64–72%), whatever the aniline or the heterocyclic amine used, and whatever the method chosen.

Table 6. Triple amination of compound 3 by a one-pot double $\mathrm{S}_{\mathrm{N}}\mathrm{Ar}/\mathrm{Buchwald}$ sequence.

	N Cl three-step vs. one-pot tris(amination)	NHAr(Het)			
Entry	Compound	Global yi	Global yield ^[a] [%]		
	-	Three steps	One pot ^[b]		
1	20	60	64		
2	21	63	75		
3	22	59	68		
4	23	64	70		
5	24	60	71		
6	25	67	67		
7	26	53	72		
8	27	64	69		

[a] Isolated yields. [b] Reaction conditions: 1st S_NAr : BnNH₂ (1.0 equiv.), Et₃N (3.0 equiv.), 1,4-dioxane, room temp., 5 min; 2nd S_NAr : ethanolamine (5.0 equiv.), 140 °C, microwave irradiation, 1 h, then (het)ArNH₂ (1.2 equiv.), K₂CO₃ (2.0 equiv.), Pd(OAc)₂ (0.1 equiv.), Xantphos (0.2 equiv.), 140 °C, microwave irradiation, 1 h.

Conclusions

In this paper, we have described the first access to 2,4,7-trichloropyrido[3,2-*d*]pyrimidine **3** and its use to build two 2,4,7-tris(het)aryl- and -aminopyrido[3,2-*d*]pyrimidine libraries using a novel and highly efficient strategy. Aryl-ations were performed selectively by fine-tuning of the experimental conditions.

The first two aminations were S_NAr reactions and occurred selectively at the C4 and then at the C2 positions of **3**. The chlorine atom at C7 was substituted during (het)-arylations, (het)aryl aminations and reduction by using palladium catalysis and microwave irradiation. A one-pot tris(amination) including a double S_NAr reaction and a microwave-assisted Buchwald reaction completed this unprecedented work. With this robust route leading to **3**, and regioselective conditions for the chlorine substitution, we have opened an interesting method that may be used to design new active drugs, in particular protein kinase inhibitors.

Experimental Section

General Methods: ¹H and ¹³C NMR spectra were recorded with a 250 MHz or a 400 MHz spectrometer by using CDCl₃ or [D₆]-DMSO as the solvent. The chemical shifts are reported in parts per million (δ scale), and all coupling constant (J) values are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and dd (doublet of doublets). IR spectra were recorded with an FTIR spectrometer with a diamond ATR accessory by using the thin-film method. HRMS data were recorded with a mass spectrometer by the "Fédération de Recherche" ICOA/CBM (FR2708) platform. Reactions were monitored by TLC on silica [alu-plates (0.2 mm)]. Spots were visualized by UV light at 254 and 356 nm. Column chromatography was performed by using silica gel 60 (0.063–0.200 mm). Microwave irradiation was carried out in sealed 2-5 mL vessels placed in a Biotage Initiator system by using a standard absorbance level (300 W maximum power). The temperature was measured externally by an IR probe that determined the temperature on the surface of the vial and could be read directly from the instrument screen. The reaction time was measured from when the reaction mixture reached the stated temperature for temperature-controlled experiments. Pressure was measured by a non-invasive sensor integrated into the cavity lid.

2,4,7-Trichloropyrido[3,2-d]pyrimidine (3): A suspension of 1H,3Hpyrido[3,2-d]pyrimidine-2,4-dione (1) (1.0 g, 6.13 mmol) in a mixture of POCl₃ (10 mL) and PCl₅ (7.65 g, 36.7 mmol) was heated in a sealed vial under microwave irradiation at 160 °C. After 2 h, excess POCl₃ was removed under reduced pressure, and the crude residue was dissolved in CH₂Cl₂ (20 mL) at 0 °C. The crude mixture was poured into an iced-water bath (20 mL) with vigorous stirring, and the organic layer was extracted with CH₂Cl₂ (20 mL). After drying with MgSO₄, filtration, and removal of the volatiles under reduced pressure, the residue was purified by flash chromatography using silica gel (petroleum ether/CH₂Cl₂, 40:60) to afford 3 (891 mg, 62%) as a white solid. M.p. 165-166 °C. IR (ATR Diamond): $\tilde{v} = 3048, 2167, 1579, 1531, 1430, 1324, 1253, 1136,$ 1001, 872 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.31 (d, J = 2.2 Hz, 1 H, 8-H), 9.03 (d, J = 2.2 Hz, 1 H, 6-H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 134.2 (CH), 135.1 (Cq), 138.5 (Cq), 148.8 (Cq), 152.7 (CH), 157.0 (Cq), 166.0 (Cq) ppm. HRMS (EI-MS⁺): calcd. for C₇H₂³⁵Cl₃N₃ [M]⁺ 232.9314; found 232.9323.

2,7-Dichloro-4-phenylpyrido[3,2-d]pyrimidine (4): Compound 3 (2.14 g, 9.13 mmol) was dissolved in anhydrous toluene (7 mL) under argon. Phenylboronic acid (1.17 g, 9.596 mmol, 1.05 equiv.), K₂CO₃ (1.989 g, 14.394 mmol, 1.5 equiv.) and Pd(PPh₃)₄ (527 mg, 0.457 mmol, 0.05 equiv.) were successively added, and the reaction mixture was heated at 100 °C for 2 h. After cooling, water (30 mL) was added, and extractions were performed with CH_2Cl_2 (2× 20 mL). The combined organic layers were dried with MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash chromatography using silica gel (petroleum ether/CH₂Cl₂, 90:10) to afford 4 (1.942 g, 77%) as a white solid. M.p. 140–141 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.53–7.62 (m, $3 H, H_{Ph}$), 8.29 (d, J = 2.2 Hz, 1 H, 8-H), 8.36–8.40 (m, 2 H, H_{Ph}), 8.97 (d, J = 2.2 Hz, 1 H, 6-H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 128.5 (2 CH), 132.1 (3 CH), 134.1 (CH), 134.4 (Cq), 135.6 (Cq), 136.7 (Cq), 149.6 (Cq), 151.2 (CH), 158.7 (Cq), 169.6 (Cq) ppm. IR (ATR Diamond): v = 3043, 2167, 1584, 1527, 1439, 1268, 1124, 1080, 933, 852 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{13}H_8{}^{35}Cl_2N_3 [M + 1]^+ 276.0095$; found 276.0098.

7-Chloro-2,4-diphenylpyrido[**3,2-***d***]pyrimidine** (**5**): Compound **5** (58 mg, 2%) was isolated as a yellow solid as a by-product during

FULL PAPER

the synthesis of 4. M.p. 120–122 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.54–7.63 (m, 6 H, H_{Ph}), 8.38 (d, *J* = 2.2 Hz, 1 H, 8-H), 8.44–8.48 (m, 2 H, H_{Ph}), 8.68–8.72 (m, 2 H, H_{Ph}), 8.90 (d, *J* = 2.2 Hz, 1 H, 6-H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 128.4 (2 CH), 128.8 (2 CH), 129.1 (2 CH), 131.1 (CH), 131.4 (CH), 131.8 (2 CH), 135.2 (CH), 135.5 (Cq), 136.0 (Cq), 136.2 (Cq), 137.4 (Cq), 148.5 (Cq), 150.2 (CH), 161.8 (Cq), 166.6 (Cq) ppm. IR (ATR Diamond): \tilde{v} = 3043, 2167, 1584, 1527, 1439, 1268, 1124, 1080, 933, 852 cm⁻¹. HRMS (EI-MS⁺): calcd. for C₁₉H₁₃³⁵ClN₃ [M + 1]⁺ 318.0798; found 318.0799.

7-Chloro-2-(2-methoxyphenyl)-4-phenylpyrido[3,2-*d*]pyrimidine (6): A solution of 2,7-dichloro-4-phenylpyrido[3,2-d]pyrimidine (4) (100 mg, 362 µmol) in toluene (6 mL) and EtOH (3 mL) was degassed and placed under argon, and (2-methoxyphenyl)boronic acid (58 mg, 380 µmol, 1.05 equiv.), Na₂CO₃ (77 mg, 724 µmol, 2 equiv.), and Pd(PPh₃)₄ (21 mg, 18 µmol, 0.05 equiv.) were successively added. The reaction mixture was heated at 100 °C with vigorous stirring. After 5 h, the solvent was removed under reduced pressure. The crude material was purified by flash chromatography (EtOAc/petroleum ether, 5:95) to afford compound **6** (84%) as a yellow solid. M.p. 116–117 °C. ¹H NMR (250 MHz, CDCl₃): δ = 3.93 (s, 3 H, OCH₃), 7.07–7.15 (m, 2 H, H_{Ar}), 7.44–7.51 (m, 1 H, H_{Ar}), 7.54–7.58 (m, 3 H, H_{Ph}), 7.93 (dd, J = 1.7, J = 7.5 Hz, 1 H, H_{Ar}), 8.36–8.40 (m, 2 H, H_{Ph}), 8.43 (d, J = 2.4 Hz, 1 H, 8-H), 8.95 (d, J = 2.4 Hz, 1 H, 6-H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 56.2 (CH₃), 112.4 (CH), 120.9 (CH), 128.3 (2 CH), 128.4 (Cq), 131.0 (CH), 131.5 (CH), 131.8 (2 CH), 132.2 (CH), 135.2 (CH), 135.4 (Cq), 135.5 (Cq), 136.1 (Cq), 148.1 (Cq), 150.5 (CH), 158.2 (Cq), 163.5 (Cq), 166.7 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 3068$, 2267, 1584, 1538, 1445, 1379, 1292, 1113, 1077, 887 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{20}H_{15}^{35}ClN_3O$ [M + 1]⁺ 348.0904; found 348.0900.

7-Chloro-2-(3-methoxyphenyl)-4-phenylpyrido[3,2-*d*]pyrimidine (7): Compound 7 was obtained as described for 6 by using (3-methoxyphenyl)boronic acid in 4 h. Flash chromatography by using silica gel (petroleum ether/EtOAc, 98:2) afforded compound 7 (81%) as a yellow solid. M.p. 112-113 °C. ¹H NMR (250 MHz, CDCl₃): δ = 3.92 (s, 3 H, OCH₃), 7.06 (ddd, J = 0.8, J = 2.6, J = 8.2 Hz, 1 H, H_{Ar}), 7.42 (t, J = 8.0 Hz, 1 H, H_{Ar}), 7.55–7.58 (m, 3 H, H_{Ph}), 8.20 (dd, J = 1.6, J = 2.6 Hz, 1 H, H_{Ar}), 8.25 (d, J = 8.0 Hz, 1 H, H_{Ar}), 8.32 (d, J = 2.4 Hz, 1 H, 8-H), 8.40–8.44 (m, 2 H, H_{Ph}), 8.85 (d, J = 2.4 Hz, 1 H, 6-H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ $= 55.5 (CH_3), 113.8 (CH), 117.5 (CH), 121.6 (CH), 128.3 (2 CH),$ 129.7 (CH), 131.1 (CH), 131.8 (2 CH), 135.1 (CH), 135.4 (Cq), 135.9 (Cq), 136.1 (Cq), 138.7 (Cq), 148.3 (Cq), 150.1 (CH), 160.0 (Cq), 161.5 (Cq), 166.4 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 3053$, 2828, 1589, 1536, 1456, 1334, 1248, 1179, 1047, 836 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{20}H_{15}^{35}ClN_{3}O [M + 1]^{+} 348.0904$; found 348.0905.

7-Chloro-2-(4-methoxyphenyl)-4-phenylpyrido[**3**,2-*d*]**pyrimidine** (**8**): Compound **8** was obtained as described for **6** by using (4-methoxyphenyl)boronic acid in 5 h. Flash chromatography by using silica gel (petroleum ether/EtOAc, 95:5) afforded compound **8** (83%) as a yellow solid. M.p. 193–194 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.90$ (s, 3 H, OCH₃), 7.03 (d, J = 9.0 Hz, 2 H, H_{Ar}), 7.57–7.59 (m, 3 H, H_{Ph}), 8.32 (d, J = 2.4 Hz, 1 H, 8-H), 8.41–8.44 (m, 2 H, H_{Ph}), 8.64 (d, J = 9.0 Hz, 2 H, H_{Ar}), 8.84 (d, J = 2.4 Hz, 1 H, 6-H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 55.6$ (CH₃), 114.1 (2 CH), 128.3 (2 CH), 130.1 (Cq), 130.9 (2 CH), 131.0 (CH), 131.8 (2 CH), 134.9 (CH), 135.4 (Cq), 135.8 (Cq), 136.3 (Cq), 148.6 (Cq), 149.6 (CH), 161.6 (Cq), 162.5 (Cq), 166.5 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 3053$, 2167, 1604, 1538, 1443, 1317, 1249, 1164, 1027, 846 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{20}H_{15}^{35}ClN_{3}O$ [M + 1]⁺ 348.0904; found 348.0908.

2-(3-Methoxyphenyl)-7-(4-methoxyphenyl)-4-phenylpyrido[3,2-d]pyrimidine (9): Under argon, in a sealed vial, compound 7 (70 mg, 0.201 mmol) was dissolved in a mixture of toluene/EtOH (1.4/ 0.7 mL), and (4-methoxyphenyl)boronic acid (37 mg, 0.241 mmol, 1.2 equiv.), K₂CO₃ (56 mg, 0.402 mmol, 2 equiv.) and Pd(PPh₃)₄ (12 mg, 10 µmol, 0.05 equiv.) were successively added. The reaction mixture was heated under microwave irradiation at 150 °C for 5 min. After cooling, water (15 mL) was added, and extractions were performed with CH_2Cl_2 (2 × 15 mL). The combined organic layers were dried with MgSO4 and filtered, and the volatiles were removed under reduced pressure. The crude residue was purified by flash chromatography by using silica gel (petroleum ether/CH₂Cl₂, 80:20) to afford 9 (79 mg, 94%) as a yellow solid. M.p. 147-148 °C. ¹H NMR (250 MHz, CDCl₃): δ = 3.75 (s, 3 H, OCH₃), 3.84 (s, 3 H, OCH₃), 6.92–6.98 (m, 3 H, H_{Ar}), 7.34 (t, *J* = 8.0 Hz, 1 H, H_{Ar}), 7.46–7.50 (m, 3 H, H_{Ph}), 7.59 (d, J = 8.8 Hz, 2 H, H_{Ar}), 8.16–8.18 (m, 1 H, H_{Ar}), 8.21 (d, J = 7.8 Hz, 1 H, H_{Ar}), 8.32 (d, J = 2.3 Hz, 1 H, 8-H), 8.38–8.42 (m, 2 H, H_{Ph}), 9.11 (d, J = 2.3 Hz, 1 H, 6-H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 55.5 (CH₃), 55.5 (CH₃), 113.7 (CH), 114.9 (2 CH), 117.1 (CH), 121.5 (CH), 128.2 (2 CH), 128.6 (Cq), 128.8 (2 CH), 129.7 (CH), 130.7 (CH), 131.8 (2 CH), 132.2 (CH), 136.4 (Cq), 136.6 (Cq), 139.3 (Cq), 139.8 (Cq), 148.3 (Cq), 150.2 (CH), 160.0 (Cq), 160.7 (Cq), 160.9 (Cq), 165.9 (Cq) ppm. IR (ATR Diamond): v = 3002, 2828, 1604, 1543, 1451, 1333, 1230, 1169, 1021, 836 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{27}H_{22}N_3O_2$ [M + 1]⁺ 420.1712; found 420.1717.

7-(4-Acetylphenyl)-2-(3-methoxyphenyl)-4-phenylpyrido[3,2-d]pyrimidine (10): Compound 10 was obtained as described for 9 by using (4-acetylphenyl)boronic acid in 5 min. Flash chromatography by using silica gel (petroleum ether/EtOAc, 85:15) afforded compound **10** (97%) as a yellow solid. M.p. 133–134 °C. ¹H NMR $(250 \text{ MHz}, \text{CDCl}_3): \delta = 3.75 \text{ (s, 3 H, OCH}_3), 3.84 \text{ (s, 3 H, OCH}_3),$ 6.92–6.98 (m, 3 H, H_{Ar}), 7.34 (t, J = 8.0 Hz, 1 H, H_{Ar}), 7.46–7.50 (m, 3 H, H_{Ph}), 7.59 (d, J = 8.8 Hz, 2 H, H_{Ar}), 8.16–8.18 (m, 1 H, H_{Ar}), 8.21 (d, J = 7.8 Hz, 1 H, H_{Ar}), 8.32 (d, J = 2.3 Hz, 1 H, 8-H), 8.38–8.42 (m, 2 H, H_{Ph}), 9.11 (d, J = 2.3 Hz, 1 H, 6-H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 26.7 (CH₃), 55.4 (CH₃), 113.7 (CH), 117.1 (CH), 121.4 (CH), 127.7 (2 CH), 128.2 (2 CH), 129.3 (2 CH), 129.6 (CH), 130.9 (CH), 131.8 (2 CH), 133.9 (CH), 136.3 (Cq), 137.0 (Cq), 137.2 (Cq), 138.7 (Cq), 138.9 (Cq), 140.5 (Cq), 147.8 (Cq), 149.6 (CH), 159.9 (Cq), 160.9 (Cq), 165.8 (Cq), 197.3 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 2935$, 1681, 1604, 1536, 1454, 1340, 1265, 1047, 908, 830 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{28}H_{22}N_3O_2$ [M + 1]⁺ 432.1712; found 432.1709.

2-(3-Methoxyphenyl)-7-(4-methylsulfonyl)-4-phenylpyrido[3,2-d]pyrimidine (11): Compound 11 was obtained as described for 9 by using [4-(methylsulfonyl)phenyl]boronic acid in 10 min. Flash chromatography by using silica gel (petroleum ether/EtOAc, 80:20) afforded compound 11 (97%) as a yellow solid. M.p. 215-216 °C. ¹H NMR (250 MHz, CDCl₃): δ = 3.33 (s, 3 H, CH₃), 3.87 (s, 3 H, OCH₃), 7.14 (dd, *J* = 2.5, *J* = 8.1 Hz, 1 H, H_{Ar}), 7.49 (t, *J* = 8.0 Hz, 1 H, H_{Ar}), 7.60–7.64 (m, 3 H, H_{Ph}), 8.09–8.13 (m, 3 H, H_{Ar}), 8.21 (d, J = 7.8 Hz, 1 H, H_{Ar}), 8.28 (d, J = 8.4 Hz, 2 H, H_{Ar}), 8.43– 8.47 (m, 2 H, H_{Ph}), 8.78 (d, J = 2.2 Hz, 1 H, 8-H), 9.46 (d, J =2.2 Hz, 1 H, 6-H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 43.4 (CH₃), 55.2 (CH₃), 113.3 (CH), 116.9 (CH), 120.8 (CH), 127.8 (2 CH), 128.1 (2 CH), 128.8 (2 CH), 129.9 (CH), 130.8 (CH), 131.6 (2 CH), 134.0 (CH), 135.9 (Cq), 136.6 (Cq), 138.0 (Cq), 138.4 (Cq), 140.4 (Cq), 141.3 (Cq), 147.4 (Cq), 150.6 (CH), 159.7 (Cq), 159.8 (Cq), 165.5 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 2920$, 1594, 1535,

Regiocontroled Reactions of 2,4,7-Trichloropyrido[3,2-d]pyrimidine

1460, 1301, 1225, 1148, 1034, 956, 852 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{27}H_{22}N_3O_3S$ [M + 1]⁺ 468.1382; found 468.1384.

2-(3-Methoxyphenyl)-7-(2-naphthyl)-4-phenylpyrido[3,2-d]pyrimidine (12): Compound 12 was obtained as described for 9 by using 2-naphthylboronic acid in 15 min. Flash chromatography by using silica gel (petroleum ether/CH₂Cl₂, 80:20) afforded compound 12 (98%) as a yellow solid. M.p. 166-167 °C. ¹H NMR (250 MHz, CDCl₃): δ = 3.82 (s, 3 H, OCH₃), 6.95 (dd, J = 2.6, J = 8.1 Hz, 1 H, H_{Ar}), 7.33 (t, J = 8.0 Hz, 1 H, H_{Ar}), 7.40–7.43 (m, 2 H, H_{Naph}), 7.47–7.50 (m, 3 H, H_{Ph}), 7.68–7.86 (m, 4 H, H_{Naph}), 8.06 (s, 1 H, H_{Naph}), 8.16–8.17 (m, 1 H, H_{Ar}), 8.22 (d, J = 7.8 Hz, 1 H, H_{Ar}), 8.40–8.45 (m, 3 H, H_{Ph} and 8-H), 9.23 (d, J = 2.3 Hz, 1 H, 6-H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 55.5 (CH₃), 113.7 (CH), 117.2 (CH), 121.6 (CH), 124.8 (CH), 126.9 (CH), 127.1 (CH), 127.2 (CH), 127.8 (CH), 128.2 (2 CH), 128.6 (CH), 129.4 (CH), 129.7 (CH), 130.8 (CH), 131.9 (2 CH), 133.4 (Cq), 133.5 (CH), 133.6 (Cq), 136.6 (Cq), 136.8 (Cq), 139.2 (Cq), 140.1 (Cq), 148.2 (Cq), 150.4 (CH), 160.0 (2Cq), 160.9 (Cq), 166.0 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 3063, 2833, 1584, 1532, 1445, 1338, 1276, 1220,$ 1046, 826 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{30}H_{22}N_3O [M + 1]^+$ 440.1763; found 440.1766.

7-(2-Furyl)-2-(3-methoxyphenyl)-4-phenylpyrido[3,2-d]pyrimidine (13): Compound 13 was obtained as described for 9 by using 2furylboronic acid in 10 min. Flash chromatography by using silica gel (petroleum ether/CH₂Cl₂, 80:20) afforded compound 13 (97%) as a yellow solid. M.p. 131–132 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 3.85$ (s, 3 H, OCH₃), 6.48 (dd, J = 1.8, J = 3.4 Hz, 1 H, H_{Het}), 6.90 (d, J = 3.4 Hz, 1 H, H_{Het}), 6.97 (dd, J = 1.9, J = 8.1 Hz, 1 H, H_{Ar}), 7.34 (t, J = 8.0 Hz, 1 H, H_{Ar}), 7.47–7.52 (m, 4 H, H_{Ph} and H_{Het}), 8.15–8.17 (m, 1 H, H_{Ar}), 8.21 (d, J = 7.8 Hz, 1 H, H_{Ar}), 8.35–8.40 (m, 3 H, H_{Ph} and 8-H), 9.16 (d, J = 2.2 Hz, 1 H, 6-H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 55.6 (CH₃), 109.7 (CH), 112.5 (CH), 113.7 (CH), 117.2 (CH), 121.6 (CH), 128.2 (2 CH), 128.9 (CH), 129.7 (CH), 130.1 (Cq), 130.8 (CH), 131.8 (2 CH), 136.4 (Cq), 136.5 (Cq), 139.2 (Cq), 144.7 (CH), 147.4 (CH), 148.3 (Cq), 150.2 (Cq), 160.0 (Cq), 161.1 (Cq), 165.9 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 2956, 1599, 1531, 1451, 1340, 1229, 1176, 1034,$ 897, 825 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{24}H_{18}N_3O_2$ [M + 1]⁺ 380.1399; found 380.1416.

2-(3-Methoxyphenyl)-4-phenyl-7-(3-pyridyl)pyrido[3,2-d]pyrimidine (14). Compound 14 was obtained as described for 9 by using 3pyridylboronic acid in 10 min. Flash chromatography by using silica gel (CH₂Cl₂/MeOH, 99.5:0.5) afforded compound 14 (88%) as a yellow solid. M.p. 134–135 °C. ¹H NMR (250 MHz, CDCl₃): δ = 3.92 (s, 3 H, OCH₃), 7.05 (ddd, J = 0.9, J = 2.6, J = 8.2 Hz, 1 H, H_{Ar}), 7.39–7.48 (m, 2 H, H_{Ar} and H_{Pyr}), 7.57–7.60 (m, 3 H, H_{Ph}), 8.02 (d, J = 7.9 Hz, 1 H, H_{Pyr}), 8.22-8.24 (m, 1 H, H_{Ar}), 8.28 (d, J = 7.8 Hz, 1 H, H_{Ar}), 8.47–8.52 (m, 3 H, H_{Ph} and 8-H), 8.75 (br., 1 H, H_{Pyr}), 9.04 (br., 1 H, H_{Pyr}), 9.18 (d, J = 2.3 Hz, 1 H, 6-H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 55.5 (CH₃), 113.7 (CH), 117.3 (CH), 121.5 (CH), 128.3 (2 CH), 129.7 (CH), 130.9 (CH), 131.8 (2 CH), 134.0 (CH), 134.8 (CH), 136.3 (Cq), 137.1 (Cq), 137.2 (Cq), 138.9 (Cq), 147.9 (Cq), 148.5 (CH), 149.5 (2 CH), 150.3 (CH), 160.0 (2Cq), 161.1 (Cq), 166.2 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 3048, 2162, 1589, 1533, 1453, 1394, 1341, 1230, 1026,$ 841 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{25}H_{19}N_4O [M + 1]^+$ 391.1559; found 391.1565.

7-(3-Benzothienyl)-2-(3-methoxyphenyl)-4-phenylpyrido[3,2-d]pyrimidine (15): Compound **15** was obtained as described for **9** by using 3-benzothienylboronic acid in 5 min. Flash chromatography by using silica gel (CH₂Cl₂/MeOH, 99.5:0.5) afforded compound **15** (96%) as a yellow solid. M.p. 112–113 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 3.96$ (s, 3 H, OCH₃), 7.09 (ddd, J = 0.9, J = 2.6, J = 8.2 Hz, 1 H, H_{Ar}), 7.43–7.51 (m, 3 H, H_{Ar} and H_{Het}), 7.61–7.64 (m, 3 H, H_{Ph}), 7.70 (s, 1 H, H_{Het}), 7.95–7.99 (m, 1 H, H_{Het}), 8.04–8.08 (m, 1 H, H_{Het}), 8.30–8.32 (m, 1 H, H_{Ar}), 8.36 (d, J = 7.8 Hz, 1 H, H_{Ar}), 8.54–8.58 (m, 3 H, H_{Ph} and 8-H), 9.24 (d, J = 2.2 Hz, 1 H, 6-H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 55.5$ (CH₃), 113.7 (CH), 117.2 (CH), 121.6 (CH), 122.4 (CH), 123.3 (CH), 125.2 (2 CH), 126.8 (CH), 128.3 (2 CH), 129.7 (CH), 130.9 (CH), 131.9 (2 CH), 133.2 (Cq), 134.8 (CH), 135.7 (Cq), 136.5 (Cq), 136.9 (Cq), 137.0 (Cq), 139.2 (Cq), 140.9 (Cq), 148.2 (Cq), 151.2 (CH), 160.0 (Cq), 161.0 (Cq), 166.2 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 2920$, 1599, 1538, 1505, 1448, 1334, 1226, 1039, 908, 831 cm⁻¹. HRMS (EI-MS⁺): calcd. for C₂₈H₂₀N₃OS [M + 1]⁺ 446.1327; found 446.1329.

2-(3-Methoxyphenyl)-4-phenyl-7-(2-thienyl)pyrido[3,2-d]pyrimidine (16): Compound 16 was obtained as described for 9 by using 2thienylboronic acid in 5 min. Flash chromatography by using silica gel (CH₂Cl₂/MeOH, 99.5:0.5) afforded compound 16 (67%) as a yellow solid. M.p. 140–141 °C. ¹H NMR (250 MHz, CDCl₃): δ = 3.85 (s, 3 H, OCH₃), 6.98 (dd, J = 2.0, J = 8.2 Hz, 1 H, H_{Ar}), 7.09 (dd, J = 3.7, J = 5.0 Hz, 1 H, H_{Het}), 7.32–7.39 (m, 2 H, H_{Ar} and H_{Het}), 7.46–7.52 (m, 4 H, H_{Ph} and H_{Het}), 8.15–8.17 (m, 1 H, H_{Ar}), 8.21 (d, J = 7.8 Hz, 1 H, H_{Ar}), 8.35 (d, J = 2.3 Hz, 1 H, 8-H), 8.37– 8.41 (m, 2 H, H_{Ph}), 9.17 (d, J = 2.3 Hz, 1 H, 6-H) ppm. ¹³C NMR $(62.5 \text{ MHz}, \text{CDCl}_3): \delta = 55.6 (\text{CH}_3), 113.7 (\text{CH}), 117.3 (\text{CH}), 121.6$ (CH), 126.3 (CH), 128.1 (CH), 128.3 (2 CH), 128.9 (CH), 129.7 (CH), 130.8 (CH), 130.9 (CH), 131.8 (2 CH), 133.9 (Cq), 136.5 (Cq), 136.7 (Cq), 139.2 (Cq), 139.3 (Cq), 148.3 (Cq), 148.8 (CH), 160.1 (Cq), 161.2 (Cq), 165.9 (Cq) ppm. IR (ATR Diamond): v = 3073, 2203, 1599, 1537, 1452, 1335, 1274, 1218, 1042, 894 cm^{-1} . HRMS (EI-MS⁺): calcd. for $C_{24}H_{18}N_3OS [M + 1]^+$ 396.1171; found 396.1181.

4-(Benzylamino)-2,7-dichloropyrido[3,2-d]pyrimidine (17): A solution of compound 3 (2.0 g, 8.53 mmol), benzylamine (914 mg, 8.53 mmol, 1 equiv.) and triethylamine (863 mg, 7.76 mmol, 1.05 equiv.) in dry THF (100 mL) was stirred at room temperature for 4 h. The solvent was evaporated, and water (20 mL) was added. The organic material was extracted with CH_2Cl_2 (3 × 30 mL), and the combined organic layers were dried with MgSO₄ and filtered, and the solvents were evaporated under vacuum. Flash chromatography by using silica gel (petroleum ether/CH₂Cl₂, 1:1) afforded product 17 (2.341 g, 90%) as a white solid. M.p. 169–171 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 4.85$ (d, J = 5.8 Hz, 2 H, CH₂), 7.33–7.39 (m, 5 H, H_{Ph}), 7.48 (br., 1 H, NH), 8.00 (d, J = 2.1 Hz, 1 H, 8-H), 8.56 (d, J = 2.1 Hz, 1 H, 6-H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 45.3 (CH₂), 128.1 (CH), 128.2 (2 CH), 128.8 (Cq), 129.1 (2 CH), 133.6 (CH), 136.3 (Cq), 136.9 (Cq), 146.1 (Cq), 147.8 (CH), 159.7 (Cq), 160.4 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 3036$, 2156, 1601, 1572, 1524, 1438, 1297, 1130, 1045, 880 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{14}H_{11}^{35}Cl_2N_4$ [M + 1]⁺ 305.0361; found 305.0365.

4-(Benzylamino)-7-chloro-2-[(2-hydroxyethyl)amino]pyrido[3,2-*d***]pyrimidine (18): A solution of compound 17 (1.5 g, 4.91 mmol), ethanolamine (360 mg, 5.90 mmol, 1.2 equiv.) and Et₃N (994 mg, 9.83 mmol, 2 equiv.) in dry 1,4-dioxane (100 mL) was heated at reflux for 12 h. After cooling, the volatiles were evaporated, and water (20 mL) was added. The organic material was extracted with CH₂Cl₂ (3 × 30 mL), and the combined organic layers were dried with MgSO₄ and filtered, and the solvents were evaporated under vacuum. Flash chromatography by using silica gel (MeOH/CH₂Cl₂, 5:95) afforded product 18 (1.489 g, 92%) as a yellow solid. M.p. 106–107 °C. ¹H NMR (250 MHz, CDCl₃): \delta = 3.57–3.63 (m, 2 H,**

FULL PAPER

CH₂), 3.81–3.84 (m, 2 H, CH₂), 4.58 (br., 1 H, OH), 4.71 (d, J = 5.9 Hz, 1 H, CH₂Ph), 5.74 (br., 1 H, NH), 7.26–7.35 (m, 6 H, H_{Ph} and NH), 7.63 (d, J = 2.0 Hz, 1 H, 8-H), 8.16 (d, J = 2.0 Hz, 1 H, 6-H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 44.6$ (CH₂), 44.9 (CH₂), 63.7 (CH₂), 127.3 (Cq), 127.7 (2 CH), 127.8 (2 CH), 128.8 (CH), 130.6 (CH), 135.5 (Cq), 137.9 (Cq), 142.3 (CH), 146.5 (Cq), 159.6 (Cq), 160.9 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 3406$, 2843, 1609, 1568, 1515, 1445, 1312, 1159, 1067, 893 cm⁻¹. HRMS (EI-MS⁺): calcd. for C₁₆H₁₇³⁵ClN₅O [M + 1]⁺ 330.1122; found 330.1107.

4-(Benzylamino)-2-[(2-hydroxyethyl)amino]pyrido[3,2-d]pyrimidine (19): Compound 18 (100 mg, 0.303 mmol) was dissolved in dry THF (2 mL), and Et₃N (92 mg, 0.91 mmol, 3 equiv.) and formic acid (28 mg, 0.606 mmol, 2 equiv.) were successively added. After 5 min of stirring at room temperature, Pd(OAc)₂ (7 mg, 30.3 µmol, 0.1 equiv.) and Xantphos (35 mg, 60.6 µmol, 0.2 equiv.) were added, and the reaction mixture was heated at 150 °C under microwave irradiation for 15 min. After cooling, the volatiles were evaporated, and water (20 mL) was added. The organic material was extracted with CH_2Cl_2 (2 × 10 mL), and the combined organic layers were dried with MgSO₄ and filtered, and the solvents were evaporated under vacuum. Flash chromatography by using silica gel (EtOAc/MeOH, 95:5) afforded product 19 (51 mg, 57%) as a white solid. M.p. 87–88 °C. ¹H NMR (250 MHz, CDCl₃): δ = 3.59–3.64 (m, 2 H, CH₂), 3.82-3.86 (m, 2 H, CH₂), 4.74 (d, J = 5.9 Hz, 1 H, CH₂Ph), 5.79 (br., 1 H, NH), 7.26–7.36 (m, 6 H, H_{Ph} and NH), 7.42 (dd, J = 4.2, J = 8.5 Hz, 1 H, H⁷), 7.68 (dd, J = 1.4, J =8.5 Hz, 1 H, 8-H), 8.29 (dd, J = 1.4, J = 4.2 Hz, 1 H, 6-H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 44.4 (CH₂), 44.8 (CH₂), 63.3 (CH₂), 127.4 (CH), 127.6 (CH), 127.7 (2 CH), 128.6 (2 CH), 129.0 (Cq), 132.0 (CH), 138.1 (Cq), 143.1 (CH), 145.8 (Cq), 159.7 (Cq), 160.1 (Cq) ppm. IR (ATR Diamond): v = 3247, 2930, 1604, 1563, 1507, 1415, 1323, 1118, 1056, 821 cm⁻¹. HRMS (EI-MS⁺): calcd. for C₁₆H₁₈N₅O [M + 1]⁺ 296.1511; found 296.1504.

General Procedure A Leading to the Tris(aminated) Derivatives 20– 27 from 18: In a sealed vial, compound 18 (0.2 mmol scale, 1.0 equiv.) and the required amine (2.0 equiv.) were dissolved in anhydrous dioxane (2 mL). K_2CO_3 (2.0 equiv.), Pd(OAc)_2 (0.1 equiv.) and Xantphos (0.2 equiv.) were successively added, and the reaction mixture was heated under microwave irradiation at 140 °C. After cooling, the solvent was evaporated, water (10 mL) was added, and extractions were performed with CH₂Cl₂ (2 × 20 mL). The combined organic layers were dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by flash chromatography by using silica gel to afford the 2,4,7-tris(aminated) derivatives 20–27.

General Procedure B Leading to the Tris(aminated) Derivatives 20– 27 from 3: Under argon, in a sealed vial, compound 3 (0.3 mmol scale, 1.0 equiv.), triethylamine (3.0 equiv.) and benzylamine (1.0 equiv.) were dissolved in dry dioxane (2 mL). After 5 min of stirring, ethanolamine (5.0 equiv.) was introduced prior to heating the vial at 140 °C under microwave irradiation for 1 h. After cooling, a Buchwald pre-mix containing the required amine (1.2 equiv.), K_2CO_3 (2.0 equiv.), $Pd(OAc)_2$ (0.1 equiv.) and Xantphos (0.2 equiv.) was added. The resulting suspension was placed under microwave irradiation at 140 °C for 1 h. After cooling, the same purification as described in general procedure A led to the 2,4,7tris(aminated) derivatives 20–27.

4-(Benzylamino)-2-[(2-hydroxyethyl)amino]-7-[(4-methoxyphenyl)-amino]pyrido]3,2-d]pyrimidine (20): Compound **20** was obtained after flash chromatography by using silica gel (CH₂Cl₂/MeOH, 95:5) as a yellow solid in 72% yield by using general procedure A and in

64% yield by using general procedure B. M.p. 126–127 °C. ¹H NMR (250 MHz, [D₆]DMSO): δ = 3.57–3.61 (m, 2 H, CH₂), 3.80–3.83 (m, 5 H, CH₂ et OCH₃), 4.73 (d, *J* = 5.9 Hz, 2 H, CH₂Ph), 5.48 (br., 1 H, OH), 5.84 (br., 1 H, NH), 6.88–6.94 (m, 3 H, H_{Ar} and 8-H), 7.06 (br., 1 H, NH), 7.14 (d, *J* = 8.9 Hz, 2 H, H_{Ar}), 7.29–7.37 (m, 5 H, H_{Ph}), 7.93 (d, *J* = 2.5 Hz, 1 H, 6-H) ppm. ¹³C NMR (100 MHz, 80 °C, [D₆]DMSO): δ = 43.0 (CH₂), 43.5 (CH₂), 55.1 (CH₃), 60.4 (CH₂), 107.8 (CH), 114.6 (2 CH), 120.6 (Cq), 122.4 (2 CH), 126.3 (CH), 127.1 (2 CH), 127.8 (2 CH), 133.7 (Cq), 134.6 (CH), 139.5 (Cq), 145.4 (Cq), 146.8 (Cq), 155.2 (Cq), 158.8 (Cq), 159.1 (Cq) ppm. IR (ATR Diamond): \tilde{v} = 3247, 2926, 1564, 1503, 1454, 1414, 1326, 1237, 1175, 1028, 816 cm⁻¹. HRMS (EI-MS⁺): calcd. for C₂₃H₂₅N₆O₂ [M + 1]⁺ 417.2039; found 417.2033.

4-(Benzylamino)-2-[(2-hydroxyethyl)amino]-7-[(3-methoxyphenyl)amino]pyrido[3,2-d]pyrimidine (21): Compound 21 was obtained after flash chromatography by using silica gel (EtOAc/MeOH, 95:5) as a yellow solid in 76% yield by using general procedure A and in 75% yield by using general procedure B. M.p. 110–111 °C. ¹H NMR (250 MHz, $[D_6]DMSO$): $\delta = 3.33-3.37$ (m, 2 H, CH₂), 3.47- $3.52 \text{ (m, 2 H, CH}_2\text{)}, 3.75 \text{ (s, 3 H, OCH}_3\text{)}, 4.65 \text{ (d, } J = 6.3 \text{ Hz}, 2 \text{ H},$ CH_2Ph), 6.50 (t, J = 6.3 Hz, 1 H, NH), 6.58 (dd, J = 2.0, J =8.1 Hz, 1 H, H_{Ar}), 6.71–6.73 (m, 1 H, H_{Ar}), 6.80 (d, J = 8.1 Hz, 1 H, H_{Ar}), 7.06 (d, J = 2.0 Hz, 1 H, H_{Ar}), 7.18–7.39 (m, 6 H, H_{Ph} and 8-H), 8.09 (d, J = 2.4 Hz, 1 H, 6-H), 8.27 (br., 1 H, NH), 8.75 (br., 1 H, NH) ppm. ¹³C NMR (100 MHz, 80 °C, $[D_6]DMSO$): δ = 42.9 (CH₂), 43.5 (CH₂), 54.7 (CH₃), 60.4 (CH₂), 104.8 (CH), 107.2 (CH), 110.9 (CH), 111.1 (CH), 121.6 (Cq), 126.2 (CH), 127.1 (2 CH), 127.7 (2 CH), 129.7 (CH), 135.1 (CH), 139.5 (Cq), 142.6 (Cq), 143.5 (Cq), 147.4 (Cq), 158.8 (Cq), 159.6 (Cq), 160.1 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 3252, 2930, 2290, 1568, 1490, 1320,$ 1230, 1152, 1048, 846 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{23}H_{25}N_6O_2$ [M + 1]⁺ 417.2039; found 417.2042.

4-(Benzylamino)-7-[(3,4-dimethoxyphenyl)amino]-2-[(2-hydroxyethyl)amino]pyrido[3,2-d]pyrimidine (22): Compound 22 was obtained after flash chromatography by using silica gel (EtOAc/MeOH, 99.5:0.5) as a yellow solid in 71% yield by using general procedure A and in 68% yield by using general procedure B. M.p. 149-150 °C. ¹H NMR (250 MHz, CDCl₃): δ = 3.56 (br., 2 H, CH₂), 3.77-3.82 (m, 5 H, CH₂ and OCH₃), 3.85 (s, 3 H, OCH₃), 4.69 (d, *J* = 5.9 Hz, 2 H, CH₂Ph), 5.58 (br., 1 H, NH), 6.30 (br., 1 H, NH), 6.69–6.81 (m, 3 H, H_{Ph} and H_{Ar}), 6.97 (d, J = 2.4 Hz, 1 H, 8-H), 7.06 (t, J = 5.9 Hz, 1 H, NH), 7.29–7.34 (m, 5 H, H_{Ph} and H_{Ar}), 7.92 (d, J = 2.4 Hz, 1 H, 6-H) ppm. ¹³C NMR (100 MHz, 80 °C, $[D_6]DMSO$: $\delta = 44.5 (CH_2), 45.3 (CH_2), 56.1 (CH_3), 56.3 (CH_3),$ 64.8 (CH₂), 107.1 (CH), 110.3 (CH), 112.1 (CH), 114.6 (CH), 121.9 (Cq), 127.5 (CH), 127.8 (2 CH), 128.8 (2 CH), 133.3 (Cq), 135.2 (CH), 138.5 (Cq), 145.7 (Cq), 146.3 (Cq), 146.9 (Cq), 149.8 (Cq), 159.5 (Cq), 160.9 (Cq) ppm. IR (ATR Diamond): v = 3837, 1585, 1504, 1504, 1449, 1235, 1172, 1058, 800, 733 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{24}H_{27}N_6O_3$ [M + 1]⁺ 447.2145; found 447.2146.

7-[(4-Acetylphenyl)amino]-4-(benzylamino)-2-[(2-hydroxyethyl)amino]pyrido[3,2-*d***]pyrimidine (23):** Compound **23** was obtained after flash chromatography by using silica gel (CH₂Cl₂/MeOH, 99.5:0.5) as a yellow solid in 78% yield by using general procedure A and in 70% yield by using general procedure B. M.p. 125–126 °C. ¹H NMR (250 MHz, [D₆]DMSO): δ = 2.50 (s, 3 H, CH₃), 3.33–3.39 (m, 2 H, CH₂), 3.48–3.50 (m, 2 H, CH₂), 4.66 (d, *J* = 6.3 Hz, 2 H, CH₂Ph), 4.93 (br., 1 H, OH), 6.59 (t, *J* = 6.3 Hz, 1 H, NH), 7.19–7.40 (m, 8 H, H_{Ph}, H_{Ar} and 8-H), 7.92 (d, *J* = 8.6 Hz, 1 H, H_{Ar}), 8.17 (d, *J* = 2.4 Hz, 1 H, 6-H), 8.36 (br., 1 H, NH), 9.26 (br., 1 H, NH) ppm. ¹³C NMR (100 MHz, 80 °C, [D₆]DMSO): δ = 25.6 (CH₃), 43.1 (CH₂), 43.5 (CH₂), 60.2 (CH₂), 116.0 (CH), 126.3 (CH), 127.2 Regiocontroled Reactions of 2,4,7-Trichloropyrido[3,2-d]pyrimidine

(CH), 127.8 (CH), 129.6 (Cq), 129.7 (CH), 136.1 (CH), 139.2 (Cq), 141.9 (Cq), 145.9 (Cq), 146.2 (Cq), 158.7 (2Cq), 158.9 (Cq), 195.3 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 1645$, 1570, 1511, 1467, 1342, 1287, 1180, 1062, 829, 726 cm⁻¹. HRMS (EI-MS⁺): calcd. for C₂₄H₂₅N₆O₂ [M + 1]⁺ 429.2039; found 429.2047.

4-(Benzylamino)-2-[(2-hydroxyethyl)amino]-7-(2-pyrimidinylamino)pyrido[3,2-d]pyrimidine (24): Compound 24 was obtained after flash chromatography by using silica gel (EtOAc/MeOH, 90:10) as a yellow solid in 73% yield by using general procedure A and in 71% vield by using general procedure B. M.p. 141–142 °C. ¹H NMR $(250 \text{ MHz}, [D_6]DMSO): \delta = 3.62-3.63 \text{ (m, 2 H, CH}_2), 3.84-3.88$ (m, 2 H, CH₂), 4.54 (br., 1 H, OH), 4.70 (d, J = 5.9 Hz, 2 H, CH₂Ph), 5.86 (br., 1 H, NH), 6.75 (t, J = 4.8 Hz, 1 H, H_{Het}), 7.23 (br., 1 H, NH), 7.27-7.34 (m, 5 H, H_{Ph}), 8.21 (br., 1 H, NH), 8.31 (d, J = 2.3 Hz, 1 H, 8 -H), 8.34 (d, J = 2.3 Hz, 1 H, 6 -H), 8.42 (d, J = 2.3 Hz,J = 4.8 Hz, 2 H, H_{Het}) ppm. ¹³C NMR (100 MHz, 80 °C, [D₆]-DMSO): $\delta = 43.0 (CH_2), 43.5 (CH_2), 60.4 (CH_2), 113.1 (CH), 116.3$ (CH), 122.8 (Cq), 126.3 (CH), 127.1 (2 CH), 127.8 (2 CH), 136.1 (CH), 139.4 (Cq), 140.0 (Cq), 146.6 (Cq), 157.6 (2 CH), 158.9 (Cq), 159.4 (Cq), 159.5 (Cq) ppm. IR (ATR Diamond): $\tilde{v} = 3247, 2935,$ 2290, 1566, 1517, 1407, 1343, 1200, 1051, 882 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{20}H_{21}N_8O [M + 1]^+$ 389.1838; found 389.1841.

4-(Benzylamino)-2-[(2-hydroxyethyl)amino]-7-(1,3,5-triazinylamino)pyrido[3,2-d]pyrimidine (25): Compound 25 was obtained after flash chromatography by using silica gel (EtOAc/MeOH/Et₃N, 94:5:1) as a yellow solid in 81% yield by using general procedure A and in 67% yield by using general procedure B. M.p. 202–203 °C. ¹H NMR (250 MHz, $[D_6]DMSO$): $\delta = 3.37-3.41$ (m, 2 H, CH₂), 3.50- $3.52 \text{ (m, 2 H, CH}_2\text{)}, 4.68 \text{ (d, } J = 5.9 \text{ Hz}, 2 \text{ H}, \text{ CH}_2\text{Ph}\text{)}, 6.71 \text{ (br., 1)}$ H, NH), 7.21-7.40 (m, 5 H, H_{Ph}), 8.22 (br., 1 H, 8-H), 8.45 (br., 1 H, NH), 8.56 (d, J = 2.3 Hz, 1 H, 6-H), 8.87 (s, 2 H, H_{Het}), 10.70 (br., 1 H, NH) ppm. $^{13}\mathrm{C}$ NMR (100 MHz, 80 °C, [D₆]DMSO): δ = 43.0 (CH₂), 43.5 (CH₂), 60.2 (CH₂), 119.5 (CH), 124.1 (Cq), 126.2 (CH), 127.1 (2 CH), 127.7 (2 CH), 136.3 (CH), 138.1 (Cq), 139.2 (Cq), 146.6 (Cq), 158.8 (Cq), 159.6 (Cq), 163.0 (Cq), 165.8 (2 CH) ppm. IR (ATR Diamond): $\tilde{v} = 3416, 2904, 2280, 1619,$ 1573, 1430, 1307, 1205, 1067, 811 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{19}H_{20}N_9O [M + 1]^+$ 390.1791; found 390.1807.

4-(Benzylamino)-2-[(2-hydroxyethyl)amino]-7-(3-quinolinylamino)pyrido[3,2-d]pyrimidine (26): Compound 26 was obtained after flash chromatography by using silica gel (EtOAc/MeOH, 99.5:0.5) as a yellow solid in 64% yield by using general procedure A and in 72% yield by using general procedure B. M.p. 154-155 °C. ¹H NMR (250 MHz, $[D_6]DMSO$): $\delta = 3.60-3.64$ (m, 2 H, CH₂), 3.83-3.85 (m, 2 H, CH₂), 4.75 (d, J = 5.9 Hz, 2 H, CH₂Ph), 5.49 (br., 1 H, OH), 6.42 (br., 1 H, NH), 7.11 (t, J = 5.9 Hz, 1 H, NH), 7.28-7.32 $(m, 2 H, H_{Ph}), 7.34-7.40 (m, 4 H, H_{Ph} and H_{Ar}), 7.52 (t, J = 7.0 Hz)$ 1 H, H_{Ar}), 7.60 (dt, J = 1.4, J = 7.0 Hz, 1 H, H_{Ar}), 7.72 (d, J =8.0 Hz, 1 H, H_{Ar}), 7.93 (d, J = 2.4 Hz, 1 H, 8-H), 8.05 (d, J =8.4 Hz, 1 H, H_{Ar}), 8.13 (d, J = 2.4 Hz, 1 H, 6-H), 8.75 (d, J =2.6 Hz, 1 H, H_{Ar}) ppm. ¹³C NMR (100 MHz, 80 °C, [D₆]DMSO): $\delta = 43.1 \text{ (CH}_2\text{)}, 43.5 \text{ (CH}_2\text{)}, 60.1 \text{ (CH}_2\text{)}, 118.8 \text{ (CH)}, 121.4 \text{ (Cq)},$ 126.3 (CH), 126.51 (CH), 126.54 (2 CH), 126.58 (CH), 127.2 (2 CH), 127.8 (2 CH), 127.9 (Cq), 128.2 (CH), 135.0 (Cq), 135.5 (CH), 139.1 (Cq), 143.2 (Cq), 143.3 (Cq), 145.4 (CH), 158.2 (Cq), 158.7 (2Cq) ppm. IR (ATR Diamond): $\tilde{v} = 3242, 2924, 1645, 1565, 1452,$ 1345, 1234, 1123, 1046, 826 cm⁻¹. HRMS (EI-MS⁺): calcd. for $C_{25}H_{24}N_7O [M + 1]^+ 438.2042$; found 438.2044.

4-(Benzylamino)-2-[(2-hydroxyethyl)amino]-7-(6-quinolinylamino)pyrido[3,2-d]pyrimidine (27): Compound **27** was obtained after flash chromatography by using silica gel (EtOAc/MeOH/Et₃N, 94:5:1) as a yellow solid in 77% yield by using general procedure A and in 69% yield by using general procedure B. M.p. 203-204 °C. ¹H NMR (400 MHz, [D₆]DMSO): δ = 3.35–3.40 (m, 2 H, CH₂), 3.51 (br., 2 H, CH₂), 4.67 (d, J = 6.3 Hz, 2 H, CH₂Ph), 6.67 (br., 1 H, NH), 7.23 (t, J = 7.2 Hz, 1 H, H_{Ar}), 7.29–7.33 (m, 3 H, H_{Ph}), 7.38– 7.40 (m, 2 H, H_{Ph}), 7.45 (dd, J = 4.2, J = 8.3 Hz, 1 H, H_{Quin}), 7.62 (dd, J = 2.3, J = 9.0 Hz, 1 H, H_{Quin}), 7.70 (d, J = 2.2 Hz, 1 H, 8-H), 7.98 (d, J = 9.0 Hz, 1 H, H_{Quin}), 8.24 (d, J = 2.2 Hz, 1 H, 6-H), 8.27 (d, J = 8.3 Hz, 1 H, H_{Quin}), 8.31 (br., 1 H, NH), 8.72 (dd, J = 1.4, J = 4.2 Hz, 1 H, H_{Ouin}), 9.19 (br., 1 H, NH) ppm. ¹³C NMR (100 MHz, 80 °C, $[D_6]DMSO$): $\delta = 43.0$ (CH₂), 43.5 (CH₂), 60.3 (CH₂), 111.2 (CH), 111.8 (CH), 121.2 (CH), 121.9 (Cq), 123.6 (CH), 126.3 (CH), 127.1 (2 CH), 127.8 (2 CH), 128.7 (Cq), 129.9 (CH), 134.1 (CH), 135.5 (CH), 139.3 (Cq), 139.5 (Cq), 143.1 (Cq), 144.0 (Cq), 146.6 (Cq), 147.7 (CH), 158.8 (Cq), 159.1 (Cq) ppm. IR (ATR Diamond): v = 3427, 2915, 2172, 1614, 1565, 1503, 1382, 1243, 1026, 846 cm⁻¹. HRMS (EI-MS⁺): calcd. for C₂₅H₂₄N₇O [M + 1]⁺ 438.2042; found 438.2047.

X-ray Crystallography. Crystallographic details are available in the Supporting Information. CCDC-720326 (for 4), -720327 (for 8) and -720333 (for 17) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam. ac.uk/data_request/cif.

Supporting Information (see footnote on the first page of this article): Crystallographic details, characterization data and copies of ¹H and ¹³C NMR spectra for all new compounds.

Acknowledgments

This work was supported by grants from the Ligue Nationale contre le Cancer (Comités du Nord, du Loiret et du Grand Ouest) and the Cancéropôle Grand Ouest (strand "Valorisation des produits de la mer"). We thank the Hubert Curien Volubilis program for financial support.

- H. Abe, S. Kikuchi, K. Hayakawa, T. Iida, N. Nagahashi, K. Maeda, J. Sakamoto, N. Matsumoto, T. Miura, K. Matsumura, N. Seki, T. Inaba, H. Kawasaki, T. Yamaguchi, R. Kakefuda, T. Nanayama, H. Kurachi, Y. Hori, T. Yoshida, J. Kakegawa, Y. Watanabe, A. G. Gilmartin, M. C. Richter, K. G. Moss, S. G. Laquerre, ACS Med. Chem. Lett. 2011, 2, 320.
- [2] F. Reck, R. Alm, P. Brassil, J. Newman, B. DeJonge, C. J. Eyermann, G. Breault, J. Breen, J. Comita-Prevoir, M. Cronin, H. Davis, D. Ehmann, V. Galullo, B. Geng, T. Grebe, M. Morningstar, P. Walker, B. Hayter, S. Fisher, *J. Med. Chem.* 2011, 54, 7834.
- [3] S. E. Lazerwith, G. Bahador, E. Canales, E. Cheng, G. Chong, L. Clarke, M. O. Doerffler, E. E. J. Eisenberg, J. Hayes, B. Lu, Q. Liu, M. Matles, M. Mertzman, M. L. Mitchell, P. Morganelli, B. P. Murray, M. Robinson, R. G. Strickley, M. Tessler, N. Tirunagari, J. Wang, Y. Wang, J. R. Zhang, X. Zheng, W. Zhong, W. J. Watkins, ACS Med. Chem. Lett. 2011, 2, 715.
- [4] D. M. Goldstein, M. Soth, T. Gabriel, N. Dewdney, A. Kuglstatter, A. Arzeno, H. J. Chen, W. Bingenheimer, S. A. Dalrymple, J. Dunn, R. Farrell, S. Frauchiger, J. La Fargue, M. Ghate, B. Graves, R. J. Hill, F. Li, R. Litman, B. Loe, J. McIntosh, D. McWeeney, E. Papp, J. Park, H. F. Reese, R. T. Roberts, D. Rotstein, B. San Pablo, B. Sarma, M. Stahl, M. L. Sung, R. T. Suttman, E. B. Sjogren, Y. Tan, A. Trejo, M. Welch, P. Weller, B. R. Wong, H. Zecic, J. Med. Chem. 2011, 54, 2255.
- [5] J. J. Marugan, W. Zheng, O. Motabar, N. Southall, E. Goldin, W. Westbroek, B. K. Stubblefield, E. Sidransky, R. A. Aungst, W. A. Lea, A. Simeonov, W. Leister, C. P. Austin, *J. Med. Chem.* **2011**, *54*, 1033.

FULL PAPER

- [6] S. Zhu, G. Chandrashekar, L. Meng, K. Robinson, D. Chatterji, *Bioorg. Med. Chem.* 2012, 20, 927.
- [7] W. Y. Mo, Y. L. Liang, Y. C. Gu, L. W. Fu, H. W. He, Bioorg. Med. Chem. Lett. 2011, 21, 5975.
- [8] S. Gobec, N. Haider, W. Holzer, T. Ishakawa, S. Ito, D. Kikelj, M. Matsumoto, F. Ramzaeva, H. Rosemeyer, M. Sako, N. Sato, R. Sato, F. Seela, U. Urleb, Y. Yamamoto, M. Yoshifugi, *Sci. Synthesis* 2004, *16*, 1155.
- [9] a) Review: S. Schröter, C. Stock, T. Bach, *Tetrahedron* 2005, 61, 2245; b) J. L. Gustafson, D. Lim, K. T. Barrett, S. J. Miller, Angew. Chem. Int. Ed. 2011, 50, 5125; c) S. Gross, S. Heuser, C. Ammer, G. Heckmann, T. Bach, Synthesis 2011, 99; d) C. Delvare, P. Koza, R. Morgentin, Synthesis 2011, 2431; e) I. N. Houpis, R. Liu, Y. Wu, Y. Yuan, Y. Wang, U. Nettekoven, J. Org. Chem. 2010, 75, 6965; f) I. N. Houpis, C. Huang, U. Nettekoven, J. G. Chen, R. Liu, M. Canters, Org. Lett. 2008, 10, 5601; g) A. V. Lorimer, P. D. O'Connor, M. A. Brimble, Synthesis 2008, 2764; h) S. Ishikawa, K. Manabe, Org. Lett. 2007, 9, 5593; i) S. Liu, J. P. C. Pestano, C. Wolf, Synthesis 2007, 3519; j) Z. H. Peng, M. Journet, G. Humphrey, Org. Lett. 2006, 8, 395; k) P. Wipf, K. M. George, Synlett 2010, 644.
- [10] a) A. Tikad, S. Routier, M. Akssira, J. M. Léger, C. Jarry, G. Guillaumet, *Synlett* 2006, 1938; b) A. Tikad, S. Routier, M. Akssira, J. M. Léger, C. Jarry, G. Guillaumet, *Org. Lett.* 2007, 9, 4673; c) A. Tikad, S. Routier, M. Akssira, G. Guillaumet, *Org. Biomol. Chem.* 2009, 7, 5113; d) A. Tikad, S. Routier, M. Akssira, J. M. Léger, C. Jarry, G. Guillaumet, *Synthesis* 2009, 2379.
- [11] a) S. Routier, G. Guillaumet, A. Tikad, O. Dehbi, WO2011135259, 2011 (*Chem. Abstr.* 2011, 155, 637809); b) L. Pellegatti, E. Vedrenne, J. M. Leger, C. Jarry, S. Routier, J. *Comb. Chem.* 2010, 12, 604; c) S. Routier, P. Peixoto, J. Y. Mérour, G. Coudert, N. Dias, C. Bailly, A. Pierré, S. Léonce, D. H. Caignard, J. Med. Chem. 2005, 48, 1401; d) F. Pin, F. Buron, F. Saab, L. Colliandre, S. Bourg, F. Schoentgen, R. Le Guevel, C. Guillouzo, S. Routier, Med. Chem. Commun. 2011, 2, 899.

- [12] Articles and references included in a) P. Kassis, J. Brzeszcz, V. Bénéteau, O. Lozach, L. Meijer, R. Le Guével, C. Guillouzo, K. Lewiński, S. Bourg, L. Colliandre, S. Routier, J. Y. Mérour, *Eur. J. Med. Chem.* 2011, 46, 5416; b) R. Jorda, L. Havlícek, I. W. McNae, M. D. Walkinshaw, J. Voller, A. Sturc, J. Navratilova, M. Kuzma, M. Mistrík, J. Bartek, M. Strnad, V. Krystof, *J. Med. Chem.* 2011, 54, 2980.
- [13] G. Castanedo, B. Chan, M. C. Lucas, B. Safina, D. P. Sutherlin, Z. K. Sweeney, WO2011101429, **2011** (*Chem. Abstr.* **2011**, *155*, 1072468).
- [14] M. Yamada, Y. Nakamura, T. Hasegawa, A. Itoh, S. Kuroda, I. Shimao, Bull. Chem. Soc. Jpn. 1992, 65, 2007.
- [15] T. Kato, N. Katagiri, A. Wagai, Chem. Pharm. Bull. 1981, 29, 1069.
- [16] M. Yamato, K. Sato, K. Hashigaki, M. Ninomiya, *Heterocy-cles* 1982, 19, 1263.
- [17] P. V. Fish, C. G. Barber, D. G. Brown, R. Butt, M. G. Collis, R. P. Dickinson, B. T. Henry, V. A. Horne, J. P. Huggins, E. King, M. O'Gara, D. McCleverty, F. C. McIntosh, R. Phillips, R. Webster, J. Med. Chem. 2007, 50, 2341.
- [18] G. Bouscary-Desforges, A. Bombrun, J. K. Augustine, G. Bernardinelli, A. Quattropani, J. Org. Chem. 2012, 77, 243.
- [19] a) J. Yin, S. L. Buchwald, Org. Lett. 2000, 2, 1101; b) D. Audisio, S. Messaoudi, J. F. Peyrat, J. D. Brion, M. Alami, Tetrahedron Lett. 2007, 48, 6928; c) A. Begouin, S. Hesse, M. J. R. P. Queiroz, G. Kirsch, Eur. J. Org. Chem. 2007, 1678; d) G. B. W. L. Ligthart, H. Ohkawa, R. P. Sijbesma, E. W. Meijer, J. Org. Chem. 2006, 71, 375.
- [20] a) O. I. Patriciu, A. L. Fînaru, S. Massip, J. M. Leger, C. Jarry, G. Guillaumet, Org. Lett. 2009, 11, 5502; b) .I. Patriciu, A. L. Fînaru, S. Massip, J. M. Leger, C. Jarry, G. Guillaumet, Eur. J. Org. Chem. 2009, 3753; c) E. Garnier, J. Audoux, E. Pasquinet, F. Suzenet, D. Poullain, B. Lebret, G. Guillaumet, J. Org. Chem. 2004, 69, 7809.

Received: April 20, 2012 Published Online: ■

Regiocontroled Reactions of 2,4,7-Trichloropyrido[3,2-*d*]pyrimidine

_ Eurjoean Journal of Organic Chemistry

Pyridopyrimidines

An efficient and original synthesis of 2,4,7trisubstituted pyrido[3,2-*d*]pyrimidines is reported. Arylations and S_NAr reactions occurred regioselectively at the C4 and C2 positions of 2,4,7-trichloropyrido[3,2-*d*]pyrimidine. Reactions at the C7 position were achieved under microwave irradiation in a few minutes. A one-step synthesis of a 2,4,7-tris(aminated) derivative was achieved as an efficient alternative.

A. Tikad, M	[. Akssira,	S.	Massip,	
JM. Léger,	C. Jarry,	G.	Guillaumet,*	
S. Routier*			•••••	1–11

Regiocontroled S_NAr and Palladium Cross-Coupling Reactions of 2,4,7-Trichloropyrido[3,2-*d*]pyrimidine

Keywords: Arylation / Aromatic substitution / Cross-coupling / Amination / Heterocycles