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ABSTRACT: Sulfonyl fluorides are valuable synthetic motifs for 
a variety of applications, amongst which SuFEx-based click 
chemistry is currently the most prominent. Consequently, the 
development of novel and efficient synthetic methods to access 
these functional groups is of great interest. Herein, we report a mild 
and environmentally benign electrochemical approach to prepare 
sulfonyl fluorides using thiols or disulfides, as widely available 
starting materials, in combination with KF, as an inexpensive, 
abundant and safe fluoride source. No additional oxidants nor 
additional catalysts are required and, due to mild reaction 
conditions, the reaction displays a broad substrate scope, including 
a variety of alkyl, benzyl, aryl and heteroaryl thiols or disulfides.

Arguably, sulfonyl fluorides can be considered a “privileged 
moiety” in chemistry, as they can be adopted in a wide variety of 
applications. This can be attributed to the unique balance between 
reactivity and stability of these functional groups, which is in sharp 
contrast with analogous sulfonyl chlorides (Figure 1A).1 Hence, 
sulfonyl fluorides have been used in chemical biology as covalent 
protein modifiers, strong protease inhibitors and activity-based 
probes.2 In addition, sulfonyl fluorides have been successfully 
applied as fluorinating reagents,3 18F radiolabeling agents4 and have 
been engaged in other useful transformations,5 including 
polymerizations.6 However, the breakthrough application for 
sulfonyl fluorides is the realization of their utility as stable and 
robust sulfonyl precursors using sulfur(VI) fluoride exchange 
“click chemistry” (SuFEx).1, 7 

Due to their evident value, efficient syntheses of sulfonyl 
fluorides starting from abundant starting materials are highly 
desired. The classical strategy to access these functional groups 
involves a chloride/fluoride exchange of sulfonyl chlorides using 
fluoride salts (Figure 1B).8 However, sulfonyl chlorides are not 
widely available and need to be prepared from the corresponding 
thiols using a combination of oxidizing and chlorinating reagents.9 
In order to avoid toxic and unstable sulfonyl chlorides, new 
synthetic methods have been developed using alternative starting 
materials, including sulfonyl hydrazides8b or sodium sulfonates.10 
Also palladium-based cross-coupling strategies have been 
developed which utilize aryl halides in combination with 1,4-
diazabicyclo[2.2.2]octane bis(sulfur dioxide) (DABSO) and 
electrophilic fluorinating reagents, such as Selectfluor11 and 
NFSI.12 Kirihara et al. reported a method to transform disulfides 
and thiols into sulfonyl fluorides using Selectfluor and refluxing 
conditions.13 Despite the synthetic value of these approaches, the 
use of costly and atom-inefficient fluoride sources limits their 
practicality to small scale applications.

It is, however, evident that the development of a synthetic method 
which directly uses commodity chemicals, such as thiols and metal 
alkali fluorides, would be particularly useful given the broad 
availability and the low cost of these starting materials. 
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Figure 1. Development of an electrochemical synthesis of 
sulfonyl fluorides. (A) Advantages and applications of sulfonyl 
fluorides. (B) Established synthetic routes to prepare sulfonyl 
fluorides. (C) Reaction Conditions (Entry 1): 2-mercapto-4,6-
dimethylpyrimidine (2 mmol),  KF (5 equiv.), Pyridine (1 equiv.), 
CH3CN/ 1M HCl (20 mL, 1:1 v/v), C anode/Fe cathode, 20 mA 
(4.1 mA/cm2), 12 h.
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Even so, it is immediately clear that a number of challenges need 
to be overcome to develop such a hitherto elusive transformation. 
First, fluoride is poorly soluble in organic solvents and is hardly 
reactive in its solvated form in aqueous media. Second, combining 
nucleophilic fluorine reagents with thiols to establish a single S–F 
bond appears unlikely.14 Nevertheless, based on our recent success 
in the electrochemical synthesis of sulfonamides,15 we speculated 
that the union of these stubborn starting materials would not only 
be plausible using electrochemical activation16 but would also 
facilitate the subsequent oxidation to sulfonyl fluoride via anodic 
oxidation. Herein, we report the discovery and optimization of an 
electrochemical method which meets these design criteria. The 
method utilizes KF as a readily available, safe and cost-efficient 
fluoride source. Moreover, anodic oxidation allows to avoid 
stoichiometric amounts of oxidants and enables the direct use of 
thiols or disulfides as convenient and widely available starting 
materials.

Initial experiments on a representative thiol, 2-mercapto-4,6-
dimethylpyrimidine, revealed that the combination of 5 equivalents 
of KF, 1 equivalent of pyridine in a CH3CN/1M HCl biphasic 
reaction mixture using inexpensive graphite/stainless steel 
electrodes is highly effective, providing the targeted sulfonyl 
fluoride in 74% isolated yield (Figure 1C, Entry 1). TBAF and 

other alkali fluorides, such as NaF and CsF, are less effective (See 
Supporting Information). Selectfluor, an electrophilic fluorine 
source, is equally potent as KF but was not further considered due 
to the unfavorable price difference (KF 8 $/mol vs. Selectfluor 407 
$/mol).17 We surmise that KF functions partially as an electrolyte, 
as the total amount can be lowered when supporting electrolytes are 
added (See Supporting Information). However, given the low cost 
of KF in comparison to these supporting electrolytes, we opted to 
keep a higher concentration of KF. In the absence of acid or at 
lower concentrations, decreased yields are observed (Figure 1C, 
Entries 2-4). The addition of one equivalent of pyridine is 
beneficial (Figure 1C, Entry 5), and is speculated to function as an 
electron mediator18 or as a phase transfer catalyst. The reaction was 
confirmed to be electrochemically driven (Figure 1C, Entry 6). 

With the optimal conditions in hand, we next turned our attention 
to examine the generality of this electrochemical transformation. 
As shown in Figure 2, a wide variety of structurally and 
electronically distinct thiols can be transformed into the 
corresponding sulfonyl fluorides. First, with a diverse set of 
thiophenols, it was determined that substrates bearing electron–
neutral (1-5), –donating (6-7) and –withdrawing substituents (8-10) 
were all compatible with the reaction conditions; the yields were 
ranging from 37 to 99%. Due to the volatility of some products,
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Figure 2. Synthesis of sulfonyl fluorides. Substrate scope for the electrochemical sulfonyl fluoride synthesis. Reported yields are isolated 
and reproduced at least two times. Yields between [brackets] are those referring to 19F NMR yields calculated with PhCF3 as internal standard  
Reaction Conditions (Entry 1): thiol (2 mmol) or disulfide (1 mmol), KF (5 equiv.), Pyridine (1 equiv.), CH3CN/ 1 M HCl (20 mL, 1:1 v/v), 
C anode/Fe cathode, 20 mA (4.1 mA/cm2).  * 3.2 V applied potential. ** 4.0 V applied potential. # Isolated as a phenyl sulfonate derivative 
through reaction with phenol. ¶ Scale-up reaction conditions: thiophenol (10 mmol), KF (5 equiv.), Pyridine (1 equiv.), CH3CN/ 1 M HCl 
(40 mL, 1:1 v/v), C anode/Fe cathode, 3.2 V applied potential.
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isolated yields were in some cases lower than observed with 19F 
NMR. This could be partially avoided by converting the obtained 
volatile sulfonyl fluoride in situ to the corresponding sulfonate 
through reaction with phenol (e.g. 1). The electrochemical reaction 
is not particularly sensitive to sterical hindrance as ortho-
substituted thiophenols displayed similar yields to unsubstituted 
variants (1 versus 4). Also, halogenated thiophenols (11-13) were 
suitable reaction partners, providing opportunities to further 
functionalize the formed sulfonyl fluorides using cross-coupling 
chemistry. Protected amines (14), previously unreactive in our 
electrochemical sulfonamide chemistry, were tolerated under the 
current reaction conditions. Heterocyclic thiols (15-17), which are 
among the most widely used moieties in pharmaceutical and 
agrochemical syntheses, were also effective. Notably, compound 
15 is also known as PyFluor, an effective deoxyfluorination reagent 
reported by Doyle and coworkers.3 We next examined a variety of 
different primary and secondary aliphatic thiol substrates, 
including methanethiol (18), ethanethiol (19), propanethiol (20), n-
octanethiol (21), cyclohexylthiol (22), pyrazineethanethiol (23), 

benzylthiol (24), p-chlorobenzylthiol (25), 2-phenylethanethiol 
(26) and cysteine (27). All proved to be competent reaction partners 
yielding the corresponding sulfonyl fluorides in synthetically 
useful yields (19-96%). The use of the most volatile and odorous 
thiols could be avoided by using the corresponding disulfide 
instead (18-20). Interestingly, we were able to engage cysteine (27) 
in our electrochemical sulfonyl fluoride protocol, providing 
opportunities for the preparation of new non-proteinogenic amino 
acid building blocks.

To obtain insights into the underlying mechanism, a number of 
additional experiments were carried out (Figure 3). Kinetic 
experiments revealed a rapid conversion of 4-
(trifluoromethyl)thiophenol via anodic oxidation to the 
corresponding disulfide within 45 minutes (Figure 3A).19 Next, the 
disulfide intermediate is consumed and the corresponding sulfonyl 
fluoride is formed. The pseudo-zero-order behavior suggests that 
mass transfer limitations from the bulk to the electrode surface 
occur during the batch electrochemical transformation.
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Indeed, when the reaction is carried out in an electrochemical 
microflow reactor with a small interelectrode gap (250μm),20 full 
conversion is observed in only 5 minutes reaction time (Figure 3B). 
The reduced reaction times observed in flow can be attributed to (i) 
the increased electrode surface-to-volume ratio; (ii) a high 
interfacial area between the organic and the aqueous phase; (iii) an 
intensified mass transport to and from the electrodes due to 
multiphase fluid patterns (Figure 3C).21

Oxidation of the disulfide results in the formation of a radical 
cation22 which can react further with nucleophilic fluoride to yield 
the corresponding sulfenyl fluoride (Figure 3E). At this point, we 
still wondered whether a nucleophilic or electrophilic fluorination, 
with an in-situ generated 1-fluoro-pyridinium reagent,23 was 
operative under these reaction conditions. Hence, we carried out 
the reaction in the presence of 1-fluoro-pyridinium 
tetrafluoroborate and observed only traces of product formation 
(Figure 3D). In contrast, using either HCl-pyridine or HCl-Et3N in 
combination with KF allowed to obtain isolate the corresponding 
sulfonyl fluoride in good yields, indicating the presence of a 
nucleophilic fluorination. Adding TEMPO or BHT as radical 
scavengers reduces the efficacy of the electrochemical process, 
substantiating the presence of radical intermediates. Next, two 
consecutive oxidations steps resulted in the formation of the 
targeted sulfonyl fluoride. While we cannot formally rule out a 
nucleophilic attack of fluoride to S-phenyl benzenethiosulfonate, 
we found for most substrates no formation of the latter compound. 
In contrast, during our kinetic experiments, traces of other 
fluorinated intermediates were observed which are tentatively 
attributed to sulfenyl fluoride and sulfinyl fluoride intermediates 
(See Supporting Information). These intermediates could 
unfortunately not be isolated as they are generally perceived as 
unstable.24 The main byproduct formed in the electrochemical 
sulfonyl fluoride synthesis is sulfonic acid, which originates from 
anodic oxidation of disulfides or through hydrolysis of sulfonyl 
fluoride.

The electrochemical approach described herein demonstrates the 
ability to directly convert thiols into sulfonyl fluorides using KF as 
an ideal fluoride source in terms of cost, safety and availability. In 
this context, we believe that this green and mild protocol will be of 
added value to prepare sulfonyl fluorides in both academic and 
industrial settings. 
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