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Direct functionalization of C�H bonds is an appealing
strategy in organic synthesis[1] but its practical application
has so far been difficult to realize. The selective functional-
ization of primary C�H bonds of alkanes that also contain
secondary and/or tertiary C�H bonds is a great challenge, as
C�H bond energy follows an order primary> secondary>
tertiary.[1c,d] In seminal works by Bergman,[1b] Jones,[1c] and
their respective co-workers, stoichiometric reactions of alka-
nes with [Cp*(Me3P)M] (Cp* = C5Me5; M = Rh, Ir) resulted
in the formation of C�M bonds by selective activation of
primary C�H bonds. Subsequent work by Hartwig and co-
workers[1g,i, 2] demonstrated C�B bond formation by stoichio-
metric and catalytic functionalization of primary C�H bonds
mediated by tungsten, rhodium, or ruthenium complexes. The
high selectivity for primary C�H bond functionalization in
these C�M or C�B bond-formation reactions (Scheme S1 in
the Supporting Information) is considered to result from
kinetic factors or steric interaction between the metal
complexes and alkanes.[1i, 3]

A well-established process in C�C bond formation by
direct C�H bond functionalization is the metal-catalyzed
intra- and intermolecular carbenoid insertion into C�H
bonds, with diazo compounds as the carbene source.[1o, 4]

These catalytic C�C bond-formation reactions generally

feature lower selectivity for primary C�H bonds than for
secondary and tertiary C�H bonds. For example, a selectivity
order of primary< secondary< tertiary C�H bonds has been
observed for the extensively investigated carbene insertion
catalyzed by rhodium complexes,[4, 5] possibly because of the
electron density order of primary< secondary< tertiary C�H
bonds, which renders primary C�H bonds the least suscep-
tible to attack by electrophilic rhodium–carbene intermedi-
ates.[5] By manipulating the steric or electronic properties of
the metal catalysts, a selectivity for primary C�H bonds of
alkanes comparable to that for secondary or tertiary C�H
bonds was observed,[6] with the highest primary/secondary
and primary/tertiary ratio per C�H bond being 1.17:1.0[6b] and
1.0:0.9,[6c] respectively.

Herein we report a highly selective primary C�H bond
functionalization by metal-catalyzed carbenoid insertion into
the C�H bonds of alkanes (Scheme 1), which features a

primary/secondary selectivity (that is, the primary/secondary
ratio per C�H bond) of up to 11.4:1. We have also
accomplished highly enantioselective functionalization of
secondary C�H bonds with ee values of up to 93 % and
product turnovers up to 6100 through metal-mediated carbe-
noid C�H bond insertion reactions.

Our studies in this work were inspired by previous work
from the research groups of Callot[6a,b] and Suslick.[7] In the
1980s, Callot and co-workers reported that the primary C�H
bond selectivity for the reaction of linear alkanes with ethyl
diazoacetate (N2CHCO2Et, EDA) catalyzed by [Rh(por)I]
(H2(por) = meso-tetraarylporphyrin) increases with the size
of the ortho groups H, Me, or Cl of the meso-aryl rings. We
envisioned that replacing these ortho groups with bulkier
phenyl groups, coupled with changing the a hydrogen atom of
EDA to a phenyl group, would enhance the selectivity for
primary C�H bonds. Therefore, our attention was directed to
developing an intermolecular C�H bond insertion reaction of
alkanes with N2C(Ph)CO2R

[4b,c] catalyzed by the rhodium
complex of meso-tetrakis(2,4,6-triphenylphenyl)porphyrin

Scheme 1. Selective functionalization of primary (18) over secondary
(28) C�H bonds of alkanes in the metal-mediated C�C bond-formation
reactions reported in this work.
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[H2(ttppp)]. The H2(ttppp) ligand, a bis-pocket porphyrin
first synthesized in 1983 by Suslick and Fox,[7a] was previously
shown to dramatically enhance the selectivity in the hydrox-
ylation of alkanes, with a primary/secondary selectivity of up
to approximately 0.82:1 obtained for [Mn(ttppp)(OAc)].[7b]

To insert rhodium into H2(ttppp), we employed a method
analogous to that for the preparation of [Rh(ttp)(Me)][8a] and
[Rh(tmp)(Me)].[8b] Reaction of [Rh(CO)2Cl]2 with H2(ttppp)
in toluene, followed by treatment with NaBH4, MeI, and
MeOH, afforded [Rh(ttppp)(Me)(MeOH)] (I). Complex I

was characterized by 1H NMR and UV/Vis spectroscopy as
well as mass spectrometry. Its structure has been determined
by X-ray crystallography[9] and is shown in Figure 1 (see also

Table S1 in the Supporting Information). This complex has
Rh–C(Me) and Rh–O(MeOH) distances of 2.028(15) � and
2.507(16) �, respectively; the former is similar to that of
2.027(4) � in [Rh(F28-tpp)(Me)] (H2(F28-tpp) =

2,3,7,8,12,13,17,18-octafluoro-meso-tetrakis(pentafluorophe-
nyl)porphyrin).[10]

Access to the rhodium atom in I is difficult because of
steric hindrance (Figure 1 and Figure S1 in the Supporting
Information). We investigated whether this rhodium bis-
pocket porphyrin complex could react with the sterically
encumbered N2C(Ph)CO2R to form the corresponding

metal–carbene intermediates for subsequent reactions with
alkanes, in a similar fashion to metal catalysts for carbenoid
transfer reactions.[4a,b] We found that I is an active catalyst for
the reaction of N2C(Ph)CO2Me with n-hexane (1), n-octane
(2), and n-decane (3). These reactions afforded the C�H bond
insertion products 4–6 with remarkably high selectivity for the
primary C�H bonds (Scheme 2).

Addition of N2C(Ph)CO2Me (0.1 mmol) in n-hexane
(2 mL) to a mixture of I (2.5 mol%) and n-hexane (2 mL)
at 80 8C over 20 h, followed by stirring the mixture at 80 8C for
4 h, gave 4a–c in an overall yield of 51% (based on
N2C(Ph)CO2Me), with a primary/secondary selectivity of
9.8:1. Changing the catalyst to [Rh(ttp)(Me)] or [Rh-
(tmp)(Me)] (both 1.5 mol %; H2(ttp) = meso-tetrakis(p-tol-
yl)porphyrin, H2(tmp) = meso-tetramesitylporphyin) which
contain a sterically less demanding porphyrin ligand lowered
the primary/secondary selectivity of 4a–c to 0.9:1 or 3.4:1,
respectively (Scheme S2 in the Supporting Information). For

Figure 1. X-ray crystal structure of I with omission of hydrogen atoms.
Thermal ellipsoid probability: 30 %.

Scheme 2. Intermolecular C�H bond insertion of n-alkanes 1–3 with
N2C(Ph)CO2Me catalyzed by I. Reaction conditions: N2C(Ph)CO2Me
(0.1 mmol), alkane (4 mL), I (2.5 mol%), 80 8C under N2, 24 h.
Conversion of N2C(Ph)CO2Me: 100%. The yields (based on
N2C(Ph)CO2Me) are for isolated products. The primary/secondary
ratio was normalized for the relative number of hydrogen atoms.
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substrates n-octane and n-decane, the primary/secondary
selectivities of catalyst I reached 10.5:1 (5a–d) and 11.4:1
(6a–e).

When EDA was used instead of N2C(Ph)CO2Me, the I-
catalyzed C�H bond insertion products for substrates 1 and 3
were obtained in up to 63 % yield (reaction time: 24 h), with a
primary/secondary selectivity of (2.7–3.2):1 (Table S2 in the
Supporting Information).

Branched alkanes 2,2-methylbutane (7) and 2,3-methyl-
butane (8) also underwent C�H bond insertion with
N2C(Ph)CO2Me in the presence of catalyst I, affording 9a,b
or 10a,b in 48–54% yields (Scheme 3). The primary/secon-

dary selectivity for 7 is 6.7:1. Notably, although 7 contains two
types of primary C�H bonds—one bonded to the secondary
carbon atom and the other bonded to the quaternary carbon
atom, only the former underwent C�H bond insertion with
N2C(Ph)CO2Me. This demonstrates an excellent regioselec-
tivity in the I-catalyzed primary C�H bond insertion.

N2C(Ph)CO2Me was reacted with toluene (11) in the
presence of I for 24 h to give the primary C�H bond insertion
product 12 in 62% yield (Scheme 3). No cyclopropanation
product was observed in the 1H NMR spectrum of the
reaction mixture. In contrast, the previously reported reaction
of toluene with N2C(p-BrC6H5)CO2Me catalyzed by [Rh2((S)-
dosp)4] ((S)-dosp = N-[(4-dodecylphenyl)sulfonyl]-(S)-proli-
nate) mainly gave cyclopropanation products with the
primary C�H bond insertion product formed in 14% yield.[11]

The high selectivity in the I-catalyzed C�H bond insertion
reactions can be rationalized by the steric interaction between
the substrates and the putative rhodium–carbene complexes
of the bis-pocket porphyrin. Previously, Kodadek and co-
workers provided strong evidence for a rhodium–porphyrin–

carbene complex intermediate in the cyclopropanation of
alkenes with EDA catalyzed by rhodium porphyrins,[12]

although such a metal–carbene species has not been observed.
We propose that the reaction of EDA or N2C(Ph)CO2Me with
I generates the carbene complexes [Rh(ttppp)-
(CHCO2Et)(X)] or [Rh(ttppp)(C(Ph)CO2Me)(X)] (X could
be, for example, Me or solvent) in a fashion analogous to the
reactions catalyzed by other rhodium complexes.[13] We have
performed density functional theory (DFT) calculations on
the hypothetical compounds [Rh(ttppp)(C(Ph)CO2Me)(Cl)]
and [Rh(por0)(C(Ph)CO2Me)(Cl)] (where por0 is the unsub-
stituted porphyrin ring), which showed that these complexes

are, at least in theory, stable species (see
the Supporting Information). Figure 2
shows the optimized structure of [Rh-
(ttppp)(C(Ph)CO2Me)(Cl)]; the calcu-
lated Rh–C distance of 1.982 � is slightly
longer than that in the optimized struc-
ture of [Rh(por0)(C(Ph)CO2Me)(Cl)]
(1.969 �, Figure S3 in the Supporting
Information). Based on the optimized
structure in Figure 2, it is evident that
the axial phenyl groups of ttppp would
impose a significantly larger steric hin-
drance for secondary than for primary
C�H bonds that attack the carbene
group in a concerted manner,[13] which
accounts for the high primary/secondary
selectivity shown in Scheme 2 and
Scheme 3.

The reaction of [Rh(oep)(Me)] (H2-
(oep) = 2,3,7,8,12,13,17,18-octaethylpor-
phyrin) with EDA in the presence of
acetic acid has been shown to give an N-
substituted rhodium–porphyrin complex
[Rh(N-CH2CO2Et-oep)(Me)]ClO4.

[14] In
this work, we isolated and structurally
characterized [Rh(N-CH2CO2Et-
ttp)(Me)]ClO4 from the reaction of [Rh-

(ttp)(Me)] with EDA (Figure 3 and Figure S2 in the Support-
ing Information).[9] However, treatment of this complex with
n-hexane or cyclohexane (13) at reflux afforded no C�H bond
insertion product; this observation suggests that the N-

Scheme 3. Intermolecular C�H bond insertion of 7, 8, and 11 with N2C(Ph)CO2Me catalyzed
by I. The reaction conditions are the same as those indicated in the legend of Scheme 2.
Conversion of N2C(Ph)CO2Me: 100%. The primary/secondary or primary/tertiary ratio was
normalized for the relative number of hydrogen atoms.

Figure 2. Optimized structure (B3LYP) of [Rh(ttppp)(C(Ph)
CO2Me)(Cl)]. The inset shows a part of the structure with axial phenyl
groups of ttppp in spacefill representation. A spacefill representation
of alkanes with either primary and secondary C�H bonds approaching
the carbene group is shown in the lower left corner.
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substituted rhodium–porphyrin complex is not the catalyti-
cally active intermediate. Similarly, rhodium–corrole ana-
logues have been shown not to be true intermediates in the
related catalytic cyclopropanation reaction of styrenes.[15]

Davies et al. demonstrated that [Rh2((S)-dosp)4] exhibits
high enantio- and chemoselectivity in catalyzing intermolec-
ular C�H bond insertion reactions of alkanes with aryl
diazoacetates N2C(Ar)CO2R.[4b] These [Rh2((S)-dosp)4]-cata-
lyzed reactions exclusively occur at secondary or tertiary C�H
bonds, leaving the primary C�H bonds unfunctionalized.[16]

Therefore, the quest for an enantioselective carbenoid trans-
fer reaction that is highly selective for primary C�H bonds of
alkanes remains a challenge.

In view of the high primary/secondary selectivity obtained
with catalyst I, we examined the enantioselective intermo-
lecular C�H bond insertion with N2C(Ph)CO2Me catalyzed
by [Rh(D4-por*)(Me)(MeOH)] (II, H2(D4-por*) = meso-tet-

rakis-{(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dime-
thano-anthracen-9-yl}porphyrin), which contains a sterically
encumbered chiral porphyrin ligand first synthesized by
Halterman and Tan.[17] The preparation of II is similar to
that of I. Reaction of N2C(Ph)CO2Me with n-hexane, 2,2-
dimethylbutane, cyclohexane, cyclopentane (14), adamantane
(15), cyclohexene (16), or ethylbenzene (17) in the presence
of II (0.1–1.5 mol%) at 60 8C afforded C�H bond insertion
products 4, 9, and 18–22 in up to 80% yield and up to 93% ee

(Table 1). The best enantiocontrol (92 and 93 % ee) was
achieved for cyclohexane and cyclopentane (Table 1, entries 3
and 4).

Two features of the enantioselective C�H bond insertion
reactions catalyzed by II were noted: 1) For 2,2-dimethylbu-
tane, an unreactive substrate for catalyst [Rh2((S)-dosp)4],[16b]

the C�H bond insertion products 9 a,b were obtained in 55%
yield by employing II as catalyst (Table 1, entry 2) and 2) in
contrast to the selective secondary or tertiary C�H bond
functionalization catalyzed by [Rh2((S)-dosp)4],[16] the II-
catalyzed reactions of n-hexane and 2,2-dimethylbutane with
N2C(Ph)CO2Me preferentially afforded primary C�H bond
insertion products 4a and 9a, respectively, albeit with
moderate enantioselectivity (65–68% ee). For both sub-
strates, the selectivity for primary C�H bonds is about four
times that for secondary bonds (Table 1, entries 1 and 2). To
the best of our knowledge, these are the first metal-catalyzed
enantioselective carbenoid insertion reactions that feature
significantly higher selectivity for primary than for secondary
C�H bonds.

Catalysts I and II are recyclable and robust. For the
reaction of n-decane with EDA using catalyst I (0.1 mol%)
and the reaction of cyclohexane with N2C(Ph)CO2Me using

Figure 3. X-ray crystal structure of [Rh(N-CH2CO2Et-ttp)(Me)]ClO4 with
omission of the counterion. Thermal ellipsoid probability: 30%.

Table 1: Enantioselective intermolecular C�H bond insertion catalyzed
by II.[a]

Entry Substrate Product Yield[b]

[%]
ee[c,d]

[%]
Primary/
secondary[e]

1 4a + 4b + 4c 66 68 (4a) 3.5:1

2 9a + 9b 55 65 (9a) 3.8:1

3 80 92

4 64 93

5 78 88

6 43[f ] 71[g]

7 45 85

16 77

[a] Reaction conditions: N2C(Ph)CO2Me (0.1 mmol); 1, 7, 13, or 14
(4 mL); 15 (2 equiv), 16 or 17 (5 equiv) in 1,2-dichloroethane (4 mL); II
(0.1 mol% for 13–17, 1.5 mol% for 1 and 7); 60 8C under N2; 4 h (13–15)
or 24 h (others). Conversion of N2C(Ph)CO2Me: 100%. [b] Determined
by GC–MS after chromatography (based on N2C(Ph)CO2Me). [c] Deter-
mined by HPLC with chiral-OD column. [d] Absolute configuration not
determined. [e] Normalized for the relative number of hydrogen atoms.
[f ] The ratio of two diastereomers is 60:40. The reaction was performed
in the presence of 4 � molecular sieves. The cyclopropanation product
was also formed in 14 % yield. [g] Determined after catalytic hydro-
genation of 21 (H2/Pd on C).
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catalyst II (0.1 mol%), the catalysts could be reused at least
five times without significantly lowering the primary/secon-
dary selectivity or enantioselectivity (see Table S3 in the
Supporting Information), and the total number of product
turnovers reached 6477 after recycling the catalyst five times.
When 0.01 mol% of II was used, the reaction between
cyclohexane and N2C(Ph)CO2Me at 60 8C for 8 h gave 18 in
61% yield and 90 % ee, corresponding to a product turnover
number of 6100.

Reactions were also carried out on the gram scale.
Treatment of N2C(Ph)CO2Me (3 g) and I (2 mol%) with
toluene (150 mL) at 80 8C for 25 h afforded 12 (2.26 g, 56%
yield), together with the dimers (43 % yield) arising from
coupling of N2C(Ph)CO2Me. The reaction of N2C(Ph)CO2Me
(3 g) and II (0.1 mol%) with cyclohexane (150 mL) at 60 8C
for 10 h gave 18 (2.88 g, 73 % yield) in 91% ee.

To circumvent the difficulty of the bis-pocket porphyrin
synthesis, we directed our attention to porphyrin ligands 23

and prepared 1,3,5,7-tetramethyl-2,4,6,8-tetraterphenylpor-
phyrin (H2ttmp), reported by Chang and co-workers,[18] in
35% yield. Its rhodium complex, [Rh(tmttp)(Me)(MeOH)]
(III), was subsequently prepared, the X-ray crystal structure
of which is shown in Figure S4 in the Supporting Informa-
tion.[9] The reactions of N2C(Ph)CO2Me (0.1 mmol) with n-
hexane, n-octane, and n-decane (4 mL) catalyzed by III (2.5
mol%) at 80 8C for 24 h gave 4–6 in 50–55 % yields, with a
primary/secondary selectivity of 6.5:1 (4a–c), 6.7:1 (5a–d),
and 7.2:1 (6a–e). Further studies are underway to enhance the
primary/secondary selectivity by tuning the Ar groups in 23.

In conclusion, by employing N2C(Ph)CO2Me and robust
sterically encumbered rhodium–porphyrin catalysts, we have
demonstrated highly selective primary C�H bond function-
alization and enantioselective secondary C�H bond function-
alization in C�C bond formations by metal-catalyzed carbe-
noid transfer reactions.
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