Three-component condensation of trifluoromethyl-substituted cyanovinylphosphonates, arylamines, and ketones and cytotoxic activity of products thus obtained

A. F. Shidlovskii,^{a*} A. S. Peregudov,^a B. B. Averkiev,^a Yu. N. Bulychev,^b M. Yu. Antipin,^a and N. D. Chkanikov^a

 ^aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russian Federation. Fax: +7(499) 135 5085. E-mail: nchkan@ineos.ac.ru
 ^bResearch Institute for Tumor Experimental Diagnostics and Therapy, N. N. Blokhin Russian Cancer Scientific Center, Russian Academy of Medical Sciences, 24 Kashirskoe shosse, 115478 Moscow, Russian Federation. E-mail: ybulychev@hotmail.com

A three-component condensation of trifluoromethyl-substituted cyanovinylphosphonates, arylamines, and ketones (acetone, cyclopentanone, or cyclohexanone) has been studied. A possibility of using trifluoromethyl-substituted cyanovinylphosphonates as precursors of 1,4-dihydropyridines, 4,5,6,7-tetrahydro-1*H*-cyclopenta[*b*]pyridines, 1,4,5,6,7,8-hexahydroquinolines, and 1,4,4a,5,6,7-hexahydroquinolines, modified with both trifluoromethyl and diethoxyphosphoryl groups, has been demonstrated. Using X-ray diffraction analysis, it was found that in some cases of the three-component condensation under study a mixture of 1-aryl-2amino- and 2-arylamino-substituted products was formed. Migration of the multiple bond onto the ring fused with the dihydropyridine ring has been inferred from the NMR spectra and X-ray diffraction data. Cytotoxic activity of some compounds synthesized has been studied in the US National Cancer Institute.

Key words: trifluoromethyl-substituted cyanovinylphosphonates, arylamines, acetone, cyclopentanone, cyclohexanone, 1,4-dihydropyridines, 4,5,6,7-tetrahydro-1*H*-cyclopenta[*b*]pyridines, 1,4,5,6,7,8-hexahydroquinolines, 1,4,4a,5,6,7-hexahydroquinolines, three-component condensation, migration of multiple bond, X-ray diffraction analysis, cytotoxic activity.

1,1-Dicyano-2-(trifluoromethyl)ethylenes and 3,3-dicyano-2-(trifluoromethyl)acrylic esters are convenient precursors of various trifluoromethyl-substituted nitrogencontaining heterocycles,¹⁻⁸ in particular, 1,4-dihydropyridines and 1,4-dihydropyrimidines possessing high insecticide activity.^{1,6,8} Earlier, we have shown a possibility of using 2-chloro-1-cyano-1-diethoxyphosphoryl-2-(trifluoromethyl)ethylene (1) and its chlorodifluoromethyl analog 2 for the synthesis of fluoro-containing heterocyclic phosphonates,⁹ developed a method for the synthesis¹⁰ and studied reactions of vinvlphosphonates 3-6 with some nitrogen-¹¹ and oxygen-containing¹⁰ binucleophiles. We also studied cytotoxic activity in vitro of some fluorocontaining heterocyclic phosphonates synthesized against the standard panel consisting of 60 human tumor cell lines.¹¹ Thus, fluoro-containing vinylphosphonates^{12,13} are important class of reactants, which open a possibility for the study of biological activity of fluoro-containing heterocycles^{8,14,15} and for the search of new biologically active phosphonates. $^{16-22}$ The present work is devoted to the study of three-component condensation of trifluoromethyl-substituted cyanovinylphosphonates 3-6 with arylamines and ketones and cytotoxic activity of the condensation products.

 $X = F(1), Cl(2); Z = CN(3), CO_2Me(4); R = CF_3(5), CO_2Et(6)$

Results and Discussion

Fluorine-containing dicyanoethylenes react at room temperature with enamines, obtained both *in situ* and presynthesized from ketones and arylamines, leading to heterocyclic systems containing 1,4-dihydropyridine ring.^{6,8} Trifluoromethyl-substituted cyanovinylphosphonates **3**–**6** also react in this way, however, a number of specific features is observed in this case: the formation of stable intermediate products of C-alkylation of enamines, the migra-

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 143-159, January, 2010.

1066-5285/10/5901-0144 © 2010 Springer Science+Business Media, Inc.

tion of the multiple bonds onto the ring fused with the dihydropyridine cycle, and the formation of side 2-ary-lamino-substituted 1,4-dihydropyridines.

Alkene 3 reacts with enamines the most readily and selectively, furnishing compounds 7-9 in from satisfactory to good yields (Scheme 1, Tables 1 and 2).

Scheme 1

 $\begin{aligned} \mathsf{Ar} = 2,6-\mathsf{Me}_2\mathsf{C}_6\mathsf{H}_3 \ (\textbf{7a}, \textbf{8a}), \ 4-\mathsf{MeOC}_6\mathsf{H}_4 \ (\textbf{7b}, \textbf{8b}), \ 4-\mathsf{ClC}_6\mathsf{H}_4 \ (\textbf{7c}, \textbf{8c}, \textbf{9a}), \ 2-\mathsf{ClC}_6\mathsf{H}_4 \ (\textbf{7d}, \textbf{8d}), \ 2,5-\mathsf{Cl}_2\mathsf{C}_6\mathsf{H}_3 \ (\textbf{7e}, \textbf{8e}), \ 3-\mathsf{CF}_3\mathsf{C}_6\mathsf{H}_4 \ (\textbf{7f}, \textbf{8f}), \ 4-\mathsf{CF}_3\mathsf{C}_6\mathsf{H}_4 \ (\textbf{7g}, \textbf{9f}), \ 3,4-\mathsf{Me}_2\mathsf{C}_6\mathsf{H}_3 \ (\textbf{9b}), \ 3-\mathsf{ClC}_6\mathsf{H}_4 \ (\textbf{9c}), \ 4-\mathsf{PhOC}_6\mathsf{H}_4 \ (\textbf{9d}), \ 2,6-\mathsf{Cl}_2\mathsf{C}_6\mathsf{H}_3 \ (\textbf{9e}), \ 2,5-\mathsf{(MeO)}_2\mathsf{C}_6\mathsf{H}_3 \ (\textbf{9g}) \end{aligned}$

Com- pound	Ar	Yield (%)	M.p./°C				Molecular formula			
				С	Н	Ν	Р	F	Cl	
7a	2,6-Me ₂ C ₆ H ₃	67	152—154*	<u>53.91</u> 54.18	<u>5.71</u> 5.68	<u>9.43</u> 9.48	_	_	_	$C_{20}H_{25}F_3N_3O_3P$
7b	4-MeOC ₆ H ₄	74	139—141*	<u>51.49</u> 51.24	<u>5.24</u> 5.21	<u>9.36</u> 9.40	<u>6.83</u> 6.91	<u>12.54</u> 12.80	_	$C_{19}H_{23}F_3N_3O_4P$
7c	$4-ClC_6H_4$	81	143—145*	$\frac{47.74}{48.07}$	<u>4.55</u> 4.48	<u>9.27</u> 9.34	<u>6.80</u> 6.89	<u>12.42</u> 12.67	<u>8.30</u> 7.88	$C_{18}H_{20}ClF_{3}N_{3}O_{3}P$
7d	$2-ClC_6H_4$	72.5	182—184*	$\frac{48.00}{48.07}$	<u>4.52</u> 4.48	<u>9.30</u> 9.34	—	—	—	$C_{18}H_{20}ClF_{3}N_{3}O_{3}P$
7e	2,5-Cl ₂ C ₆ H ₃	67	190—191*	<u>44.73</u> 44.65	<u>3.93</u> 3.95	$\frac{8.70}{8.68}$	_	_	_	$C_{18}H_{19}Cl_2F_3N_3O_3P$
7f	$3-CF_3C_6H_4$	54	126-128	<u>47.10</u> 47.21	<u>4.15</u> 4.17	<u>8.72</u> 8.69	<u>6.43</u> 6.41	<u>23.50</u> 23.58	_	$C_{19}H_{20}F_6N_3O_3P$
7g	$4-CF_3C_6H_4$	76	114—116	<u>47.27</u> 47.21	<u>4.17</u> 4.17	<u>8.66</u> 8.69	_	_	_	$C_{19}H_{20}F_6N_3O_3P$
8a	$2,6-\mathrm{Me}_{2}\mathrm{C}_{6}\mathrm{H}_{3}$	56	128-130*	<u>56.53</u> 56.29	<u>5.81</u> 5.80	<u>8.90</u> 8.95	_	_	_	$C_{22}H_{27}F_3N_3O_3P$
8b	4-MeOC ₆ H ₄	62	111-113*	<u>53.17</u> 53.51	<u>5.40</u> 5.35	<u>8.91</u> 8.91	—	—	—	$C_{21}H_{25}F_3N_3O_4P$
8c	$4-ClC_6H_4$	39.5	118-120*	<u>50.13</u> 50.48	<u>4.69</u> 4.66	<u>8.80</u> 8.83	<u>6.55</u> 6.51	<u>11.73</u> 11.98	<u>7.53</u> 7.45	$C_{20}H_{22}ClF_{3}N_{3}O_{3}P$
8d	$2-ClC_6H_4$	44	147—150*	<u>50.78</u> 50.48	<u>4.65</u> 4.66	<u>8.85</u> 8.83	_	_	_	$C_{20}H_{22}ClF_{3}N_{3}O_{3}P$
8e	2,5-Cl ₂ C ₆ H ₃	68	157—160*	<u>47.30</u> 47.08	<u>4.10</u> 4.15	<u>8.21</u> 8.23	_	_	_	$C_{20}H_{21}Cl_2F_3N_3O_3P$

Table 1. Physico-chemical characteristics of compounds 7–9

Com- pound	Ar	Yield (%)	M.p./°C				Molecular formula			
				С	Н	Ν	Р	F	Cl	
8f	$3-CF_3C_6H_4$	75	86—88	<u>49.50</u> 49.52	<u>4.33</u> 4.35	<u>8.25</u> 8.25	<u>6.13</u> 6.08	<u>22.22</u> 22.38	_	$C_{21}H_{22}F_6N_3O_3P$
9a	$4-ClC_6H_4$	47	132—134	<u>51.81</u> 51.49	<u>4.90</u> 4.94	<u>8.58</u> 8.58	<u>6.30</u> 6.32	<u>11.60</u> 11.63	<u>7.29</u> 7.24	$C_{21}H_{24}ClF_3N_3O_3P$
9b	3,4-Me ₂ C ₆ H ₃	19	106—109*	<u>57.01</u> 57.14	<u>6.06</u> 6.05	<u>8.71</u> 8.69	_	_	_	$C_{23}H_{29}F_3N_3O_3P$
9c	3-ClC ₆ H ₄	52	154—156*	<u>51.34</u> 51.49	<u>4.92</u> 4.94	<u>8.62</u> 8.58	_	_	_	$C_{21}H_{24}ClF_3N_3O_3P$
9d	$4-PhOC_6H_4$	47	118—121*	<u>59.55</u> 59.23	<u>5.33</u> 5.34	<u>7.68</u> 7.67	_	_	_	$C_{27}H_{29}F_3N_3O_4P$
9e	2,6-Cl ₂ C ₆ H ₃	35.5	145—156*	<u>48.00</u> 48.11	<u>4.38</u> 4.42	<u>8.00</u> 8.01	_	_	_	$C_{21}H_{23}Cl_2F_3N_3O_3P$
9f	$4-CF_3C_6H_4$	54	97—98	<u>50.50</u> 50.48	<u>4.62</u> 4.62	<u>8.00</u> 8.03	<u>5.96</u> 5.92	<u>21.83</u> 21.78	_	$C_{22}H_{24}F_6N_3O_3P$
9g	2,5-(MeO) ₂ C ₆ H ₃	36.5	116-128*	<u>53.04</u> 53.59	<u>5.69</u> 5.67	<u>8.17</u> 8.15	_	_	_	$C_{23}H_{29}F_3N_3O_5P$

Table 1 (continued)

* Melts with decomposition.

Table 2.	¹ H, ¹⁹ F,	and ³¹ P	NMR	spectra of	compounds	7-9	(DMSO	-d ₆ ,	δ, J	/Hz)
----------	----------------------------------	---------------------	-----	------------	-----------	-----	-------	-------------------	------	-----	---

Com- pound	¹ H NMR	¹⁹ F NMR (3 F, CF ₃)	³¹ P NMR (1 P, P(O)(OEt) ₂)
7a	1.29 (m, 6 H, OCH ₂ <u>Me</u>); 1.37 (br.s, 3 H, C(6)Me); 2.09, 2.16 (both s, 3 H each, Me); 4.15 (m, 4 H, OC <u>H</u> ₂ Me); 4.77 (d, 1 H, H(5), ${}^{3}J_{H,P} = 5.9$); 5.34 (br.s, 2 H, NH ₂); 7.22 (m, 2 H, Ar); 7.31 (t, 1 H, Ar, $J = 7.5$)	8.72 (br.s)	15.40 (br.s)
7b ^{<i>a</i>}	1.39 (t, 6 H, OCH ₂ Me, $J = 7.1$); 1.57 (d, 3 H, C(6)Me, ${}^{5}J_{H,P} = 2.5$); 3.88 (s, 3 H, OMe); 4.25 (m, 4 H, OC <u>H</u> ₂ Me); 4.80 (d, 1 H, H(5), ${}^{3}J_{H,P} = 5.3$); 4.84 (br.s, 2 H, NH ₂); 7.08, 7.23 (both d, 2 H each, Ar, $J = 8.7$)	8.16 (br.s)	16.00 (br.s)
7 c	1.29 (t, 6 H, OCH ₂ Me, $J = 7.2$); 1.49 (d, 3 H, C(6)Me, ${}^{5}J_{H,P} = 2.9$); 4.16 (m, 4 H, OCH ₂ Me); 4.75 (d, 1 H, H(5), ${}^{3}J_{H,P} = 5.2$); 5.67 (s, 2 H, NH ₂); 7.28, 7.56 (both d, 2 H each, Ar, $J = 8.4$)	9.70 (br.s)	15.83 (br.s)
7d ^{<i>a</i>,<i>b</i>}	1.39 (m, 6 H, OCH ₂ Me);1.54 (d, 3 H, C(6)Me, ${}^{5}J_{H,P} = 2.2$); 4.27 (m, 4 H, OCH ₂ Me); 4.88 (m, 3 H, H(5), NH ₂); 7.44–7.68 (m, 4 H, Ar)	7.64, 8.23 (both br.s)	15.39, 15.75 (both br.s)
7e ^c	1.28 (m, 6 H, OCH ₂ <u>Me</u>); 1.48 (m, 3 H, C(6)Me); 4.14 (m, 4 H, OC <u>H</u> ₂ Me); 4.77 (m, 1 H, H(5)); 5.82, 5.85 (both s, 2 H, NH ₂); 7.51–7.68 (m, 3 H, Ar)	9.31, 9.52 (both br.s)	15.18, 15.57 (both br.s)
7f	1.29 (t, 6 H, OCH ₂ Me, $J = 7.2$); 1.48 (d, 3 H, C(6)Me, ${}^{5}J_{H,P} = 3.1$); 4.16 (m, 4 H, OCH ₂ Me); 4.80 (d, 1 H, H(5), ${}^{3}J_{H,P} = 4.7$); 5.88 (s, 2 H, NH ₂); 7.59, 7.86 (both d, 1 H each, Ar, $J = 7.8$); 7.63 (s, 1 H, Ar); 7.74 (t, 1 H, Ar, $J = 7.8$)	9.96 (br.s); 17.19 (s, 3 F, <u>C</u> F ₃ C ₆ H ₄)	16.40 (q, ${}^{3}J_{\rm F,P} = 1.3$)
7g	1.29 (t, 6 H, OCH ₂ Me, $J = 7.2$); 1.49 (d, 3 H, C(6)Me, ${}^{5}J_{H,P} = 3.1$); 4.16 (m, 4 H, OCH ₂ Me); 4.79 (d, 1 H, H(5), ${}^{3}J_{H,P} = 5.0$); 5.84 (s, 2 H, NH ₂); 7.50, 7.88 (both d, 2 H each, Ar, $J = 8.4$)	9.85 (br.s); 17.17 (s, 3 F, <u>C</u> F ₃ C ₆ H ₄)	16.33 (br.s)
8a	1.28 (m 6 H, OCH ₂ <u>Me</u>); 1.74 (m, 4 H, (CH ₂) ₃); 2.07, 2.14 (both s, 3 H each, Me); 2.44, 2.71 (both m, 1 H each, (CH ₂) ₃); 4.13 (m 4 H, OC <u>H₂</u> Me); 5.49 (s, 2 H, NH ₂); 7.20 (m, 2 H, Ar); 7.29 (t, 1 H, Ar, $J = 7.5$)	13.04 (br.s)	$^{15.14}(q, ^{3}J_{F,P} = 1.5)$

147

Table 2 (continued)

Com- pound	¹ H NMR	¹⁹ F NMR (3 F, CF ₃)	³¹ P NMR (1 P, P(O)(OEt) ₂)
8b ^{<i>a</i>}	1.39 (m, 6 H, OCH ₂ <u>Me</u>); 1.84 (m, 2 H, (CH ₂) ₃); 2.16, 2.82 (both m, 1 H each, (CH ₂) ₃); 2.43 (m, 2 H, (CH ₂) ₃ , H ₂ O); 3.87 (s, 3 H, OMe); 4.24 (m, 4 H, OC <u>H</u> ₂ Me); 4.88 (br.s, 2 H, NH ₂); 7.07 (m, 2 H, Ar); 7.22 (br.s, 2 H, Ar)	12.88 (br.s)	15.72 (q, ${}^{3}J_{\mathrm{F,P}} = 1.7$)
8c	1.28 (m, 6 H, OCH ₂ Me); 1.75 (m, 2 H, (CH ₂) ₃); 1.85, 2.14, 2.39, 2.70 (all m, 1 H each, (CH ₂) ₃); 4.17 (m, 4 H, OCH ₂ Me); 5.81 (s, 2 H, NH ₂); 7.27, 7.55 (both d, 2 H each, Ar, $J = 8.5$)	14.14 (br.s)	15.49 (q, ${}^{3}J_{\mathrm{F,P}} = 2.0$)
8d ^d	1.28 (m, 6 H, OCH ₂ Me); 1.85 (m, 4 H, (CH ₂) ₃); 2.43, 2.74 (both m, 1 H each, (CH ₂) ₃); 4.14 (m, 4 H, OC <u>H₂</u> Me); 5.63, 5.67 (both s, 2 H, NH ₂); 7.45 (m, 3 H, Ar); 7.64 (d, 1 H, Ar, $J = 7.5$)	13.52, 13.74 (both br.s)	14.75, 15.15 (both br.s)
8e ^e	1.28 (m, 6 H, OCH ₂ Me); 1.93 (m, 4 H, (CH ₂) ₃); 2.43, 2.73 (both m, 1 H each, (CH ₂) ₃); 4.14 (m, 4 H, OC <u>H₂</u> Me); 5.87, 5.92 (both br.s, 2 H, NH ₂); 7.45–7.68 (m, 3 H, Ar)	13.69 (br.s)	14.85, 15.11 (both br.s)
8f	1.29 (m, 6 H, OCH ₂ <u>Me</u>); 1.78 (m, 3 H, (CH ₂) ₃); 2.18, 2.41, 2.69 (all m, 1 H each, (CH ₂) ₃); 4.10 (m, 4 H, OC <u>H</u> ₂ Me); 5.95 (s, 2 H, NH ₂); 7.57 (m, 2 H, Ar); 7.73 (t, 1 H, Ar, $J = 7.8$); 7.84 (d, 1 H, Ar, $J = 7.8$)	14.30 (br.s); 17.18 (s, 3 F, <u>C</u> F ₃ C ₆ H ₄)	15.96 (q, ${}^{3}J_{\rm F,P} = 2.2$)
9a	1.30 (m, 6 H, OCH ₂ Me); 1.39 (m, 2 H, (CH ₂) ₄); 1.55 (m, 3 H, (CH ₂) ₄); 1.72, 2.02, 2.59 (all m, 1 H each, (CH ₂) ₄); 4.13 (m, 4 H, OC <u>H₂</u> Me); 5.41 (br.s, 2 H, NH ₂); 7.32, 7.56 (both d, 2 H each, Ar, $J = 8.4$)	17.11 (br.s)	$^{16.82}(q, ^{3}J_{F,P} = 4.1)$
9b	1.29 (m, 6 H, OCH ₂ Me); 1.37 (m, 2 H, (CH ₂) ₄); 1.55 (m, 3 H, (CH ₂) ₄); 1.71, 2.00, 2.60 (all m, 1 H each, (CH ₂) ₄); 4.13 (m, 4 H, OC <u>H₂</u> Me); 5.20 (br.s, 2 H, NH ₂); 7.01 (m, 2 H, Ar); 7.26 (d, 1 H, Ar, $J = 7.5$)	16.72 (br.s)	$^{16.65}(q, ^{3}J_{F,P} = 4.2)$
9c	1.30 (m, 6 H, OCH ₂ <u>Me</u>); 1.41 (m, 2 H, (CH ₂) ₄); 1.57 (m, 3 H, (CH ₂) ₄); 1.77, 2.00, 2.58 (all m, 1 H each, (CH ₂) ₄); 4.14 (m, 4 H, OC <u>H₂</u> Me); 5.50 (s, 2 H, NH ₂); 7.30–7.56 (m, 4 H, Ar)	17.27 (br.s)	16.90 (br.s)
9d	1.30 (m, 6 H, OCH ₂ Me); 1.40 (m, 2 H, (CH ₂) ₄); 1.57 (m, 3 H, (CH ₂) ₄); 1.75, 2.00, 2.60 (all m, 1 H each, (CH ₂) ₄); 4.14 (m, 4 H, OCH ₂ Me); 5.39 (br.s, 2 H, NH ₂); 7.07, 7.27 (both d, 2 H each, Ar, $J = 8.7$); 7.11 (d, 2 H, Ar, $J = 8.1$); 7.20 (t, 1 H, Ar, $J = 7.5$); 7.44 (dd, 2 H, Ar, $J = 7.5$, 8.1)	16.96 (br.s)	$^{16.82}_{J_{\rm F,P}}$ (q, $^{3}J_{\rm F,P}$ = 4.2)
9e	A: 58%; 1.27 (m, 6 H, OCH ₂ <u>Me</u>); 1.35–2.25 (m, 7 H, (CH ₂) ₄); 2.70 (m, 1 H, (CH ₂) ₄); 4.12 (m, 4 H, OC <u>H</u> ₂ Me); 5.61 (br.s, 2 H, NH ₂); 7.48–7.66 (m, 3 H, Ar) B : 42%; 1.27 (m, 6 H, OCH ₂ <u>Me</u>); 1.35–2.25 (m, 6 H, =CH(CH ₂) ₃); 3.03 (m, 1 H, H(4a)); 4.41 (m, 1H, H(8)); 4.12 (m, 4 H, OC <u>H</u> ₂ Me);	15.66 (br.s) 15.73 (br.s)	15.82 (br.s) 17.74 (br.s)
0.6	5.61 (br.s, 2 H, NH ₂); 7.48–7.66 (m, 3 H, Ar)	17.04 (16.00 (
УІ	1.30 (m, 6 H, OCH_2Me); 1.41 (m, 3 H, $(CH_2)_4$); 1.57 (m, 2 H, $(CH_2)_4$); 1.73, 2.01, 2.59 (all m, 1 H each, $(CH_2)_4$); 4.14 (m, 4 H, $OC\underline{H}_2Me$); 5.60 (br.s, 2 H, NH_2); 7.55, 7.88 (both d, 2 H each, $Ar, J = 8.4$)	1/.24 (s, 3 F, <u>CF</u> ₃ C ₆ H ₄); 17.30 (d, ³ J _{F,P} = 3.7)	$^{16.90}$ (q, $^{3}J_{F,P} = 3.7$)
9g ^f	1.31(m, 6 H, OCH ₂ <u>Me</u>); 1.40–1.72 (m, 6 H, (CH ₂) ₄); 2.00, 2.62 (both m, 1 H each, (CH ₂) ₄); 3.73, 3.76 (both s, 3 H each, OMe); 4.15 (m, 4 H, OC <u>H</u> ₂ Me); 5.16, 5.24 (both br.s, 2 H, NH ₂); 6.72 (br.s, 1 H, Ar); 7.10 (m, 2 H, Ar)	14.97, 17.21 (both br.s)	15.59, 16.98 (both br.s)

^{*a*} The spectrum was recorded in CD_3CN .

^b A mixture of atropoisomers 1.4 : 1.

^c A mixture of atropoisomers 1.35 : 1.

^{*d*} A mixture of atropoisomers 1.39:1.

^{*e*} A mixture of atropoisomers 1.25 : 1.

 f A mixture of atropoisomers 1.72 : 1.

Shidlovskii et al.

Compounds **7d,e**, **8d,e**, and **9g** containing a substituent at *ortho*-position of the aromatic ring are formed as a mixture of atropoisomers (the ratio is given in Table 2). The isomerism in these substances is explained by the hindrance of rotation around the N—Ar bond and the presence of asymmetric carbon atom C(4) in the dihydropyridine ring. In the case of compound **7d**, individual isomers were successfully isolated by preparative thin-layer chromatography, however, rather rapid interconversion of the atropoisomers occurs in CD₃CN.

In the ¹H NMR spectrum of compound **9e** recorded in DMSO-d₆ along with signals, which correspond to the structure A, other signals are observed, from which two characteristic signals at δ 3.03 and 4.41 could be separated. These signals, apparently, correspond to the protons H(4a) and H(8) in the structure **B**. The 19 F and 31 P NMR spectra also contain double sets of signals for the trifluoromethyl and diethoxyphosphoryl groups. It is possible that upon dissolution of 9e, its equilibrium isomerization occurs (Scheme 2). Integration of the corresponding signals of two isomeric forms in the NMR spectra indicates a small predominance of form A (58%) over form B (42%). Such a phenomenon has been assumed earlier based on the NMR spectral data, including two-dimensional experiments COSY and NOESY, for 4-(difluorodiethoxyphosphoryl)methyl-substituted hexahydroquinolines.²³

Scheme 2

It should be noted that a number of specific features is observed for the three-component condensation of vinylphosphonate **3** with trifluoromethyl-substituted anilines and ketones, depending on the structure of the latter. For instance, the reaction with acetone, in addition to the major 2-aminodihydropyridines **7f,g**, gives 11% and 4% (the ¹H and ¹⁹F NMR spectral data of the reaction mixture) of 2-arylamino-substituted compounds **10a** and **10b**, respectively. The reaction of **3** with 4-(trifluoromethyl)aniline and cyclohexanone also leads to 2-arylaminohexahydroquinoline **11**, which was successfully isolated (6% yield) and characterized (Scheme 3). At the same time, no formation of such side products was observed in the reaction with cyclopentanone.

Alkene **4** reacts with arylamines and ketones considerably slower than **3**, the reaction is always accompanied by

formation of a number of side compounds and the yields of cyclization products at the nitrile group of compounds **12** and **13** do not exceed 60% (Scheme 4).

 $\label{eq:action} \begin{array}{l} \mbox{Ar}=2,6\mbox{-Me}_2C_6H_3\,(\mbox{12a},\,\mbox{13b}),\,\mbox{4-MeOC}_6H_4\,(\mbox{12b},\,\mbox{13a}),\\ \mbox{4-CF}_3C_6H_4\,\,(\mbox{12c}) \end{array}$

In the reaction of alkene 4 with p-anisidine and cyclopentanone (Scheme 5), in addition to the target product 13a, compound 15 containing no diethoxyphosphoryl group was isolated, the formation of which can be explained by intramolecular cyclization at the methoxycarbonyl group and subsequent elimination of the phosphonate group from the intermediate 14. The structure of compound 15 was confirmed by the X-ray diffraction data (Fig. 1).

Compound 5 under conditions of such three-component condensation very often forms stable intermediate products of C-alkylation of the enamine obtained *in situ*. The reaction of 5 with substituted anilines and acetone in CCl_4 at 20 °C rapidly leads to compounds **16a–c**, compounds **16a,b** were isolated by preparative thin-layer chromatography and characterized (compound **16c** was used for the synthesis of **18c** without chromatographic purification). No intramolecular cyclization to 1,4-dihydropyridine derivatives was observed upon prolonged keeping of the reaction mixtures at room temperature, rather a slow

Fig. 1. General view of the molecule **15** in representation of atoms by ellipsoids of atomic displacements with 50% probability.

hydrolysis of compounds **16a–c** (due to the water liberating in the first step of the process) to the starting arylamines took place (confirmed by TLC data) and the product of acetone alkylation **17**. The target 2-amino-1-aryl-3-diethoxyphosphoryl-6-methyl-4,4-bis(trifluoromethyl)-1,4-dihydropyridines **18a–c** were obtained upon pro-

Scheme 5

longed reflux of compounds **16a–c** in carbon tetrachloride (Scheme 6, Tables 3 and 4).

Scheme 6

Similarly to the preceding transformation, the reaction of alkene **5** with arylamines and cyclopentanone also leads to the intermediate C-alkylation products **19** (detected by TLC), which undergo intramolecular cyclization to 4,5,6,7-tetrahydro-1*H*-cyclopenta[*b*]pyridine derivatives **20a**-d already at 20 °C (Scheme 7, see Tables 3 and 4).

Scheme 7

We also studied behavior of vinylphosphonate **5** in the three-component condensation with arylamines and cy-

Table 3. Physico-chemical characteristics of compounds 18	, 20,	21

i. CCl₄, reflux, 18 h; *ii*. 20 °C, 120 h.

4-PhOC₆H₄ (16c, 18c)

 $Ar = 4-MeOC_6H_4$ (16a, 18a), $4-ClC_6H_4$ (16b, 18b),

Com- pound	Ar	Yield (%)	M.p./°C				Molecular formula			
				С	Н	Ν	Р	F	Cl	
18a	4-MeOC ₆ H ₄	50	98—100	<u>46.63</u> 46.73	<u>4.75</u> 4.78	<u>5.74</u> 5.73	_	_	_	$C_{19}H_{23}F_6N_2O_4P$
18b	$4-ClC_6H_4$	48	128-129	<u>43.70</u> 43.87	<u>4.11</u> 4.09	<u>5.70</u> 5.68	<u>6.27</u> 6.29	<u>23.05</u> 23.13	<u>7.27</u> 7.19	$C_{18}H_{20}ClF_6N_2O_3P$
18c	4-PhOC ₆ H ₄	41	*	<u>52.45</u> 52.37	<u>4.58</u> 4.59	<u>5.07</u> 5.09	_	—	—	$C_{24}H_{25}F_6N_2O_4P$
20a	4-MeOC ₆ H ₄	76	147—148	<u>49.00</u> 49.03	<u>4.91</u> 4.90	<u>5.45</u> 5.45	_	<u>22.00</u> 22.16	—	$C_{21}H_{25}F_6N_2O_4P$
20b	$3-CF_3C_6H_4$	37	164—165	<u>45.68</u> 45.66	<u>4.01</u> 4.01	<u>5.07</u> 5.07	_	<u>30.90</u> 30.95	—	$C_{21}H_{22}F_9N_2O_3P$
20c	$4-CF_3C_6H_4$	37	188—189	<u>45.41</u> 45.66	<u>4.01</u> 4.03	<u>5.07</u> 5.02	_	_	—	$C_{21}H_{22}F_9N_2O_3P$
20d	$2-ClC_6H_4$	28	113-115	<u>46.15</u> 46.30	<u>4.29</u> 4.27	<u>5.43</u> 5.40	_	_	_	$C_{20}H_{22}ClF_6N_2O_3P$
21a	4-MeOC ₆ H ₄	57	134—135	<u>50.06</u> 50.01	<u>5.14</u> 5.15	<u>5.32</u> 5.30	<u>5.89</u> 5.86	<u>21.43</u> 21.57	—	$C_{22}H_{27}F_6N_2O_4P$
21b	$3-CF_3C_6H_4$	26	164—165	<u>46.78</u> 46.65	<u>4.29</u> 4.27	<u>4.94</u> 4.95	_	<u>29.89</u> 30.19	_	$C_{22}H_{24}F_9N_2O_3P$

* Amorphous substance.

Com- pound	¹ H NMR	¹⁹ F NMR	³¹ P NMR (1 P, P(O)(OEt) ₂)
18a	1.31 (t, 6 H, OCH ₂ <u>Me</u> , $J = 7.1$); 1.57 (s, 3 H, C(6)Me); 3.85 (s, 3 H, OMe); 4.05 (m, 4 H, OC <u>H</u> ₂ Me); 4.77 (d, 1 H, H(5), ${}^{4}J_{H,P} = 5.6$); 6.40 (br.s, 2 H, NH ₂); 6.97, 7.12 (both d, 2 H each, Ar, $J = 8.8$)	7.73 (s, 6 F, 2 CF ₃)	26.59 s
18b	1.32 (t, 6 H, OCH ₂ Me, $J = 7.2$); 1.58 (s, 3 H, C(6)Me); 4.06 (m, 4 H, OCH ₂ Me); 4.81 (d, 1 H, H(5), ${}^{4}J_{H,P} = 5.6$); 6.38 (br.s, 2 H, NH ₂); 7.18, 7.47 (both d, 2 H each, Ar, $J = 8.7$)	7.77 (s, 6 F, 2 CF ₃)	26.06 s
18c	1.32 (t, 6 H, OCH ₂ Me, $J = 7.2$); 1.61 (s, 3 H, C(6)Me); 4.07 (m, 4 H, OCH ₂ Me); 4.80 (d, 1 H, H(5), ${}^{4}J_{H,P} = 5.9$); 6.44 (br.s, 2 H, NH ₂); 7.03–7.43 (m, 9 H, Ar)	7.73 (s, 6 F, 2 CF ₃)	26.37 s
20a	1.32 (t, 6 H, OCH ₂ Me, $J = 7.1$); 1.83 (quint, 2 H, CH ₂ CH ₂ CH ₂ , J = 7.3); 2.10, 2.67 (both m, 2 H each, CH ₂ CH ₂ CH ₂); 3.84 (s, 3 H, OMe); 4.05 (m, 4 H, OCH ₂ Me); 6.55 (br.s, 2 H, NH ₂); 6.94, 7.13 (both d, 2 H each, Ar, $J = 8.8$)	10.53 (s, 6 F, 2 CF ₃)	27.51 s
20b	1.32 (t, 6 H, OCH ₂ <u>Me</u> , $J = 7.2$); 1.87, 2.10, 2.69 (all br.m, 2 H each, (CH ₂) ₃); 4.07 (m, 4 H, OC <u>H</u> ₂ Me); 6.47 (br.s, 2 H, NH ₂); 7.45 (d, 1 H, Ar, $J = 7.5$); 7.51 (br.s, 1 H, Ar); 7.63 (dd, 1 H, Ar, $J = 7.5$, 7.8); 7.73 (d, 1 H, Ar, $J = 7.8$)	10.59 (s, 6 F, 2 CF ₃); 15.02 (s, 3 F, <u>C</u> F ₃ C ₆ H ₄)	26.55 s
20c	1.32 (t, 6 H, OCH ₂ Me, $J = 7.2$); 1.87 (m, 2 H, CH ₂ CH ₂ CH ₂); 2.11, 2.68 (both br.m, 2 H each, CH ₂ CH ₂ CH ₂); 4.06 (m, 4 H, OCH ₂ Me); 6.47 (br.s, 2 H, NH ₂); 7.38, 7.75 (both d, 2 H each, Ar, $J = 8.4$)	10.58 (s, 6 F, 2 CF ₃); 15.00 (s, 3 F, <u>C</u> F ₃ C ₆ H ₄)	26.62 s
20d	1.32 (br.m, 6 H, OCH ₂ <u>Me</u>); 1.85 (br.s, 2 H, CH ₂ C <u>H</u> ₂ CH ₂); 1.96–2.20 (br.m, 2 H each, (CH ₂) ₃); 2.69 (br.s, 2 H, (CH ₂) ₃); 4.06 (br.m, 4 H, OC <u>H</u> ₂ Me); 6.45 (br.s, 2 H, NH ₂); 7.30–7.56 (m, 4 H, Ar)	10.15, 11.99 (both q, 3 F each, CF_3 , ${}^4J_{F,F} = 10.6$)	27.33 br.s
21a	1.30 (m, 6 H, OCH ₂ <u>Me</u>); 1.38 (m, 1 H, =CH(CH ₂) ₃); 1.79–2.02 (m, 4 H, =CH(CH ₂) ₃); 2.14 (br.s, 1 H, =CH(CH ₂) ₃); 3.32 (br.s, 1 H, H(4a)); 3.85 (s, 3 H, OMe); 4.03 (m, 4 H, OC <u>H</u> ₂ Me); 4.31 (br.m, 1H, H(8)); 6.58 (br.s, 2 H, NH ₂); 6.94–7.08 (m, 4 H, Ar)	13.38 (q, 3 F, CF ₃ , ${}^{4}J_{F,F} = 10.0$); 16.51 (br.q, 3 F, CF ₃ , ${}^{4}J_{F,F} = 10.0$)	27.34 s
21b	1.31 (m, 6 H, OCH ₂ <u>Me</u>); 1.40 (m, 1 H, =CH(CH ₂) ₃); 1.81–2.02 (br.m, 4 H, =CH(CH ₂) ₃); 2.16 (br.s, 1 H, =CH(CH ₂) ₃); 3.50 (br.s, 1 H, H(4a)); 4.03 (br.m, 4 H, OC <u>H₂</u> Me); 4.11 (br.m, 1 H, H(8)); 6.49 (br.s, 2 H, NH ₂); 7.40 (d, 1 H, Ar, J = 7.6); 7.46 (br.s, 1 H, Ar); 7.65 (dd, 1 H, Ar, J = 7.6, 7.3); 7.71 (d, 1 H, Ar, J = 7.3)	13.45 (q, 3 F, CF ₃ , ${}^{4}J_{F,F} = 10.1$); 16.55 (br.q, 3 F, CF ₃ , ${}^{4}J_{F,F} = 10.1$); 15.08 (s, 3 F, CF ₃ C ₆ H ₄)	26.52 s

Table 4. ¹H, ¹⁹F, and ³¹P NMR spectra of compounds 18, 20, 21 (CDCl₃, δ , *J*/Hz)

clohexanone. It turned out that intermediate C-alkylation products of enamines fairly fast are converted to the substituted hexahydroquinolines **21a,b** and, like compound **9e**, there is observed migration of the multiple bond onto the ring fused with the dihydropyridine cycle (Scheme 8, see Tables 3 and 4). The structures of products **21a,b** were confirmed by NMR spectroscopy and X-ray diffraction data for compound **21a** (Fig. 2).

Vinylphosphonate **6** also reacts with anilines differently depending on the ketone structure. For instance, in the case of acetone, the reaction takes place only with arylamines containing electron-donating substituents in the aromatic ring, resulting in the low yields of mixtures of two isomeric products **22** and **23** (Scheme 9, Tables 5 and 6). It should be noted that both isomers **22b** and **23b** were isolated only in the case of the reaction of alkene **6** with acetone and *p*-anisidine.

Scheme 8

Fig. 2. General view of the molecule 21a in representation of atoms by ellipsoids of atomic displacements with 50% probability.

Two products 24 and 25 were as well obtained in the three-component condensation of vinylphosphonate 6 with cyclopentanone and most of the arylamines studied by us. The overall yields were 60–70% and both isomers 24a–d and 25a–d can be isolated (see Scheme 9, Tables 5 and 6). However, in the case of 2,6-dimethylaniline no formation of noticeable amount of the side product was observed in this transformation and only compound 24e was successfully isolated. The structures of products 24 and 25 were confirmed by X-ray diffraction of compounds 24c (Fig. 3) and 25c (Fig. 4).

In the reaction of alkene **6** with cyclohexanone and anilines, likewise in the case of alkene **5**, migration of the multiple bond and formation of hexahydroquinoline derivatives **26a**—**f** were observed (see Scheme 9, Tables 5 and 6). It should be noted that compounds **26a**—**f** are formed as a mixture of diastereomers (the ratio is given in Table 6).

In conclusion, we studied the reaction of trifluoromethyl-substituted cyanovinylphosphonates 3-6 with enamines obtained *in situ* from arylamines and ketones (acetone, cyclopentanone, and cyclohexanone). We demonstrated a possibility of using alkenes 3-6 as precursors of 1,4-dihydropyridines, 4,5,6,7-tetrahydro-1*H*-cyclopenta[*b*]pyridines, 1,4,5,6,7,8-hexahydroquinolines, and 1,4,4a,5,6,7-hexahydroquinolines, modified with both trifluoromethyl and diethoxyphosphoryl groups.

Cytotoxic activity of some compounds synthesized was studied *in vitro* at the US National Cancer Institute against

 $\begin{aligned} \text{Ar} = 2,6-\text{Me}_2\text{C}_6\text{H}_3 \ (\textbf{22a}, \textbf{24e}, \textbf{26b}), \ \textbf{4}-\text{Me}O\text{C}_6\text{H}_4 \ (\textbf{22b}, \textbf{23b}, \textbf{26c}), \ \textbf{4}-\text{Ph}O\text{C}_6\text{H}_4 \ (\textbf{22c}, \textbf{24a}, \textbf{25a}), \ \text{Ph} \ (\textbf{23a}, \textbf{26a}), \ \textbf{2,5-(\text{Me}O)}_2\text{C}_6\text{H}_3 \ (\textbf{23c}), \ \textbf{4}-\text{FC}_3\text{C}_6\text{H}_4 \ (\textbf{24b}, \textbf{25b}, \textbf{26f}), \ \textbf{4}-\text{FC}_6\text{H}_4 \ (\textbf{24c}, \textbf{25c}), \ \textbf{3}-\text{ClC}_6\text{H}_4 \ (\textbf{24d}, \textbf{25d}, \textbf{26e}), \ \textbf{3,5-(\text{Me}O)}_2\text{C}_6\text{H}_3 \ (\textbf{26d}) \end{aligned}$

153

Com- pound	Ar	Yield (%)	M.p./°C			<u>Found</u> Calcula	(%) ted			Molecular formula
				С	Н	Ν	Р	F	Cl	
22a	2,6-Me ₂ C ₆ H ₃	35	*	<u>53.90</u> 53.88	<u>6.19</u> 6.17	<u>5.75</u> 5.71	<u>6.31</u> 6.32	<u>11.45</u> 11.62	_	$C_{22}H_{30}F_3N_2O_5P$
22b	$4-MeOC_6H_4$	9	121-123	<u>51.11</u> 51.22	<u>5.72</u> 5.73	<u>5.73</u> 5.69	_	_	_	$C_{21}H_{28}F_3N_2O_6P$
22c	$4-PhOC_6H_4$	9	168—170	<u>56.12</u> 56.32	<u>5.46</u> 5.45	<u>5.02</u> 5.05	—	—	—	$C_{26}H_{30}F_3N_2O_6P$
23a	Ph	14	*	<u>52.10</u> 51.95	<u>5.66</u> 5.67	<u>6.05</u> 6.06	<u>6.75</u> 6.70	<u>12.21</u> 12.33	_	$C_{20}H_{26}F_3N_2O_5P$
23b	$4-MeOC_6H_4$	4	*	<u>51.16</u> 51.22	<u>5.75</u> 5.73	<u>5.63</u> 5.69	—	—	—	$C_{21}H_{28}F_3N_2O_6P$
23c	2,5-(MeO) ₂ C ₆ H ₃	13	*	<u>51.04</u> 50.58	<u>5.80</u> 5.79	<u>5.35</u> 5.36	—	—	—	$C_{22}H_{30}F_3N_2O_7P$
24a	$4-PhOC_6H_4$	35	164—165	<u>57.99</u> 57.93	<u>5.57</u> 5.56	<u>4.81</u> 4.83	—	—	—	$C_{28}H_{32}F_3N_2O_6P$
24b	$4-CF_3C_6H_4$	17	182—183	<u>49.69</u> 49.65	<u>4.89</u> 4.89	<u>5.02</u> 5.03	—	—	—	$C_{23}H_{27}F_6N_2O_5P$
24c	$4-FC_6H_4$	24	132—133	<u>52.33</u> 52.18	<u>5.39</u> 5.37	<u>5.55</u> 5.53	—	<u>14.85</u> 15.01	—	$C_{22}H_{27}F_4N_2O_5P$
24d	3-ClC ₆ H ₄	9	*	<u>50.51</u> 50.54	<u>5.22</u> 5.20	<u>5.35</u> 5.36	<u>5.95</u> 5.92	<u>11.00</u> 10.90	<u>6.69</u> 6.78	C ₂₂ H ₂₇ ClF ₃ N ₂ O ₅ P
24e	2,6-Me ₂ C ₆ H ₃	23	*	<u>55.99</u> 55.81	<u>6.26</u> 6.24	<u>5.39</u> 5.42	—	—	—	$C_{24}H_{32}F_3N_2O_5P$
25a	$4-PhOC_6H_4$	32	117—118	<u>57.98</u> 57.93	<u>5.55</u> 5.56	<u>4.83</u> 4.83	—	—	—	$C_{28}H_{32}F_3N_2O_6P$
25b	$4-CF_3C_6H_4$	43.5	158-159	<u>49.49</u> 49.65	<u>4.88</u> 4.89	<u>5.06</u> 5.03	—	—	—	$C_{23}H_{27}F_6N_2O_5P$
25c	$4-FC_6H_4$	47.5	178—180	<u>52.10</u> 52.18	<u>5.37</u> 5.37	<u>5.54</u> 5.53	<u>6.10</u> 6.12	<u>14.95</u> 15.01	—	$C_{22}H_{27}F_4N_2O_5P$
25d	3-ClC ₆ H ₄	46	183—185	<u>50.59</u> 50.54	<u>5.21</u> 5.20	<u>5.35</u> 5.36	_	<u>10.87</u> 10.90	<u>6.83</u> 6.78	C ₂₂ H ₂₇ ClF ₃ N ₂ O ₅ P
26a	Ph	41	135—137	<u>54.55</u> 54.98	<u>6.04</u> 6.02	<u>5.56</u> 5.58	<u>6.19</u> 6.16	<u>11.22</u> 11.34	_	$C_{23}H_{30}F_3N_2O_5P$
26b	2,6-Me ₂ C ₆ H ₃	19	93—95	<u>56.51</u> 56.60	<u>6.47</u> 6.46	<u>5.25</u> 5.28	_	_	_	$C_{25}H_{34}F_3N_2O_5P$
26c	$4-MeOC_6H_4$	55	156-158	<u>54.00</u> 54.13	<u>6.06</u> 6.06	<u>5.27</u> 5.26	_	_	_	$C_{24}H_{32}F_3N_2O_6P$
26d	3,5-(MeO) ₂ C ₆ H ₃	50.5	144—146	<u>53.54</u> 53.38	<u>6.07</u> 6.09	<u>4.98</u> 4.98	_	_	_	$C_{25}H_{34}F_3N_2O_7P$
26e	3-ClC ₆ H ₄	49	133—135	<u>51.43</u> 51.45	<u>5.44</u> 5.44	<u>5.21</u> 5.22	<u>5.79</u> 5.77	$\frac{10.58}{10.62}$	<u>6.69</u> 6.60	C ₂₃ H ₂₉ ClF ₃ N ₂ O ₅ P
26f	$4-CF_3C_6H_4$	38	209-210	$\frac{50.40}{50.53}$	<u>5.14</u> 5.12	<u>4.91</u> 4.91	_	<u>19.75</u> 19.98	_	$C_{24}H_{29}F_6N_2O_5P$

Table 5. Physico-chemical characteristics of compounds 22-26

* Amorphous substance.

a standard panel consisting of 60 human tumor cell lines²⁴ (Table 7). The data given should be considered as the results of the first step in the study of compounds of this series allowing us to find promising compounds for further research.

Most of compounds studied possess moderate cytotoxic activity with the absence of clear selectivity of action against the cell cultures belonging to various subpanels, excluding absolutely inactive compound **25d**. Compounds of the dihydropyridine series **7c** and **7e** exhibited similar

¹⁹F NMR ³¹P NMR Com-¹H NMR pound (3 F, CF₃) $(1 P, P(O)(OEt)_2)$ 1.15–1.23 (m, 9 H, OCH₂Me); 1.34 (c, 3 H, C(6)Me); 22a 5.11 s 25.86 s 2.09, 2.12 (both s, 3 H each, Me); 3.90 (m, 4 H, OCH₂Me); 4.04, 4.14 (both m, 1 H each, OCH_2Me); 4.66 (d, 1 H, H(5), ${}^4J_{H,P} = 5.9$); 5.23 (s, 2 H, NH₂); 7.21-7.31 (m, 3 H, Ar) 22b^a 1.25–1.36 (m, 9 H, OCH₂Me); 1.55 (s, 3 H, C(6)Me); 3.38 s 25.74 s 3.85 (s, 3 H, OMe); 4.07 (br.m, 4 H, OCH₂Me); 4.27 (br.m, 2 H, OCH_2Me); 4.64 (d, 1 H, H(5), ${}^4J_{H,P} = 4.7$); 5.11 (br.s, 2 H, NH₂); 6.96 (d, 2 H, Ar, J = 8.7); 7.15 (br.m, 2 H, Ar)1.15-1.24 (m, 9 H, OCH₂Me); 1.53 (s, 3 H, C(6)Me); 3.90 (br.m, 4 H, 3.83 s 25.03 s 22c OCH₂Me); 4.10 (br.m, 2 H, OCH₂Me); 4.36 (br.d, 1 H, H(5), ${}^{4}J_{\text{H,P}} = 3.4$; 5.35 (s, 2 H, NH₂); 6.93–7.45 (m, 9 H, Ar) 23a 0.94, 1.11, 1.20 (all t, 3 H each, OCH_2Me , J = 7.2); 1.81 (s, 3 H, 3.51 s 25.59 s C(6)Me); 3.81 (m, 4 H, OCH₂Me); 4.04, 4.15 (both m, 1 H each, OCH_2Me ; 4.38 (d, 1 H, H(5), ${}^4J_{H,P} = 5.0$; 6.91–6.95 (m, 3 H, Ar); 7.28 (dd, 2 H, Ar, *J* = 7.5, 8.1); 7.40 (s, 1 H, NH); 9.16 (d, 1 H, NH, ${}^{4}J_{H,P} = 3.4$) 23b 1.04 (br.t, 3 H, OCH₂Me, J = 7.1); 1.15, 1.21 (both br.t, 3 H each, 3.91 s 24.17 s $OCH_2Me, J = 7.1$; 1.78 (s, 3 H, C(6)Me); 3.72 (s, 3 H, OMe); 3.85 (br.m, 4 H, OCH_2Me); 4.05, 4.13 (both br.m, 1 H each, OCH_2Me); 4.34 (br.s, 1 H, H(5)); 6.91 (br.m, 4 H, Ar); 7.43 (s, 1 H, NH); 8.75 (br.s, 1 H, NH) 23c 0.95 (t, 3 H, OCH₂Me, J = 7.2); 1.19 (m, 6 H, OCH₂Me); 3.57 s 22.84 s 1.83 (s, 3 H, C(6)Me); 3.67, 3.78 (both s, 3 H each, OMe); $3.80-4.18 \text{ (m, 6 H, OCH}_2\text{Me}); 4.39 \text{ (d, 1 H, H(5), }^4J_{\text{H,P}} = 4.7);$ 6.46–6.50 (m, 2 H, Ar); 6.93 (d, 1 H, Ar, *J* = 9.0); 7.32 (s, 1 H, NH); 9.22 (d, 1 H, NH, ${}^{4}J_{H,P} = 2.8$) 1.18–1.24 (m, 9 H, OCH₂Me); 1.81 (br.m, 2 H, CH₂CH₂CH₂); 5.47 s 25.42 s 24a 1.93, 2.14, 2.31, 2.41 (br.m, 1 H each, CH₂CH₂CH₂C; 3.90 (m, 4 H, OCH₂Me); 4.06, 4.16 (both m, 1 H each, OCH₂Me); 5.34 (s, 2 H, NH₂); 7.06–7.45 (m, 9 H, Ar) 1.18–1.25 (m, 9 H, OCH₂Me); 1.83 (br.m, 3 H, (CH₂)₃); 24b 5.46 s, 24.97 s 17.21 (s, 3 F, 2.17 (br.m, 1 H, (CH₂)₃); 2.39 (br.m, 2 H, (CH₂)₃); 3.92 (br.m, 4 H, OCH₂Me); 4.06, 4.19 (both m, 1 H each, OCH₂Me); 5.42 (s, 2 H, NH₂); $\underline{C}F_3C_6H_4$) 7.48, 7.87 (both d, 2 H each, Ar, J = 8.4) 1.18–1.24 (m, 9 H, OCH₂Me); 1.82 (br.m, 3 H, (CH₂)₃); 24c -34.6423.99 s (s, 1 F, FC₆H₄); 2.15, 2.31, 2.40 (all m, 1 H each, (CH₂)₃); 3.91 (br.m, 4 H, OCH₂Me); 4.06, 4.17 (both m, 1 H each, OCH₂Me); 5.33 (s, 2 H, NH₂); 5.43 s 7.26–7.35 (m, 4 H, Ar) 1.17–1.24 (m, 9 H, OCH₂Me); 1.79 (br.m, 3 H, (CH₂)₃); 6.83 s 28.25 s 24e 1.92, 2.15, 2.43 (all br.m, 1 H each, (CH₂)₃); 2.09, 2.11 (both s, 3 H each, Me); 3.92 (m, 4 H, OCH₂Me); 4.07, 4.18 (both m, 1 H each, OCH₂Me); 5.15 (s, 2 H, NH₂); 7.20–7.31(m, 3 H, Ar) 25a 1.01, 1.15, 1.21 (all t, 3 H each, OCH_2Me , J = 7.2); 1.89 (br.m, 2 H, 5.79 s 23.98 s $CH_2CH_2CH_2$; 2.07, 2.34 (both br.m, 1 H each, $CH_2CH_2CH_2$); 2.42 (br.m, 2 H, CH₂CH₂CH₂CH₂); 3.77, 4.05, 4.18 (all m, 1 H each, OCH₂Me); 3.95 (m, 2 H, OCH₂Me); 6.93–7.38 (m, 10 H, Ar, NH); 9.36 (d, 1 H, NH, ${}^{4}J_{\text{H,P}} = 3.1$) 25b 0.91, 1.08, 1.23 (all t, 3 H each, OCH₂Me, J = 7.2); 1.92 (br.m, 2 H, 5.88 s, 22.14 s $CH_2CH_2CH_2$; 2.08, 2.36 (both br.m, 1 H each, $CH_2CH_2CH_2$); 18.55 (s, 3 F, 2.44 (br.m, 2 H, CH₂CH₂CH₂); 3.72, 4.06, 4.19 (all m, 1 H each, $\underline{C}F_3C_6H_4$)

OCH₂Me); 3.85 (m, 3 H, OCH₂Me); 7.03, 7.58 (both d, 2 H each, Ar,

J = 8.7); 7.68 (s, 1 H, NH); 9.65 (d, 1 H, NH, ${}^{4}J_{\text{H,P}} = 3.7$)

Table 6. ¹H, ¹⁹F, and ³¹P NMR spectra of compounds 22–26 (DMSO-d₆, δ , J/Hz)

155

Table 6 (continued)

Com- pound	¹ H NMR	¹⁹ F NMR (3 F, CF ₃)	³¹ P NMR (1 P, P(O)(OEt) ₂)
25c	0.99, 1.14, 1.21 (all t, 3 H each, OCH ₂ <u>Me</u> , $J = 7.2$); 1.89 (br.m, 2 H, CH ₂ C <u>H</u> ₂ CH ₂); 2.07 (br.m, 1 H, C <u>H</u> ₂ CH ₂ C <u>H</u> ₂); 2.37 (br.m, 3 H, C <u>H</u> ₂ CH ₂ C <u>H</u> ₂); 3.77, 4.05, 4.18 (all m, 1 H each, OC <u>H</u> ₂ Me); 3.88 (m, 3 H, OC <u>H</u> ₂ Me); 6.99, 7.13 (both m, 2 H each, Ar); 7.30 (s, 1 H, NH); 9.35 (d, 1 H, NH, ${}^{4}J_{H,P} = 3.1$)	−43.86 (s, 1 F, FC ₆ H ₄) 5.76 s	22.53 s
25d	0.95, 1.10, 1.21 (all t, 3 H each, OCH ₂ Me, $J = 6.9$); 1.91 (br.m, 2 H, CH ₂ CH ₂ CH ₂); 2.08, 2.33 (both br.m, 1 H each, CH ₂ CH ₂ CH ₂ C); 2.45 (br.m, 2 H, CH ₂ CH ₂ CH ₂ C); 3.75, 4.06, 4.18 (br.m, 1 H each, OCH ₂ Me); 3.87 (br.m, 3 H, OCH ₂ Me); 6.85, 6.93 (both br.d, 1 H each, Ar, $J = 7.5, 7.8$); 7.26 (dd, 1 H, Ar, $J = 7.5, 7.8$); 7.42 (br.s, 1 H, NH); 9.54 (br.d, 1 H, NH, ⁴ J _{H,P} = 3.4)	5.65 s	22.67 s
26a ^{<i>a</i>,<i>b</i>}	1.28 (m, 6 H, OCH ₂ <u>Me</u>); 1.34 (t, 3 H, OCH ₂ <u>Me</u> , $J = 7.2$); 1.47, 2.01 (both br.m, 1 H each, =CH(CH ₂) ₃); 1.72–1.91 (br.m, 4 H, =CH(CH ₂) ₃); 3.47 (br.m, 1 H, H(4a)); 4.06 (m, 4 H, OC <u>H₂</u> Me); 4.15–4.45 (br.m, 3 H, OC <u>H₂</u> Me, H(8)); 4.86 (br.s, 2 H, NH ₂); 7.16–7.51 (m, 5 H, Ar)	11.82, 13.84 both br.s	26.20 br.m
26b ^{<i>a</i>,<i>c</i>}	1.28 (m, 6 H, OCH ₂ <u>Me</u>); 1.36 (t, 3 H, OCH ₂ <u>Me</u> , <i>J</i> = 6.9); 1.44, 2.03 (both br.m, 1 H each, =CH(CH ₂) ₃); 1.71–1.96 (br.m, 4 H, =CH(CH ₂) ₃); 2.12, 2.15 (both s, 3 H each, Me); 3.39 (br.m, 1 H, H(4a)); 4.06 (m, 4 H, OC <u>H</u> ₂ Me); 4.18–4.48 (br.m, 3 H, OC <u>H</u> ₂ Me, H(8)); 4.82 (br.s, 2 H, NH ₂); 7.15–7.27 (m, 3 H, Ar)	12.72, 14.48 both br.s	25.99 br.m
26s ^{d,h}	1.29 (m, 6 H, OCH ₂ <u>Me</u>); 1.35 (t, 3 H, OCH ₂ <u>Me</u> , $J = 7.2$); 1.45, 2.01 (both br.m, 1 H each, =CH(CH ₂) ₃); 1.73–1.92 (br.m, 4 H, =CH(CH ₂) ₃); 3.48 (br.m, 1 H, H(4a)); 3.85 (s, 3 H, OMe); 4.07 (m, 4 H, OC <u>H₂</u> Me); 4.18–4.45 (br.m, 3 H, OC <u>H₂</u> Me, H(8)); 4.87, 4.90 (both br.s, 2 H, NH ₂); 6.93–7.14 (m, 4 H, Ar)	11.77, 13.80 both br.s	25.28 br.m
26d ^e	1.14–1.25 (m, 9 H, OCH ₂ <u>Me</u>); 1.34–2.11 (br.m, 6 H, =CH(C <u>H</u> ₂) ₃); 3.37 (br.m, 1 H, H(4a)); 3.76 (br.s, 6 H, OMe); 3.87 (br.m, 4 H, OC <u>H</u> ₂ Me); 3.95–4.25 (br.m, 3 H, OC <u>H</u> ₂ Me, H(8)); 5.21 (br.s, 2 H, NH ₂); 5.98–6.64 (br.m, 3 H, Ar)	13.35, 15.36 both br.s	23.99, 23.95 both br.s
26e ^{<i>a</i>,<i>f</i>}	1.30 (t, 6 H, OCH ₂ Me, $J = 7.2$); 1.35 (t, 3 H, OCH ₂ Me, $J = 7.2$); 1.46, 2.01 (both br.m, 1 H each, =CH(CH ₂) ₃); 1.70–1.95 (br.m, 4 H, =CH(CH ₂) ₃); 3.48 (m, 1 H, H(4a)); 4.08 (m, 4 H, OC <u>H</u> ₂ Me); 4.17–4.44 (br.m, 3 H, OC <u>H</u> ₂ Me, H(8)); 4.85, 4.88 (both br.s, 2 H, NH ₂); 7.04–7.47 (br.m, 4 H, Ar)	11.85, 13.81 both br.s	25.71, 25.80 both br.s
26f ^{a,g}	1.30 (t, 6 H, OCH ₂ <u>Me</u> , $J = 7.2$); 1.36 (t, 3 H, OCH ₂ <u>Me</u> , $J = 7.2$); 1.41–2.05 (m, 6 H, =CH(C <u>H</u> ₂) ₃); 3.50 (br.m, 1 H, H(4a)); 4.00–4.16 (br.m, 5 H, OC <u>H</u> ₂ Me, H(8)); 4.20–4.40 (br.m, 2 H, OC <u>H</u> ₂ Me); 4.82, 4.85 (both br.s, 2 H, NH ₂); 7.37 (m, 2 H, Ar); 7.74, 7.77 (both d, 2 H, Ar, $J = 8.4$)	11.86, 13.96 both br.s; 15.01 (br.s, 3 F <u>C</u> F ₃ C ₆ H ₄)	25.55, 25.62 both br.s

^{*a*} The spectrum was recorded in CDCl₃.

^b A mixture of diastereomers 3.3 : 1.

^{*c*} A mixture of diastereomers 1.1 : 1.

^{*d*} A mixture of diastereomers 2.7:1.

^{*e*} A mixture of diastereomers 3.4 : 1.

^fA mixture of diastereomers 1.77 : 1.

^{*g*} A mixture of diastereomers 2.27 : 1.

^h The ¹H and ¹⁹F spectra were recorded in CDCl₃.

moderate cytotoxicity independent of the substituent on the nitrogen atom of the dihydropyridine ring. At the same time, compound **18b** has proved considerably less active when two trifluoromethyl groups are present at position 4 and when cyano group is replaced with the diethoxyphosphoryl residue. Compounds **8e**, **8b**, and **20a** containing, respectively, 2,5-dichlorophenyl (**8e**) and 4-methoxyphenyl (**8b** and **20a**) substituents on the nitrogen atom of the

Shidlovskii et al.

Fig. 3. General view of the molecule **24c** in representation of atoms by ellipsoids of atomic displacements with 50% probability (the solvate molecule of diethyl ether is not shown).

dihydropyridine ring exhibited noticeable cytotoxic activity against the most tumor cells in contrast to the aforementioned compound **25d** containing no substituent at

Fig. 4. General view of the molecule **25c** in representation of atoms by ellipsoids of atomic displacements with 50% probability.

this position. Compounds of hexahydroquinoline series **9g**, **26c**, and **26d** displayed very similar moderate cytotoxic properties having minimum structural differences. Appar-

Cell		GI ₅₀ /µmol L ⁻¹												
cultures	7c	7e	8b	8e	9g	18b	20a	25d	26c	26d				
					Leukemi	a								
CCRF-CEM	13.2	_	25.2	10.8	19.4	78.0	20.2	>100	25.5	20.6				
HL-60(TB)	14.2	5.76	16.6	16.7	18.9	_	10.3	>100	13.8	25.2				
K-562	10.0	>100	21.6	21.2	19.3	>100	17.1	>100	23.9	20.0				
MOLT-4	9.46	3.33	15.4	14.4	27.8	1.35	6.53	>100	14.9	9.88				
RPMI-8226	16.0	12.5	16.9	13.7	17.1	5.84	14.8	>100	14.7	19.8				
SR	4.51	19.5	15.9	15.5	12.5	0.126	15.5	>100	24.4	17.6				
				Non-Sm	all Cell Lt	ing Cancer								
A549/ATCC	51.3	52.1	40.3	31.0	36.7	>100	11.7	54.8	27.4	15.9				
EKVX	23.8	69.0	33.2	22.2	30.0	>100	12.1	>100	37.1	24.2				
HOP-62	>100	99.5	94.6	17.3	47.1	>100	15.7	>100	47.6	17.0				
HOP-92	12.5	37.0	13.7	16.7	22.8	4.15	13.21	>100	5.05	12.9				
NCI-H226	22.3	_	42.6	23.1	45.2	>100	5.0	>100	57.0	16.8				
NCI-H23	28.7	37.0	34.7	33.6	38.3	>100	15.5	>100	43.2	20.5				
NCI-H322M	_	>100	38.5	28.6	37.0	_	13.2	>100	53.5	29.1				
NCI-H460	49.1	49.4	31.0	15.7	18.9	>100	14.8	>100	27.2	16.4				
NCI-H522	20.3	27.4	17.4	17.4	19.1	66.2	14.5	47.7	32.0	17.8				

Table 7. Results of the study of cytotoxic activity of compounds

Cell	GI ₅₀ /µmol L ⁻¹												
cultures	7c	7e	8b	8e	9g	18b	20a	25d	26c	26d			
				(Colon Canc	er							
COLO 205	17.1	39.1	26.6	20.9	27.8	>100	17.5	>100	19.2	16.8			
HCC-2998	24.8	70.1	32.6	19.2	30.7	>100	16.1	>100	52.8	19.4			
HCT-116	14.8	39.2	17.5	28.4	30.3	53.8	11.3	85.4	22.1	13.8			
HCT-15	13.1	49.4	31.3	26.0	31.3	>100	14.7	>100	29.7	18.9			
HT 29	30.5	51.0	41.5	20.1	24.3	>100	12.4	>100	27.1	16.7			
KM 12	1 21	55.5	21.5	22.3	89.7	>100	12.5	>100	32.5	20.4			
SW-620	14.6	97.8	19.9	23.5	24.2	>100	14.2	>100	32.0	18.3			
	1110	9710	1919	2010	CNS Canc	er	1=	, 100	0210	1010			
SF-268	29.6	56.1	30.8	15.7	17.1	>100	11.6	>100	33.6	16.7			
SF-295	35.0	_	21.9	18.3	17.2	38.3	13.5	>100	24.6	16.5			
SF-539	34.4	96.8	30.2	17.0	17.0	>100	15.6	>100	27.5	17.4			
SNB-19	>100	66.3	71.7	18.8	35.9	>100	13.1	>100	44.3	16.3			
SNB-75	21.3	59.8	26.5	24.5	20.0	>100	8.11	40.7	24.13	13.4			
U251	26.6	73.5	32.0	18.3	38.9	>100	14.1	>100	4.9	18.1			
					Melanoma	a							
LOX IMVI	11.7	>100	27.0	17.1	20.4	>100	13.6	>100	20.5	16.1			
MALME-3M	0.726	37.7	40.4	23.2	30.0	>100	13.2	>100	23.5	21.2			
M14	30.4	38.9	34.8	18.5	23.8	>100	13.5	>100	33.2	15.8			
SK-MEL-2	89.4	39.9	18.7	20.6	3.92	>100	13.9	>100	24.6	18.5			
SK-MEL-28	16.3	60.7	26.9	21.7	31.2	>100	14.4	>100	50.8	17.9			
SK-MEL-5	18.6	31.4	15.8	15.7	25.1	>100	12.0	>100	14.6	14.4			
UACC-257	34.6	65.4	51.7		15.1	>100	12.3	>100	24.6	16.5			
UACC-62	20.8	37.5	22.9	17.6	32.1	>100	10.0	>100	28.7	15.9			
				0	varian Can	icer							
IGROV1	6.51	6.12	15.8	13.3	22.0	88.8	_	_	25.4	_			
OVCAR-3	15.7	47.5	18.5	16.0	21.9	>100	13.0	>100	25.0	20.0			
OVCAR-4	22.8	50.3	27.1	34.5	27.0	>100	12.9	>100	26.3	20.5			
OVCAR-5	15.9	44.7	68.4	28.1	65.0	>100	14.7	>100	26.9	22.9			
OVCAR-8	31.9	89.9	38.7	31.7	31.0	>100	16.5	>100	33.2	22.4			
SK-OV-3	>100	66.2	99.6	24.5	24.9	>100	17.0	>100	44.6	24.0			
Sir O V S	2100	00.2	<i>))</i> .0	21.5	Renal Canc	er	17.0	2100	11.0	21.0			
768-0	66.0	72.1	60.0	19.2	35.6	>100	14.5	>100	52.0	62.1			
A498	_	41.9	_	23.5	33.0	_	11.2	>100	25.8	29.0			
ACHN	10.2	53.0	32.6	28.9	34.7	78.0	14.8	>100	25.8	>100			
CAKI-1	15.2	66.2	16.8	19.1	19.4	41.4	8.81	>100	23.8	>100			
RXF-393	20.8	51.7	43.4	19.3	53.4	>100	14.2	39.9	37.6	32.1			
SN12C	45.5	>100	39.6	22.8	32.8	>100	12.4	>100	37.0	40.6			
TK-10	3.04	>100	48.8	32.9	29.0	55.1	13.5	>100	40.1	>100			
UO-31	20.6	7.61	18.7	14.2	24.5	>100	11.0	>100	23.3	35.4			
0001	2010		1017	P1	rostate Can	icer	1110	, 100	2010				
PC-3	19.1	31.8	19.8	15.9	24.8	4.27	11.8	>100	13.2	64.1			
DU-145	17.4	>100	20.3	20.4	25.2	>100	15.7	>100	40.0	37.8			
00115	17.1	2100	20.5	20.1 I	Breast Cano	cer	15.7	2100	10.0	57.0			
MCF7	25.3	37.6	32.7	16.6	10.2	>100	14.2	>100	26.8	54.1			
NCI/ADR-RES	46.0	41.4	35.7	28.6	26.1	>100	12.6	>100	27.2	59.7			
MDA-MB-231/	'A 21.3	46.0	13.3	16.9	25.2	>100	12.4	51.7	25.2	28.8			
HS 578T	2.26	41.8	13.4	21.2	22.1	79.8	10.0	70.7	26.8	49.3			
MDA-MB-435	32.6	63.3	27.5	18.9		>100	12.6	>100	32.8	40.9			
MDA-N	_	_	_	_	_	_	_	_	_	_			
BT-549	15.1	44.8	17.7	16.0	12.8	>100	15.4	48.2	35.8	33.1			
T-47D	11.3	31.3	46.4	18.6	25.9	>100	12.4	>100	33.4	53.6			

Table 7 (continued)

Note. GI_{50} is the concentration of compound causing 50% retardation of the cell culture growth rates.

ently, the presence of the methoxyphenyl and chlorophenyl substituent on the nitrogen atom of the pyridine ring is a necessary condition for the cytotoxic activity to be exhibited by all the compounds represented in this series. The results obtained give us substantiation of further search for cytotoxic agents in the series under study, as well as among other fluorine-containing heterocycles.

Experimental

¹H, ¹³C{¹H} and ³¹P{¹H} NMR spectra of compounds synthesized were recorded on a Bruker AMX-400 spectrometer (400.13, 100.61, and 160.62 MHz, respectively), ¹⁹F NMR spectra were recorded on a Bruker WP-200SY and Bruker AMX-400 spectrometers (188.31 and 376.47 MHz, respectively). Chemical shifts ¹H and ¹³C were determined relatively to the residual signal of the deuterated solvent and recalculated to SiMe₄. Chemical shifts of ¹⁹F and ³¹P were determined relatively to the external standards, CF₃COOH and 85% aq. H₃PO₄, respectively.

Compounds 15, 21a, 24c, and 25c were studied by X-ray diffraction analysis. The X-ray diffraction experiments of single crystals of 15, 21a, 24c, and 25c were performed on a SMART 1000 CCD diffractometer (λ (Mo-K α) = 0.71073 Å, a graphite monochromator, ω -scanning). The main crystal and structural parameters are given in Table 8. Analysis of measured intensities was performed using the SAINT Plus²⁵ and SADABS programs.²⁶ The structures were solved by the direct method and refined by the full-matrix least squares method in anisotropic approximation for nonhydrogen atoms against F^2_{hkl} using the SHELXTL-97 program package (see Ref. 27). Hydrogen atoms were placed in the geometrically calculated positions and refined by the riding model $(U_{iso}(H) = nU_{eq}(C))$, where n = 1.5 for the carbon atoms of the methyl group, n = 1.2 for other C atoms). The disorder of the ethyl group in compound 25c over two positions was an exception, the both components of which were refined isotropically. The hydrogen atoms of the amino groups were localized from the differential synthesis of electron density and then the N-H distance was normalized by the value of 0.9 Å. Hydrogen atoms were refined by the riding model $(U_{iso}(H) = nU_{eq}(N))$, where n = 1.2). The independent part of the unit cell contains one

Table 8. Crystallog	graphic data and	parameters of X-ra	y diffraction	experiments fo	r compounds 1	5, 21a,	24c,	25c
---------------------	------------------	--------------------	---------------	----------------	---------------	---------	------	-----

Parameter	15	21 a	24c	25c
Molecular formula	C ₁₇ H ₁₃ F ₃ N ₂ O ₂	C ₂₂ H ₂₇ F ₆ N ₂ O ₄ P	C ₂₆ H ₃₇ F ₄ N ₂ O ₆ P	C ₂₂ H ₂₇ F ₄ N ₂ O ₅ P
Molecular weight	334.29	528.43	580.55	506.43
T/K	110(2)	295(2)	110(2)	230(2)
Crystal system	Monoclinic	Triclinic	Orthorhombic	Monoclinic
Space group	C2/c	<i>P</i> -1	$P2_{1}2_{1}2_{1}$	$P2_1/n$
a/Å	23.390(5)	9.918(5)	9.149(2)	12.548(3)
b/Å	7.6033(16)	10.040(5)	13.981(4)	15.156(4)
c/Å	18.145(4)	13.247(7)	22.486(6)	12.548(3)
α/deg	90	87.48(4)	90	90
β/deg	111.081(5)	68.34(4)	90	109.139(5)
γ/deg	90	85.17(4)	90	90
$V/Å^3$	3011.0(11)	1221.5(11)	2876.2(13)	2447.3(10)
Z	8	2	4	4
Absorption coefficient μ/mm^{-1}	0.123	0.190	0.163	0.178
F(000)	1376	548	1224	1056
$d_{\rm calc}/{\rm g}{\rm cm}^{-3}$	1.475	1.437	1.341	1.374
Scanning range on θ/deg .	1.87-29.00	2.04-26.06	1.72-30.07	1.92-25.99
Number of reflections				
measured	11234	5094	31466	19802
independent	3988	4800	8368	4718
$(R_{\rm int})$	(0.0419)	(0.0151)	(0.0475)	(0.0291)
with $I \ge 2\sigma(I)$	2026	3863	5448	3270
Number of parameters	218	320	357	308
Data completeness (%)	99.2	99.0	99.3	98.0
GOOF	1.011	1.171	0.993	1.006
Convergence of refinement from reflections $(R_1(F))$ with $I > 2\sigma(I)^a$	0.0506	0.0469	0.0553	0.0649
Convergence of refinement from all the reflections $(wR_2(F^2))^b$	0.1089	0.1482	0.1151	0.1508
Residual electron density (max/min), <i>e</i> /Å ⁻³	0.318/-0.241	0.347/-0.324	0.650/-0.316	0.985/-0.508

^{*a*} $R_1 = \sum |F_0 - |F_c|| / \sum (F_0).$ ^{*b*} $wR_2 = (\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]^{1/2}.$

molecule for all the compounds except **24c**, which also includes a solvate molecule of diethyl ether.

Compounds 3–6 were synthesized as described earlier.¹⁰

Diethyl [2-amino-3-cyano-1-(2,6-dimethylphenyl)-6-methyl-4-(trifluoromethyl)-1,4-dihydropyridin-4-yl]phosphonate (7a). A solution of alkene **3** (0.31 g, 1.1 mmol) in acetone (1.5 mL) was added to a solution of 2,6-dimethylaniline (0.12 g, 0.99 mmol) in acetone (2.0 mL) at 20 °C with stirring. The reaction mixture was stirred for 24 h at 20 °C. The solvent was evaporated *in vacuo*. Carbon tetrachloride (7 mL) was added to the residue, a precipitate was filtered off and washed with pentane to obtain the product (0.29 g, 67%) (see Tables 1 and 2). ¹³C NMR (DMSO-d₆), δ: 16.8 (m, OCH₂<u>Me</u>); 17.2, 17.4, and 19.8 (all s, Me); 46.3 (m, C(3)); 63.6 (m, O<u>C</u>H₂Me); 91.7 (d, C(5), ² $J_{C,P}$ = 8 Hz); 121.0 (s, CN); 122.4 (dq, CF₃, ¹ $J_{C,F}$ = 283 Hz and ² $J_{C,P}$ = 15 Hz); 129.3 and 129.4 (both s, C(2') and C(6')); 130.1 (s, C(3'), C(5')); 134.1 (s, C(1')); 138.1 (s, C(4')); 138.3 (d, C(6), ³ $J_{C,P}$ = 9 Hz); 155.0 (d, C(2), ³ $J_{C,P}$ = 3 Hz).

Compounds **7b**—**g** were synthesized similarly from alkene **3**, acetone, and corresponding arylamines (see Tables 1 and 2).

Diethyl [2-amino-3-cyano-1-(4-methoxyphenyl)-4-(trifluoromethyl)-4,5,6,7-tetrahydro-1*H*-cyclopenta[*b*]pyridin-4-yl]phosphonate (8b). A solution of alkene 3 (0.31 g, 1.1 mmol) in CCl₄ (1.0 mL) was added to a solution of *p*-anisidine (0.12 g, 0.98 mmol) and cyclopentanone (0.10 g, 1.2 mmol) in CCl₄ (5.0 mL) at 20 °C with stirring. The reaction mixture was stirred for 24 h at 20 °C, a precipitate formed was filtered off and washed with pentane to obtain the product (0.29 g, 62%) (see Tables 1 and 2).

Compounds **8a,c**—g were synthesized similarly from alkene **3**, cyclopentanone, and corresponding arylamines (see Tables 1 and 2). In the case of compounds **8a,c,f,g**, the products were isolated by preparative TLC on silica gel using an ethyl acetate—light petroleum (3:1) solvent mixture as an eluent.

Diethyl 2-amino-1-(4-chlorophenyl)-3-cyano-4-trifluoromethyl-1,4,5,6,7,8-hexahydroquinolin-4-ylphosphonate (9a). A solution of alkene **3** (0.31 g, 1.1 mmol) in CCl₄ (1.0 mL) was added to a solution of 4-chloroaniline (0.13 g, 1.02 mmol) and cyclohexanone (0.12 g, 1.2 mmol) in CCl₄ (5.0 mL) at 20 °C with stirring. The reaction mixture was stirred for 48 h at 20 °C, the solvent was evaporated *in vacuo*. The product (0.23 g, 47%) was isolated by preparative TLC on silica gel using an ethyl acetate—light petroleum (3 : 1) solvent mixture as an eluent (see Tables 1 and 2).

Compounds **9b**—g were synthesized similarly from alkene **3**, cyclohexanone, and corresponding arylamines (see Tables 1 and 2).

Diethyl 3-cvano-4-trifluoromethyl-2-(4-trifluoromethylphenvlamino)-1,4,5,6,7,8-hexahvdroquinolin-4-vllphosphonate (11) and diethyl {2-amino-3-cyano-4-trifluoromethyl-1-[4-(trifluoromethyl)phenyl]-1,4,5,6,7,8-hexahydroquinolin-4-yl} phosphonate (9f). A solution of alkene 3 (0.30 g, 1.1 mmol) in CCl_4 (0.5 mL) was added to a solution of 4-(trifluoromethyl)aniline (0.16 g, 1.00 mmol) and cyclohexanone (0.12 g, 1.22 mmol) in CCl₄ (3.5 mL) at 20 °C with stirring. The reaction mixture was stirred for 16 h at 20 °C, a precipitate formed was filtered off and washed with pentane to obtain compound 11 (0.06 g, 11.5%). Found (%): C, 50.33; H, 4.68; F, 21.56; N, 8.10; P, 5.99. C₂₂H₂₄F₆N₃O₃P. Calculated (%): C, 50.48; H, 4.62; F, 21.78; N, 8.03; P, 5.92. ¹⁹F NMR (DMSO-d₆), δ : 17.30 (d, 3 F, CF₃, ³ $J_{F,P}$ = 4.0 Hz); 18.51 (s, 3 F, $\underline{CF}_3 - \underline{C}_6H_4$). ³¹P NMR (DMSO-d₆), δ : 17.80 (q, 1 P, $P(O)(OEt)_2$, ${}^{3}J_{F,P} = 4.0$ Hz). ¹H NMR (DMSO-d₆), δ : 1.29 (m, 6 H, OCH₂Me); 1.50 and 1.65 (both m, 2 H each, (CH₂)₄); 1.96 and 2.57 (both m, 1 H each, (CH₂)₄); 2.09 (br.s, 2 H, (CH₂)₄); 4.12 (m, 4 H, OC<u>H</u>₂Me); 7.06 and 7.57 (both d, 2 H each, Ar, J = 8.4 Hz); 8.90 and 9.08 (both s, 1 H each, NH). ¹³C NMR (DMSO-d₆), δ : 21.4 and 21.6 (both d, OCH₂Me, ³ $J_{C,P} = 5$ Hz); 26.2, 26.8, 30.3, and 31.7 (all s, C(5), C(6), C(7), C(8)); 68.0, and 68.8 (both d, OCH₂Me, ² $J_{C,P} = 7$ Hz); 104.6 (d, C(4a), ² $J_{C,P} = 6$ Hz); 121.5 (s, C(2[']), C(6['])); 124.0 (s, CN); 125.3 (q, C(4[']), ² $J_{C,F} = 32$ Hz); 129.3 (dq, C(4)CF₃, ¹ $J_{C,F} = 287$ Hz and ² $J_{C,P} = 12$ Hz); 129.9 (q, C(4['])CF₃, ¹ $J_{C,F} = 271$ Hz); 131.5 (q, C(3[']), C(5[']), ³ $J_{C,F} = 3$ Hz); 139.2 (d, C(8a), ³ $J_{C,P} = 7$ Hz); 151.1 (s, C(1['])); 155.1 (s, C(2)).

159

The solvent from the filtrate was evaporated *in vacuo*. Compound **9f** (0.35 g, 54%) was isolated by preparative TLC on silica gel (eluent: ethyl acetate—light petroleum (6 : 1) (see Tables 1 and 2). ¹³C NMR (DMSO-d₆), δ : 21.4 and 21.6 (both d, OCH₂Me, ³J_{C,P} = 5 Hz); 27.0, 27.1, 30.8, and 33.4 (all s, C(5), C(6), C(7), C(8)); 53.5 (m, C(3)); 56.6 (dq, C(4), ²J_{C,F} = 25 Hz and ¹J_{C,P} = 146 Hz); 68.1 and 68.5 (both d, OCH₂Me, ²J_{C,P} = 8 Hz); 108.3 (d, C(4a), ²J_{C,P} = 7 Hz); 125.6 (s, CN); 129.1 (q, C(4')<u>C</u>F₃, ¹J_{C,F} = 272 Hz); 129.7 (dq, C(4)<u>C</u>F₃, ¹J_{C,F} = 287 Hz and ²J_{C,P} = 12 Hz); 132.0 (q, C(3'), C(5'), ³J_{C,F} = 4 Hz); 134.7 (q, C(4'), ²J_{C,F} = 32 Hz); 136.6 (s, C(2'), C(6')); 139.9 (d, C(8a), ³J_{C,P} = 8 Hz); 146.3 (s, C(1')); 160.6 (s, C(2)).

Methyl 2-amino-4-diethoxyphosphoryl-1-(2,6-dimethylphenyl)-6-methyl-4-(trifluoromethyl)-1,4-dihydropyridine-3-carboxylate (12a). A solution of alkene 4 (0.34 g, 1.09 mmol) in acetone (1.0 mL) was added to a solution of 2,6-dimethylaniline (0.12 g, 0.99 mmol) in acetone (1.0 mL) at 20 °C with stirring. The reaction mixture was kept for 72 h at 20 °C. The product (0.27 g, 57%) was isolated by preparative TLC on silica gel (eluent: ethyl acetate-light petroleum (3:1)), m.p. 89-90 °C. Found (%): C, 52.97; H, 5.94; F, 11.86; N, 5.89; P, 6.46. C₂₁H₂₈F₃N₂O₅P. Calculated (%): C, 52.94; H, 5.92; F, 11.96; N, 5.88; P, 6.50. ¹⁹F NMR (CDCl₃), δ : 7.92 (d, 3 F, CF₃, ³J_{FP} = 2.4 Hz). ³¹P NMR (CDCl₃), δ: 20.57 (br.s, 1 P, P(O)(OEt)₂). ¹H NMR (CDCl₃), δ: 1.33 (m, 6 H, OCH₂Me); 1.46 (br.s, 3 H, C(6)Me); 2.18 (s, 6 H, Me); 3.70 (s, 3 H, CO₂Me); 4.19 (m, 4 H, OCH_2Me); 5.13 (d, 1 H, H(5), ${}^{3}J_{H,P} = 7.8$ Hz); 6.76 (br.s, 2 H, NH₂); 7.17 (m, 2 H, Ar); 7.26 (m, 1 H, Ar).

Compounds **12b,c** were synthesized similarly from alkene **4**, acetone, and corresponding arylamines.

Methyl 2-amino-4-diethoxyphosphoryl-1-(4-methoxyphenyl)-6-methyl-4-trifluoromethyl-1,4-dihydropyridine-3-carboxylate (12b). The yield was 48%, m.p. 111–113 °C. Found (%): C, 50.30; H, 5.49; F, 11.70; N, 5.86. $C_{20}H_{26}F_3N_2O_6P$. Calculated (%): C, 50.21; H, 5.48; F, 11.91; N, 5.86. ¹⁹F NMR (DMSO-d₆), δ : 10.20 (br.s, 3 F, CF₃). ³¹P NMR (DMSO-d₆), δ : 22.35 (q, 1 P, P(O)(OEt)₂, ³J_{F,P} = 1.6 Hz). ¹H NMR (DMSO-d₆), δ : 12.4 (m, 6 H, OCH₂Me); 1.49 (d, 3 H, C(6)Me, ⁵J_{H,P} = 1.9 Hz); 3.51 (s, 3 H, CO₂Me); 3.81 (s, 3 H, OMe); 4.05 (m, 4 H, OCH₂Me); 4.87(d, 1 H, H(5), ³J_{H,P} = 8.1 Hz); 7.07(m, 4 H, Ar); 7.15 (br.s, 2 H, NH₂).

Methyl 2-amino-4-diethoxyphosphoryl-6-methyl-4-trifluoromethyl-1-(4-(trifluoromethyl)phenyl)-1,4-dihydropyridine-3carboxylate (12c). The yield was 41%. Found (%): C, 46.40; H, 4.58; F, 21.84; N, 5.44. $C_{20}H_{23}F_6N_2O_5P$. Calculated (%): C, 46.52; H, 4.49; F, 22.07; N, 5.42. ¹⁹F NMR (DMSO-d₆), &: 10.37 (br.s, 3 F, CF₃); 17.16 (s, 3 F, CF₃). ³¹P NMR (DMSO-d₆), &: 19.92 (q, 1 P, P(O)(OEt)₂, ³J_{F,P} = 2.2 Hz). ¹H NMR (DMSO-d₆), 8: 1.26 (t, 6 H, OCH₂Me, J = 7.2 Hz); 1.50 (d, 3 H, C(6)Me, ⁵J_{H,P} = 1.6 Hz); 3.54 (s, 3 H, CO₂Me); 4.09 (m, 4 H, OCH₂Me); 4.96 (d, 1 H, H(5), ³J_{H,P} = 8.1 Hz); 7.36 (br.s, 2 H, NH₂); 7.50 and 7.90 (both d, 2 H each, Ar, J = 8.1 Hz).

Methyl 2-amino-4-diethoxyphosphoryl-1-(4-methoxyphenyl)-4-trifluoromethyl-4,5,6,7-tetrahydro-1H-cyclopenta[b]pyridine-3-carboxylate (13a) and 1-(4-methoxyphenyl)-2-oxo-4trifluoromethyl-2,5,6,7-tetrahydro-1H-cyclopenta[b]pyridine-3carbonitrile (15). A solution of alkene 4 (0.34 g, 1.09 mmol) in CCl_4 (1.0 mL) was added to a solution of *p*-anisidine (0.06 g, 0.49 mmol) and cyclopentanone (0.06 g, 0.7 mmol) in CCl₄ (1.0 mL) at 20 °C with stirring. The reaction mixture was kept for 72 h at 20 °C. The products were isolated by preparative TLC on silica gel (eluent: ethyl acetate-light petroleum (3:1)). Compound 13a (0.05 g, 20%) was an amorphous substance. Found (%): C, 51.69; H, 5.65; N, 5.53. $C_{22}H_{28}F_3N_2O_6P$. Calculated (%): C, 52.38; H, 5.59; N, 5.55. ¹⁹F NMR (CDCl₃), δ: 14.99 (br.s, 3 F, CF₃). ³¹P NMR (DMSO-d₆), δ: 19.80 (br.s, 1 P, P(O)(OEt)₂). ¹H NMR (DMSO-d₆), δ: 1.24 (m, 6 H, OCH₂Me); 1.65 (m, 2 H, (CH₂)₃); 1.87, 2.03, 2.42, and 2.87 (all m, 1 H each, (CH₂)₃); 3.53 (s, 3 H, CO₂Me); 3.81 (s, 3 H, OMe); 4.04 (m, 4 H, OCH₂Me); 7.04–7.16 (m, 6 H, Ar and NH₂).

Compound **15** (0.06 g, 37%), m.p. 151 °C. Found (%): C, 61.00; H, 3.93; F, 16.98; N, 8.38. $C_{17}H_{13}F_3N_2O_2$. Calculated (%): C, 61.08; H, 3.92; F, 17.05; N, 8.38. ¹⁹F NMR (DMSO-d₆), δ : 15.32 (s, 3 F, CF₃). ¹H NMR (DMSO-d₆), δ : 2.11, 2.66, and 3.03 (all m, 2 H each, (CH₂)₃); 3.87 (s, 3 H, OMe); 7.03 and 7.13 (both d, 2 H each, Ar, J = 8.7 Hz).

Methyl 2-amino-1-(2,6-dimethylphenyl)-4-diethoxyphosphoryl-4-trifluoromethyl-4,5,6,7-tetrahydro-1*H*-cyclopenta[*b*]pyridine-3-carboxylate (13b) was obtained similarly to 13a from 2,6-dimethylaniline, cyclopentanone, and alkene 4. The yield was 51%, m.p. 83–85 °C. Found (%): C, 54.90; H, 6.03; F, 11.55; N, 5.56. $C_{23}H_{30}F_{3}N_{2}O_{5}P$. Calculated (%): C, 54.98; H, 6.02; F, 11.34; N, 5.58. ¹⁹F NMR (DMSO-d₆), δ : 16.34 (br.s, 3 F, CF₃). ³¹P NMR (DMSO-d₆), δ : 20.26 (q, 1 P, P(O)(OEt)₂, ³J_{F,P} = = 2.8 Hz). ¹H NMR (DMSO-d₆), δ : 1.22 (m, 6 H, OCH₂Me); 1.75 (m, 4 H, (CH₂)₃); 2.07 and 2.11 (both s, 3 H each, Me); 2.42 and 2.91 (both m, 1 H each, (CH₂)₃); 3.52 (s, 3 H, CO₂Me); 4.09 (m, 4 H, OCH₂Me); 7.18–7.31 (m, 5 H, Ar and NH₂).

Diethyl 1-cyano-4-(4-methoxyphenylimino)-2,2-bis(trifluoromethyl)pentylphosphonate (16a). A solution of alkene 5 (0.20 g, 0.62 mmol) in CCl₄ (1.0 mL) was added to a suspension of p-anisidine (0.07 g, 0.57 mmol), acetone (0.1 g, 1.7 mmol), and anhydrous sodium sulfate in CCl₄ (1.0 mL) at 20 °C with stirring. The reaction mixture was stirred for 2 h at 20 °C. The drying agent was filtered off and washed with CCl_4 (10 mL), the solvent was evaporated in vacuo. Compound 16a (0.27 g, 96%) was isolated by preparative TLC on silica gel (eluent: chloroform-acetone (15:1)) as light vellow oilv substance. Found (%): C. 46.90: H, 4.77; F, 23.16; N, 5.66; P, 6.30. $C_{19}H_{23}F_6N_2O_4P$. Calculated (%): C, 46.73; H, 4.75; F, 23.34; N, 5.74; P, 6.34. ¹⁹F NMR $(CDCl_3)$, δ : 9.04 (q, 3 F, CF₃, ${}^4J_{F,F}$ = 9.8 Hz); 13.58 (br.q, 3 F, CF₃, ${}^{4}J_{F,F} = 9.8 \text{ Hz}$). ${}^{31}P \text{ NMR} (\text{CDCl}_3), \delta: 11.78 (br.s, 1 P, P(O)(OEt)_2)$. ¹H NMR (CDCl₃), δ : 1.33 and 1.41 (both t, 3 H each, OCH₂Me, J = 7.1 Hz); 1.90 (s, 3 H, Me); 3.40 (AB-system, 2 H, CH₂, ${}^{2}J_{\rm H} = -16.5 \,{\rm Hz}$; 3.81 (s, 3 H, OMe); 4.18 (br.m, 2 H, OC<u>H</u>₂Me); 4.30 (m, 2 H, OC<u>H</u>₂Me); 6.25 (d, 1 H, CH, ${}^{2}J_{H,P} = 28.8$ Hz); 6.62 and 6.87 (both d, 2 H each, Ar, J = 8.8 Hz).

Diethyl 4-(4-chlorophenylimino)-1-cyano-2,2-bis(trifluoromethyl)pentylphosphonate (16b) was obtained similarly to 16a from alkene 5, acetone, and 4-chloroaniline as light brown oily substance. The yield was 93.5%. Found (%): C, 43.70; H, 4.12; Cl, 7.26; F, 22.81; N, 5.71. $C_{18}H_{20}ClF_6N_2O_3P$. Calculated (%): C, 43.87; H, 4.09; Cl, 7.19; F, 23.13; N, 5.68. ¹⁹F NMR (CDCl₃), δ: 9.08 (q, 3 F, CF₃, ${}^{4}J_{F,F}$ = 10.6 Hz); 13.56 (dq, 3 F, CF₃, ${}^{4}J_{F,F}$ = 10.6 Hz, ${}^{4}J_{F,P}$ = 2.4 Hz). ¹H NMR (CDCl₃), δ: 1.31 and 1.41 (both t, 3 H each, OCH₂<u>Me</u>, *J* = 7.1 Hz); 1.88 (m, 3 H, Me); 3.41 (AB-system, 2 H, CH₂, ${}^{2}J_{H}$ = -16.9 Hz); 4.19 (br.m, 2 H, OC<u>H₂</u>Me); 4.31 (m, 2 H, OC<u>H₂</u>Me); 6.07 (d, 1 H, CH, ${}^{2}J_{H,P}$ = 28.7 Hz); 6.61 and 7.29 (both dd, 2 H each, Ar, *J* = 8.4 Hz and 1.6 Hz).

Diethyl 1-cyano-4-oxo-2,2-bis(trifluoromethyl)pentylphosphonate (17). A solution of alkene **5** (0.25 g, 0.77 mmol) in CCl₄ (1.0 mL) was added to a solution of 4-chloroaniline (0.085 g, 0.67 mmol) and acetone (0.1 g, 1.7 mmol) in CCl₄ (1.0 mL) at 20 °C with stirring. The reaction mixture was kept for 120 h at 20 °C. The product (0.26 g, 90%) was isolated by preparative TLC on silica gel (eluent: chloroform—acetone (15 : 1)), m.p. 92—93 °C. Found (%): C, 37.65; H, 4.21; F, 29.68; N, 3.66; P, 8.02. C₁₂H₁₆F₆NO₄P. Calculated (%): C, 37.61; H, 4.21; F, 29.74; N, 3.65; P, 8.08. ¹⁹F NMR (CDCl₃), δ : 9.32 (q, 3 F, CF₃, ⁴J_{F,F} = 10.6 Hz); 11.85 (dq, 3 F, CF₃, ⁴J_{F,F} = 10.6 Hz, ⁴J_{F,P} = 2.4 Hz). ³¹P NMR (CDCl₃), δ : 11.26 (q, 1 P, P(O)(OEt)₂, ⁴J_{F,P} = 2.4 Hz). ¹H NMR (CDCl₃), δ : 1.42 (m, 6 H, OCH₂Me); 2.26 (s, 3 H, Me); 3.50 (AB-system, 2 H, CH₂, ²J_H = -18.1 Hz); 3.81 (s, 3 H, OMe); 4.28 (m, 4 H, OCH₂Me); 5.19 (d, 1 H, CH, ²J_{H,P} = 28.0 Hz).

Compound 17 was isolated similarly from the reaction mixtures obtained by the reaction of alkene 5, acetone, and *p*-anisidine and alkene 5, acetone, and 4-phenoxyaniline. The yields were 93% and 89%, respectively.

Diethyl 2-amino-1-(4-methoxyphenyl)-6-methyl-4,4-bis-(trifluoromethyl)-1,4-dihydropyridin-3-ylphosphonate (18a). A solution of compound 16a (0.09 g) in CCl_4 (5 mL) was refluxed for 18 h. The solvent was evaporated *in vacuo*. Compound 18a (0.045 g, 50%) was isolated by preparative TLC on silica gel (eluent: chloroform—acetone (60 : 5)) (see Tables 3 and 4).

Compound **18b** was synthesized similarly from **16b**. The yield was 48% (see Tables 3 and 4).

Diethyl 2-amino-6-methyl-1-(4-phenoxyphenyl)-4,4-bis(trifluoromethyl)-1,4-dihydropyridin-3-ylphosphonate (18c). A solution of alkene 5 (0.25 g, 0.76 mmol) in CCl₄ (1.0 mL) was added to a suspension of 4-phenoxyaniline (0.13 g, 0.70 mmol), acetone (0.12 g, 2.07 mmol), and anhydrous sodium sulfate (1.5 g) in CCl₄ (1.0 mL) at 20 °C with stirring. The reaction mixture was stirred for 2 h at 20 °C. The drying agent was filtered off and washed with CCl₄ (10 mL), the solvent was evaporated *in vacuo*. The residue (16c) was dissolved in CCl₄ (5 mL) and refluxed for 18 h. The solvent was evaporated *in vacuo*. Compound 18c (0.16 g, 41%) was isolated by preparative TLC on silica gel (eluent: chloroform—acetone (60 : 5)) (see Tables 3 and 4).

Diethyl 2-amino-1-(4-methoxyphenyl)-4,4-bis(trifluoromethyl)-4,5,6,7-tetrahydro-1*H*-cyclopenta[*b*]pyridin-3-ylphosphonate (20a). A solution of alkene 5 (0.21 g, 0.65 mmol) in CCl₄ (1.0 mL) was added to a solution of *p*-anisidine (0.07 g, 0.57 mmol) and cyclopentanone (0.09 g, 1.07 mmol) in CCl₄ (1.0 mL) at 20 °C with stirring. The reaction mixture was kept for 48 h at 20 °C. The product (0.22 g, 76%) was isolated by preparative TLC on silica gel (eluent: chloroform—acetone (10 : 1)) (see Tables 3 and 4).

Compounds 20b-d were synthesized similarly from alkene 5, cyclopentanone, and corresponding arylamines (the reaction time was 120 h) (see Tables 3 and 4).

Diethyl 2-amino-1-(4-methoxyphenyl)-4,4-bis(trifluoromethyl)-1,4,4a,5,6,7-hexahydroquinolin-3-ylphosphonate (21a). A solution of alkene 5 (0.21 g, 0.65 mmol) in CCl₄ (1.0 mL) was added to a solution of *p*-anisidine (0.07 g, 0.57 mmol) and cyclohexanone (0.13 g, 1.3 mmol) in CCl₄ (1.0 mL) at 20 °C with stirring. The reaction mixture was kept for 48 h at 20 °C. The product (0.17 g, 57%) was isolated by preparative TLC on silica gel (eluent: CCl₄—acetone (5 : 1)) (see Tables 3 and 4).

Compound **21b** (26%) was obtained similarly from alkene **5**, cyclohexanone, and 3-(trifluoromethyl)aniline (the reaction time was 120 h) (see Tables 3 and 4).

Ethyl 2-amino-3-diethoxyphosphoryl-1-(2,6-dimethylphenyl)-6-methyl-4-trifluoromethyl-1,4-dihydropyridine-4-carboxylate (22a). A solution of alkene 6 (0.16 g, 0.48 mmol) in CCl_4 (1.0 mL) was added to a solution of 2,6-dimethylaniline (0.05 g, 0.41 mmol) and acetone (0.1 g, 1.7 mmol) in CCl_4 (1.0 mL) at 20 °C with stirring. The reaction mixture was kept for 48 h at 20 °C. The product (0.07 g, 35%) was isolated by preparative TLC on silica gel (eluent: ethyl acetate—light petroleum (4 : 1)) (see Tables 5 and 6).

Compounds **22b,c** were obtained similarly from alkene 6, acetone, and corresponding arylamines (the reaction time was 72 h) (see Tables 5 and 6).

Ethyl 2-amino-3-diethoxyphosphoryl-6-methyl-2-phenylamino-4-trifluoromethyl-1,4-dihydropyridine-4-carboxylate (23a). A solution of alkene 6 (0.41 g, 1.25 mmol) in CCl₄ (1.0 mL) was added to a solution of aniline (0.1 g, 1.08 mmol) and acetone (0.15 g, 2.59 mmol) in CCl₄ (1.5 mL) at 20 °C with stirring. The reaction mixture was kept for 72 h at 20 °C. The product (0.07 g, 14%) was isolated by preparative TLC on silica gel (eluent: ethyl acetate—light petroleum (2 : 3)) (see Tables 5 and 6).

Compounds **23b,c** were obtained similarly from alkene 6, acetone, and corresponding arylamines (the reaction time was 72 h) (see Tables 5 and 6).

Ethyl 2-amino-3-diethoxyphosphoryl-1-(4-phenoxyphenyl)-4-trifluoromethyl-4,5,6,7-tetrahydro-1*H*-cyclopenta[*b*]pyridine-4-carboxylate (24a) and ethyl 3-diethoxyphosphoryl-2-(4-phenoxyphenylamino)-4-trifluoromethyl-4,5,6,7-tetrahydro-1*H*cyclopenta[*b*]pyridine-4-carboxylate (25a). A solution of alkene 6 (0.20 g, 0.61 mmol) in CCl₄ (1.0 mL) was added to a solution of 4-phenoxyaniline (0.1 g, 0.54 mmol) and cyclopentanone (0.09 g, 1.07 mmol) in CCl₄ (1.5 mL) at 20 °C with stirring. The reaction mixture was kept for 72 h at 20 °C. Compounds **24a** (0.11 g) and **25a** (0.10 g) were isolated by preparative TLC on silica gel (eluent: ethyl acetate—light petroleum (2 : 1)) (see Tables 5 and 6).

Compounds 24b-e and 25b-d were obtained similarly from alkene 6, cyclopentanone, and corresponding arylamines (see Tables 5 and 6).

Ethyl 2-amino-3-diethoxyphosphoryl-1-phenyl-4-trifluoromethyl-1,4,4a,5,6,7-hexahydroquinoline-4-carboxylate (26a). A solution of alkene 6 (0.36 g, 1.11 mmol) in CCl₄ (1.0 mL) was added to a solution of aniline (0.09 g, 0.97 mmol) and cyclohexanone (0.19 g, 1.94 mmol) in CCl₄ (1.0 mL) at 20 °C with stirring. The reaction mixture was kept for 72 h at 20 °C. Compound 26a (0.20 g, 41%) was isolated by preparative TLC on silica gel (eluent: ethyl acetate—light petroleum (3 : 1)) (see Tables 5 and 6).

Compounds **26b**—**f** were obtained similarly from alkene **6**, cyclohexanone, and corresponding arylamines (see Tables 5 and 6).

References

 A. S. Golubev, P. V. Pasternak, A. F. Shidlovskii, L. N. Savel'eva, B. B. Averkiev, V. N. Nesterov, M. Yu. Antipin, A. S. Peregudov, N. D. Chkanikov, *J. Fluorine. Chem.*, 2002, 114, 63. K. V. Komarov, N. D. Chkanikov, M. V. Galakhov, A. F. Kolomiets, A. V. Fokin, *J. Fluorine Chem.*, 1990, **47**, 59.

161

- V. Y. Tyutin, N. D. Chkanikov, A. F. Kolomiets, A. V. Fokin, *J. Fluorine Chem.*, 1991, **51**, 323.
- V. Yu. Tyutin, N. D. Chkanikov, V. S. Shklyaev, Yu. V. Shklyaev, A. F. Kolomiets, A. V. Fokin, *Izv. Akad. Nauk, Ser. Khim.*, 1992, 1474 [*Bull. Russ. Acad. Sci., Div. Chem. Sci.*, 1992, **41**, 1474].
- A. C. Golubev, V. Yu. Tyutin, N. D. Chkanikov, A. F. Kolomiets, A. V. Fokin, *Izv. Akad. Nauk, Ser. Khim.*, 1992, 2617 [*Bull. Russ. Acad. Sci., Div. Chem. Sci.*, 1992, **41**, 2068].
- 6. V. Yu. Tyutin, N. D. Chkanikov, V. N. Nesterov, M. Yu. Antipin, Yu. T. Struchkov, A. F. Kolomiets, A. V. Fokin, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 552 [*Russ. Chem. Bull.* (*Engl. Transl.*), 1993, **42**, 512].
- 7. A. Haas, M. Lieb, M. Schelvis, J. Fluorine Chem., 1997, 83, 133.
- 8. Pat. WO 97, 11057; Chem. Abstrs, 1997, 126, 305586f.
- A. F. Shidlovskii, A. S. Peregudov, B. B. Averkiev, M. Yu. Antipin, N. D. Chkanikov, *Izv. Akad. Nauk, Ser. Khim.*, 2004, 1977 [*Russ. Chem. Bull., Int. Ed.*, 2004, **53**, 2060].
- N. D. Chkanikov, A. F. Shidlovskii, V. I. Mukhanov, A. S. Golubev, A. S. Peregudov, *Mendeleev Commun.*, 2006, 16, 175.
- A. F. Shidlovskii, A. S. Peregudov, Yu. N. Bulychev, N. D. Chkanikov, *Khim. Farm. Zh.*, 2009, **43**, № 10, 77 [*Pharm. Chem. J. (Engl. Transl.*), 2009, **43**, No. 10].
- 12. T. Minami, J. Motoyoshiya, Synthesis, 1992, 333.
- A. A. Kadyrov, E. M. Rokhlin, Usp. Khim., 1988, 57, 1488 [Russ. Chem. Rev. (Engl. Transl.), 1988, 57, 852].
- 14. R. Filler, J. Fluorine Chem., 1986, 33, 361.
- K. Tanura, H. Mizukami, K. Maeda, H. Watanabe, K. Uneyama, J. Org. Chem., 1993, 58, 32.
- 16. R. Engel, Chem. Rev., 1977, 77, 349.
- 17. K. Moonen, F. Laureyn, C. Stevens, *Chem. Rev.*, 2004, **104**, 6177.
- M. R. Harnden, A. Parkin, M. J. Parrat, R. M. Perkins, J. Med. Chem., 1993, 36, 1345.
- 19. Eur. Pat. 528,760; Chem. Abstr., 1993, 119, 72837b.
- 20. Ger. Pat 3,736,113; Chem. Abstrs., 1990, 112, 112068.
- F. Palasios, A. Ochoa de Renata, J. Oyarzabal, *Tetrahedron*, 1999, 55, 5947.
- 22. A. A. Thomas, K. B. Sharpless, J. Org. Chem., 1999, 64, 8379.
- 23. P. V. Pasternak, B. B. Averkiev, M. Yu. Antipin, A. S. Peregudov, N. D. Chkanikov, *J. Fluorine. Chem.*, 2004, 125, 1853.
- 24. M. R. Boyd, Status of the NCI Preclinical Antitumor Drug Discovery Screen, in Cancer: Principles and Practice of Oncology Updates, Eds V. T. De Vita, S. Hellman, S. A. Rosenberg, Vol. 3, No. 10, 1989, Philadelphia: J. B. Lippincott, pp. 1–12.
- SMART and SAINT, Release 5.0, Area Detector control and Integration Software, Bruker AXS, Analytical X-Ray Instruments, Madison, Wisconsin, USA, 1998.
- G. M. Sheldrick, SADABS: A Program for Exploiting the Redundancy of Area-detector X-Ray Data, University of Göttingen, Göttingen, Germany, 1999.
- G. M. Sheldrick, SHELXTL-97, Program for Solution and Refinement of Crystal Structure, Bruker AXS Inc., Madison, WI-53719, USA, 1997.

Received October 14, 2009; in revised form October 30, 2009