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Abstract: Herein, we report the prom-
ising use of n-oligoethylene glycols (oli-
goEGs) as mutifunctional promoters
for nucleophilic-substitution reactions
employing alkali metal salts. Among
the various oligoEGs tested, pentaethy-
lene glycol (pentaEG) had the most ef-
ficient catalytic activity. In particular,
when compared with other nucleo-
philes examined, a fluorine nucleophile

tion of various substrates with potassi-
um halides, acetate, thioacetate, cya-
nide, and sodium azide, respectively, in
the presence of the pentaEG promoter.
All of these reactions provided their
desired products in excellent yields.
Furthermore, the combination of pen-
taEG and a tert-alcohol medium
showed tremendous efficiency in the

(fluorination and methoxylation) of
base-sensitive substrates with basic nu-
cleophiles (cesium fluoride and potassi-
um methoxide, respectively). The cata-
lytic role of oligoEGs was examined by
quantum-chemical ~ methods. The
oxygen atoms in oligoEGs were found
to act as Lewis bases on the metal cat-
ions to produce the “flexible” nucleo-

generated from CsF was significantly
activated by the pentaEG promoter.
We also performed various facile nu-
cleophilic-displacement reactions, such
as the halogenation, acetoxylation, thi-

- o . promoter
oacetoxylation, nitrilation, and azida-

Introduction

Nucleophilic substitution is a fundamental transformation
for functional-group interconversion in organic synthesis.!?
Although alkali-metal fluorides are a readily available
source of fluoride ions, their applications have been limited
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nucleophilic-displacement reactions  phile, whereas the two terminal hy-
droxy (OH) groups acted as “anchors”
Keywords: alkali metals oligo- to orientate the nucleophile and the

substrate into an ideal configuration
for the reaction.

nucleo-

owing to their low solubilities in organic solvents.”! Over the
past few decades, a number of useful procedures,*! such as
ionic-liquid systems,’! have been developed to enhance the
reactivity and solubility of alkali-metal salts in organic
media and thereby accelerate the reaction rate.! Although
the use of alkali-metal-salts/[18]crown-6-ether complexes!®
and tetra-alkylammonium salts'”) are representative methods
that have been employed in various procedures, these meth-
ods still have some drawbacks. For example, [18]crown-6
systems have shown poor performance when the metal
cation and nucleophile form a tight ion-pair, such as alkali-
metal/fluoride pairs, and some tetra-alkylammonium salts
are thermally unstable./*®!

It is also well-known that polar aprotic solvents, such as
acetonitrile, dimethyl sulfoxide (DMSO), and N,N-dimethyl
formamide (DMF), are effective reaction media for nucleo-
philic-substitution reactions with alkali-metal salts as the nu-
cleophile sources because these solvents allow the nucleo-
philicities of metal salts to be enhanced by the selective sol-
vation of metal cations, and the lack of a proton for hydro-
gen bonding, which leaves the anion (nucleophile)
“naked”.”) However, it has recently been reported that the
use of a bulky, non-polar, protic fert-alcohol, such as tert-
butyl alcohol or tert-amyl alcohol, can significantly increase
the reactivity of alkali-metal fluorides because the “flexible”
fluoride that is produced from the protic solvent molecules
acts as a Lewis base towards the counterion (metal cation)
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to neutralize the strong Coulombic influence of the latter on
the nucleophile.'”! In a recent significant advance, we ob-
served that short-chain oligoethylene glycol (oligoEG) sol-
vents, such as triethylene glycol (triEG) and tetraethylene
glycol (tetraEG) showed high efficiencies in nucleophilic-
fluorination reactions with potassium fluoride compared
with long-chain polyethylene glycols (PEGs).'""'? More re-
cently, we reported a heterogeneous catalytic system using
pentaethylene glycol (pentaEG) that showed a highly effi-
cient catalytic activity in fluorination reactions with cesium
fluoride, as well as a number of other synthetic and practical
merits."! This result prompted us to expand our study on
the possible use of various n-oligoEGs as bifunctional cata-
lysts for nucleophilic-displacement reactions using alkali-
metal salts. Herein, we examined n-oligoEGs of various
lengths with regard to their effectiveness as promoters in
various nucleophilic-substitution reactions, including fluori-
nation, with the corresponding alkali-metal salts.

Results and Discussion

Screening of n-oligoethylene glycols: To investigate the
effect of chain-length on the catalytic activities of n-oli-
goEGs in nucleophilic-substitution reactions, we carried out
the nucleophilic fluorination with CsF as the nucleophile
source (100°C for 1.5h) and the nucleophilic acetoxylation
with KOAc (80°C for 2.5 h) in the presence of n-oligoEGs
of different chain-lengths, such as triEG, tetraEG, pentaEG,
hexaEG, octaEG, and PEGg,, in CH;CN (Figure 1). In the
fluorination reaction, n-oligoEGs of a specific chain-length
(in particular, pentaEG) showed significant catalytic activity
in increasing the nucleophilicity of CsF (Figure 1 A). How-
ever, in the acetoxylation reaction, long-chain oligoEGs
(longer than pentaEG) also showed catalytic activity similar
to that of pentaEG; pentaEG showed slightly better perfor-
mance compared to other long-chain oligoEGs (Figure 1B).
These results revealed that the fluorination reaction using
these n-oligoEGs as promoters was much more sensitive to
the length of n-oligoEGs than other nucleophilic-substitu-
tion reactions. This result was taken into consideration as
we performed further studies on nucleophilic-substitution
reactions, including fluorination, with pentaEG.

Influence of bis-terminal hydroxy groups of pentaEG on nu-
cleophilic-substitution reactions: To investigate the influence
of the two terminal hydroxy groups of pentaEG, which
might form hydrogen bonds with nucleophiles, on various
nucleophilic-substitution reactions, we performed three
types of displacement reactions (nucleophilic fluorination
with CsF, acetoxylation with KOAc, and bromination with
KBr) in the presence of pentaEG, monomethylated pen-
taEG, and dimethylated pentaEG in CH;CN. Standard con-
trol reactions were also performed in the absence of any cat-
alyst (Figure 2). The fluorination reaction with CsF and
0.5 equivalents of pentaEG, which had two terminal hydroxy
groups, proceeded approximately two-fold faster than that
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Figure 1. Effect of chain-length on the catalytic activity of n-oligoEGs in
nucleophilic-substitution reactions. A) Fluorination with CsF in the pres-
ence of various n-oligoEGs. B) Acetoxylation with KOAc. The quantity
of product was determined by 'H NMR spectroscopy. R =2-naphthyl,
EG =ethylene glycol.

with 0.5 equivalents of monomethylated pentaEG, which
only had one hydroxy group. Moreover, dimethylated pen-
taEG, which was methylated at both terminal hydroxy
groups to prevent hydrogen bonding with nucleophiles such
as fluoride, showed very low activity in the same fluorina-
tion reaction compared with both pentaEG and monometh-
yl pentaEG (Figure 2 A). These results were similar to those
reported previously by ourselves.' ¥ Hydrogen-bonding in-
teractions between a terminal OH group and the fluoride
ion of MF could provide a “flexible” fluoride effect!” to in-
crease its nucleophilicity and increase the initial interactions
between pentaEG and CsF to more effectively form the
CsF/ether complex. The other nucleophilic-displacement re-
actions, such as acetoxylation using KOAc and bromination
using KBr, in the presence of pentaEG, momomethyl pen-
taEG, and dimethyl pentaEG, showed similar trends
(Figure 2). However, the hydroxy groups of pentaEG did
not significantly influence these displacement reactions
through hydrogen-bonding effects, perhaps owing to the
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Figure 2. A) Nucleophilic fluorination with CsF and pentaEG, dimethyl-
pentaEG, monomethylpentaEG, or no promoter. B) Nucleophilic acetox-
ylation with KOAc and pentaEG, dimethylpentaEG, monomethylpen-
taEG, or no promoter. C) Nucleophilic bromination with KBr and pen-
taEG, dimethylpentaEG, monomethylpentaEG, or no promoter. The
quantity of starting material remaining was determined by '"H NMR spec-
troscopy. R =2-naphthyl.

higher nucleophilicity of these nucleophiles compared to
fluoride.

Nucleophilic-substitution reactions with pentaEG: Table 1
shows the results for the nucleophilic-substitution reactions
of model compounds 2-(3-methanesulfonyloxypropyl)naph-
thalene (1) and 2-(3-bromopropoxy)naphthalene (2) with
various alkali-metal salts (MNu) in the presence of pentaEG
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Table 1. Nucleophilic-displacement reactions with various alkali-metal
salts (MNu) using pentaEG or the stated alternative reagents.”!

“/OOO\/\/X MNu, pentaEG “/OOO\/\/N“
—_—

CH4CN

1: X =OMs 3:Nu=F, 2:Nu=Br, 4Nu=l,
2: X=Br 5: Nu = OAc, 6: Nu = SAc,
7:Nu=CN, 8:Nu=Nj
Entry X  pentaEG [equiv] MNu T [°C] ¢ [h] Yield [%]®!
Product Alkene
1 OMs 1.0 CsF 100 1 96 trace
2 OMs 0.5 CsF 100 1.5 95 trace
3 OMs 0.25 CsF 100 5 81l 190
4 OMs [18]crown-6! CsF 100 4 75l 25!l
5 OMs 0.5 KBr 90 1 97 -
6 OMs 0.5 KI 90 1 98 -
7 Br 0.5 KI 90 1 98 -
8 OMs 0.5 KOAc 90 1.5 98 -
9 Br 0.5 KOAc 90 1.5 98 -
10 OMs 0.5 KSAc 90 1 98 -
11 Br 0.5 KSAc 90 1 97 -
12 OMs 0.5 KCN 90 25 93 -
13 Br 0.5 KCN 90 5 92 -
14 OMs 0.5 NaN; 90 3 97 -
15 Br 0.5 NaN; 90 2 98 -

[a]All reactions were carried out on a 1.0 mmol reaction scale of sub-
strate 1 or 2, with 3 mmol MNu in 4.0 mL of solvent; [b] yield of isolated
product; [c]yields were determined by 'HNMR spectroscopy;
[d] 0.5 equiv of [18]crown-6 was used. Ms =methanesulfonyl, Ac=acetyl.

under various reaction conditions. The fluorination of mesy-
late 1 with CsF in the presence of [18]crown-6 (0.5 equiv) as
a conventional phase-transfer catalyst (PTC) at 100°C in
CH;CN only provided the desired fluorinated product (3) in
75 % yield, along with 25% of alkene by-product, which was
formed from an elimination side-reaction that was facilitat-
ed by the “naked”-fluoride effect (Table 1, entry 4). Howev-
er, the same reaction in the presence of stoichiometric or
sub-stoichiometric amounts of pentaEG (1.0 or 0.5 equiv)
proceeded in almost-quantitative yield (Table 1, entries 1
and 2). This result clearly indicated that the pentaEG effi-
ciently enhanced the reactivity of CsF, whilst suppressing
the formation of byproducts during the fluorination reaction
through a “flexible”-fluoride effect. However, the use of
0.25 equivalents of pentaEG showed poor performance in
the same reaction (81 % fluoroalkane 3, with 19% alkene;
Table 1, entry 3) because the “flexible”-fluoride effect was
not possible with low amounts of pentaEG. Diverse nucleo-
philic transformations were also attempted with various po-
tassium salts as nucleophile sources in the presence of
0.5 equivalents of pentaEG. Table 1, entries 5-7 show that
the halogenation reactions of mesylate 1 or bromoalkane 2
were complete within 1h, thereby affording their corre-
sponding halogenated products in very high yield (97-98 % ).
A single oxygen or sulfur nucleophile, generated by pen-
taEG from the corresponding potassium salt, was introduced
into aliphatic organic compounds during the corresponding
transformation in almost-quantitative yields (97-98%;
Table 1, entries 8-11). The transformation of methanesulfo-
nate or bromide groups into an azide by using sodium azide,
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which has recently received much attention owing to the
utility of click chemistry,"¥ proceeded smoothly, thereby af-
fording azido-product 8 in 97-98 % yield (Table 1, entries 14
and 15).

Nucleophilic-substitution reactions of various substrates:

Table 2 shows the results for the nucleophilic-displacement
reactions of halide and sulfonate substrates with various

Table 2. Nucleophilic-substitution reactions of various substrates.

Entry Substrate MNu T[°C] ¢[h] Yield[%]"
1 CsF 100 6 94
2 NaN; 90 3 96
3 OMs KOAc 90 4 98
4 KSAc 90 4 96
5 o KBr 80 1 94
6 % Q NaN, 80 15 92
7 \1_% KOAc 8 1 9%
8 o~ KSAc 80 1 93

9 B' CsF 100 15 88
Br
10 CsF 100 1 96

0}
11 2 P ™20 o 100 2 94

[a]All reactions were carried out on 1.0 mmol substrate, with MNu
(3.0 equiv) and PentaEG (0.5 equiv) in CH;CN (4.0 mL); [b] yield of iso-
lated product.

alkali-metal salts in the presence of pentaEG (0.5 equiv) in
CH;CN, thereby demonstrating that pentaEG was an effi-
cient promoter for the nucleophilic-substitution reactions of
various substrates. Fluoro-, azido-, acetoxy-, and thioace-
toxy-substituted estrone derivatives, which play crucial roles
in biological systems, were synthesized from the nucleophil-
ic-substitution reactions of an estrone mesylate substrate in
excellent yields (94-98 %) by using the corresponding alkali-
metal salts with pentaEG (Table 2, entries 1-4). Several dis-
placement reactions, such as fluorination, azidation, acetoxy-
lation, and thioacetoxylation, of a sugar-triflate substrate
also proceeded well to afford their corresponding desired
products in high yields (94, 92, 96, and 93 %, respectively;
Table 2, entries 5-8). a-Fluoroacetonaphthone was produced
from the fluorination of a-bromoacetonaphthone in 88 %
yield (Table 2, entry9). The reaction of benzylic bromide
gave the benzylic fluoride product in 96% yield (Table 2,
entry 10). A fluoro-substituted acetylene derivative was pre-
pared from the corresponding tosylate substrate in high
yield in the presence of pentaEG (Table 2, entry 11).

Selective nucleophilic-fluorination reactions: Table 3 shows
the results for the highly chemoselective nucleophilic fluori-
nation of various base-sensitive substrates, which were
prone to the elimination side-reactions under basic reaction
conditions that are associated with the conventional
“naked” fluoride reagents, owing to the synergistic effect be-
tween pentaEG and the bulky protic fert-alcohol solvent.
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Table 3. Selective nucleophilic-fluorination reactions using CsF in the
presence of pentaEG in tert-alcohol solvent. !

Entry Substrate t[h] Ratio [%]"
Product Alkene
OMs
1 OO 1 93 7
OMs
2 ° 2 9 6
OTs
3 ° 15 88 12
Br
4 o 8 73 210
O~
5 4 73 27
O\/\/ Br
6 5 88 12

[a] All reactions were carried out on 1.0 mmol substrate with CsF
(3.0equiv) and PentaEG (0.5 equiv) in tert-amyl alcohol (4.0 mL);
[b] ratio was determined by '"H NMR spectroscopy; [c] with 6% of alco-
hol byproduct.

The fluorination of 1-(2-mesylethyl)naphthalene to afford 1-
(2-fluoroethyl)naphthalene using CsF in the presence of
pentaEG in tert-amyl alcohol proceeded efficiently and gave
the corresponding fluoride in 93 % yield, with the styrene
byproduct being formed in only 7% yield (Table 3, entry 1).
A sec-fluoroalkane was produced from the sec-alkyl-mesy-
late or -tosylate in excellent yield through the synergistic
pentaEG- fert-alcohol media effect (Table 3, entries 2 and
3). The transformation of sec-alkyl bromide into the fluoride
by using the conventional PTC is very difficult because of a
competing 3-elimination side-reaction. Nevertheless, the flu-
orination of sec-bromoalkane to afford the desired sec-fluo-
roalkane in the pentaEG/fert-alcohol media proceeded in
high yield (73 %; Table 3, entry 4). Substrates that contained
primary iodo- and bromoalkanes showed similar trends (73
and 88 %, respectively; Table 3, entries 5 and 6). These re-
sults indicated that the protic atmosphere created by the
tert-alcohol solvent and the “flexible”-fluoride effect afford-
ed by hydrogen-bonding interactions between the fluoride
ion, pentaEG, and fert-alcohol allowed these nucleophilic-
fluorination reactions of the base-sensitive substrates to pro-
ceed selectively and in excellent yields. The comparative
data (Scheme 1) highlights the important role of the syner-
gistic effect of pentaEG and tert-alcohol solvent in the nu-
cleophilic-substitution reaction with another strongly basic

“/!!O\/\/OMe
9

in CH3CN

(1 h, 68% with 31% alkene)
in t-amyl alcohol

(45 min, 94% with 6% alkene)

KOMe,

(0] OMs
~TN pentaEG (0.5 equiv)
—_— >
CH3CN or

t-amyl alcohol

Scheme 1. Methoxylation with KOMe in the presence of pentaEG.
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nucleophile, such as methoxide. Whereas the methoxylation
of the mesylate 1 with potassium methoxide in the presence
of pentaEG in CH;CN provided the methoxylated product
in 68 % yield (together with 31 % of alkene byproduct), the
same reaction in tert-amyl alcohol proceeded more selective-
ly, thereby providing the product in 94% yield (with only
6% alkene).

Mechanistic features: The origin of the catalytic role of n-
oligoEGs (see above) was similar to that of the fluorination
reactions of KF in the presence of bis-terminal hydroxy
polyethers"!  We used density functional theory
(MPWPW1K™) with the 6-311+ 4+ G(d,p)) basis set and
the (Hay-Wadt VDZ(n+1)) effective core potential for
Csl'%! as implemented in Gaussian 09™'”! to obtain the pre-re-
action complexes, transition states, and post-reaction com-
plexes. Table 4 shows the calculated reaction barriers of the

Table 4. Calculated activation barriers E4®?* and G, [kcalmol ']
for the nucleophilic-fluorination reactions in the presence of n-oligoEG
(MPWPW1K/6-311+ + G(d,p)), in comparison with their corresponding
yields.

E* G* Yield [%]®
CsF4-C;H,0Ms (triEG) 22.61 24.70 38
CsF+C;H,0Ms (tetraEG) 22.06 24.05 43
CsF+C;H,0Ms (pentaEG) 21.30 23.15 95

[a] oligoEG (0.5 equiv), 100°C, CH;CN, 1.5 h.

model reaction CsF+C;H,;0OMs—CsOMs+C;H-F, which was
extremely useful in elucidating the mechanism of the ob-
served Sy2 fluorination reactions*™!! in the presence of
oligoEGs. The activation barriers (E* and G*5,3¢) decreased
progressively from triEG to pentaEG, which was in good
agreement with the observed increasing yields. These calcu-
lated barriers (E* ~21.3-22.6 kcalmol ') were slightly small-
er than that for the very effective Sy2 fluorination reaction
in tert-butyl alcohol (E*=23.5 kcalmol ),110*]
[Cs*F+C3H,0Ms —CstOMs +C;H,F], thus accounting for
the phenomenal efficiency of this system.

Figure 3 shows the calculated transition states in the Sy2
fluorination reactions in the presence of tri-, tetra-, and pen-
taEG, and shows their catalytic roles in detail. The O atoms
in the oligoEGs formed a hollow “pocket” surrounding the
ion-pair Cs*F~, thereby acting as a Lewis base toward the
Cs* ions and neutralizing the electrostatic effects of the
cation on, and “freeing”, the nucleophile (F~). The decreas-
ing barrier heights (and increasing yields) from triEG to
pentaEG were presumably due to the increased stabilization
of the transition state. Figure 3 shows that the Cs* counter-
ions interacted with the increasing number of oxygen atoms
(4,5, and 6 O atoms for tri-, tetra- and pentaEG, respective-
ly), thus resulting in “freer” F~ ions (note the increasing
Cs—F distance: 3.898, 3.921, and 4.180 A, respectively).
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Figure 3. Transition states in nucleophilic-fluorination reactions in the
presence of n-oligopEG (MPWPW1K/6-311+ +G(d,p)).

Conclusion

We have demonstrated the catalytic activities of n-oligoEGs
of various lengths in nucleophilic-substitution reactions,
such as fluorination and acetoxylation reactions. Among var-
ious n-oligoEGs, pentaEG showed the highest efficiency; in
particular, the fluorination reaction was very sensitive and
dependent on the chain-length of the n-oligoEGs. In the
pentaEG catalytic system, the bis-terminal hydroxy group
played an important role in enhancing the reactivity of
alkali-metal salts, in particular CsF. The use of pentaEG as
a promoter also showed good performance in other nucleo-
philic-displacement reactions of various substrates with hal-
ides, nitrogen, oxygen, and sulfur nucleophiles that were ac-
tivated by pentaEG from the corresponding alkali-metal
salts in a polar aprotic solvent, such as CH;CN. Moreover,
the nucleophilic reaction of various base-sensitive substrates
by using strong basic nucleophiles, such as fluoride and
methoxide, in tert-alcohol media proceeded much more se-
lectively and at a faster rate owing to a “flexible”-fluoride
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effect that was generated by hydrogen-bonding interactions
between pentaEG, the nucleophiles, and tert-alcohol. We
studied the mechanism of the catalytic reaction to elucidate
the role of n-o0ligoEGs and we found that the oxygen atoms
acted as Lewis bases towards CsF and the terminal OH
groups acted as effective anchors for the F~ ions and the
leaving groups. Our current work focuses on the develop-
ment of more-efficient promoters that contain a pentaEG
moiety generated by structural modification.

Experimental Section

General: Unless otherwise noted, all reagents and solvents were commer-
cially available. Reaction progress was followed by TLC on 0.25 mm
silica gel glass plates containing F-254 indicator. Visualization on TLC
was conducted by UV light. Column chromatography on silica gel was
performed with 230-400 mesh silica gel. '"H and *C NMR spectra were
recorded on a 400 or 600 MHz spectrometer, and chemical shifts (0) are
reported in ppm relative to tetramethylsilane. Low- and high-resolution
electron impact (EI, 70 eV) MS were obtained.

Typical procedure of the fluorination reaction (Table 1, entry 2): CsF
(456 mg, 3 mmol) was added to a mixture of mesylate 1 (281 mg,
1.0 mmol), pentaEG (119 mg, 0.5 mmol), and MeCN (4 mL) in a vial.
The mixture was heated for 1.5 h at 100°C. The reaction time was deter-
mined by checking TLC. The mixture was filtered and washed with Et,0,
and the filtrate was evaporated under reduced pressure. Column chroma-
tography on silica gel (10% EtOAc/hexanes) afforded 195 mg
(0.95 mmol, 95%) of 2-(3-fluoropropoxy)naphthalene (3). 'H NMR
(400 MHz, CDCly): 6=2.14-2.39 (m, 2H), 4.24 (t, J=6.2Hz, 2H), 4.72
(dt, J=46.8, 5.8 Hz, 2H), 7.16-7.22 (m, 2H), 7.34-7.53 (m, 2H), 7.76-
7.83ppm ( m, 3H); "CNMR (100 MHz, CDCl): =304 (d, J=
20.1 Hz), 63.6 (d, /=253 Hz), 80.8 (d, /J=163.9 Hz), 106.8, 118.8, 123.6,
126.4, 126.7, 127.6, 129.1, 129.4, 134.6, 156.7; MS (EI): m/z: 204 [M]%;
HRMS (EI): m/z caled for C;sH;3FO: 204.0950 [M]*; found: 204.0932.
Registry No. provided by the author: 398-53-8.

Typical procedure for the halogenation reaction (Table 1, entries 5 and
6): The procedure for fluorination (see above) was followed except that
KNu (Nu=Br, I) was used at 90°C.

2-(3-Bromopropoxy)naphthalene  (2):  257mg (0.97 mmol, 97%);
'"HNMR (400 MHz, CDCl;) 6=2.36-2.43 (m, 2H), 3.67 (t, J=6.6 Hz,
2H), 423 (t, J=5.6 Hz, 2H), 7.14-7.17 (m, 2H), 7.34-7.49 (m, 2H), 7.74—
7.80 ppm (m, 3H); "CNMR (100 MHz, CDCl;) 6=30.1, 322, 652,
106.6, 118.8, 123.7, 126.4, 126.7, 127.6, 128.9, 129.4, 134.4, 156.5 ppm; MS
(EI): m/z (%):both 264 and 266 [M]*, 144 (100), 115; HRMS (EI): m/z
caled for C3H,;0”Br: 264.0150 [M]"; found: 264.0151. Registry No. pro-
vided by the author: 3245-62-3.

2-(3-Iodopropoxy)naphthalene (4): 306 mg (0.98 mmol, 98%); 'H NMR
(400 MHz, CDCly): 2.32-2.38 (m, 2H), 3.43 (t, /J=6.6 Hz, 2H), 4.16 (t,
J=5.8 Hz, 2H), 7.15-7.17 (m, 2H), 7.35-7.49 (m, 2H), 7.49-7.80 ppm (m,
3H); "CNMR (100 MHz, CDCl,): 2.7, 32.8, 67.1, 106.6, 118.8, 123.6,
126.4, 126.7, 127.6, 128.1, 129.4, 134.4, 156.5 ppm; MS (EI): m/z (%): 312
[M]*, 185, 144, 115 (100); HRMS (EI): m/z caled for C;3H;0I: 312.0011
[M]*; found: 312.0006. Registry No. provided by the author: 380363-99—
5.

Typical procedure for the acetoxylation reaction Table 1, entry 8): Potas-
sium acetate (295 mg, 3 mmol) was added to a mixture of mesylate 1
(281 mg, 1.0 mmol), pentaEG (119 mg, 0.5 mmol), and MeCN (4 mL) in
a vial. The reaction mixture was heated for 1.5 h at 90°C. The reaction
mixture was filtered and washed with Et,0 (15mL). The filtrate was
evaporated under reduced pressure. Column chromatography on silica
gel (10%, EtOAc/hexanes) afforded 2-(3-acetoxypropoxy)naphthalene
(5): 239 mg (0.98 mmol, 98%); '"H NMR (600 MHz, CDCL;): §=2.08 (s,
3H), 2.18-222 (m, 2H), 4.17 (t, J=6.18 Hz, 2H), 4.31 (t, J=6.18 Hz,
2H), 7.10-7.15 (m, 2H), 7.33 (t, J=7.56 Hz, 1H), 7.43 (t, J=6.90 Hz,
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1H), 7.71-7.77 ppm (m, 3H); *C NMR (150 MHz, CDCl,): 6 =21.1, 28.7,
61.5, 64.4, 106.6, 118.9, 123.7, 126.5, 126.8, 127.7, 129.0, 129.5, 134.6,
156.8, 171.2 ppm; MS (EI): m/z: 244 [M]*; HRMS (EI): m/z caled for
C,sH,,0; 244.1099 [M]; found 244.1096. Registry No. provided by the
author: 876485-90—4.

Typical procedure for the thioacetoxylation reaction (Table 1, entry 10):
The procedure for acetoxylation (see above) was followed except that
potassium thioacetate was used.

2-(3-Thioacetoxypropoxy)naphthalene (6): 255 mg (0.98 mmol, 98 %) was
obtained; '"HNMR (600 MHz, CDCly): 6=2.11-2.16 (m, 2H), 2.34 (s,
3H), 3.10 (t, J=6.84 Hz, 2H), 4.13 (t, J=6.18 Hz, 2H), 7.11-7.15 (m,
2H), 7.33 (t, J=6.84 Hz, 1H), 7.44 (t, J=6.90 Hz, 1H), 7.71-7.76 ppm
(m, 3H); "CNMR (150 MHz, CDCly): 6=26.1, 29.3, 30.8, 66.2, 106.7,
118.9, 123.7, 126.5, 126.8, 127.7, 129.0, 129.5, 134.6, 156.8, 195.9 ppm; MS
(EI): m/z: 260 [M]*; HRMS (EI): m/z caled for C;sH;sO,S: 260.0871
[M]*; found: 260.0874.

Typical procedure for the nitrilation reaction (Table 1, entry 12): The pro-
cedure for acetoxylation (see above) was followed except that potassium
cyanide was used.

2-(3-Cyanopropoxy)naphthalene (7): 196 mg (0.93 mmol, 93%); '"H NMR
(600 MHz, CDCl,): 6=2.18-2.23 (m, 2H), 2.63 (t, /=6.90 Hz, 2H), 4.19
(t, /=618 Hz, 2H), 7.12-7.14 (m, 2H), 7.35 (t, J=6.90 Hz, 1H), 7.45 (t,
J=822Hz, 1H), 7.72-7.78 ppm (m, 3H); "C NMR (150 MHz, CDCl,):
0=144, 25.6, 65.4, 106.9, 118.8, 119.3, 124.0, 126.7, 126.9, 127.7, 129.2,
129.6, 134.5, 156.4 ppm; MS (EI): m/z: 211 [M]*; HRMS (EI): m/z caled
for C,H;sNO: 211.0997 [M]*; found: 211.0998. Registry No. provided by
the author: 727429-81-4.

Typical procedure for the azidation reaction (Table 1, entry 14): Sodium
azide (195 mg, 3 mmol) was added to a mixture of mesylate 1 (281 mg,
1.0 mmol), pentaEG (119 mg, 0.5 mmol), and MeCN (4 mL) in a vial.
The mixture was heated for 3h at 90°C. The reaction time was deter-
mined by TLC. The reaction mixture was filtered and washed with Et,0
(15mL). The filtrate was evaporated under reduced pressure. Column
chromatography on silica gel (10% EtOAc/hexanes) afforded 220 mg
(0.97 mmol, 97%) of 2-(3-azidopropoxy)naphthalene (8). 'H NMR
(600 MHz, CDCly): 6=2.10-2.14 (m, 2H), 3.57 (t, J=6.9 Hz, 2H), 4.17
(t, J=6.2 Hz, 2H), 7.13-7.16 (m, 2H), 7.32-7.35 (m, 1H), 7.42-7.45 (m,
1H), 7.71-7.77 ppm (m, 3H); *C NMR (150 MHz, CDCl,): § =28.9, 48.4,
64.6, 106.7, 1188, 123.8, 126.5, 126.8, 127.7, 129.1, 129.5, 134.6,
156.7 ppm; MS (EI): m/z (%): 227 [M]*, 169, 143 (100), 115; HRMS
(EI): m/z caled for C3H3sN;0: 227.1059 [M]*; found: 227.1060. Registry
No. provided by the author: 1199811-23-8.

Typical procedure for the methoxylation reaction (Scheme 1): Potassium
methoxide (211 mg, 3 mmol) was added to a mixture of mesylate 1
(281 mg, 1.0 mmol), pentaEG (119 mg, 0.5 mmol), and tert-amyl alcohol
(4mL) in a vial. The reaction mixture was heated for 45 min at 90°C.
The reaction time was determined by TLC. The mixture was filtered and
washed with Et,0 (15mL). The filtrate was evaporated under reduced
pressure. Column chromatography on silica gel (10% EtOAc/hexanes)
afforded 203 mg (0.94 mmol, 94 %) of 2-(3-methoxypropoxy)naphthalene
(9). '"H NMR (600 MHz, CDCl;) §=2.09-2.16 (s, 2H), 3.37 (S, 3H), 3.60
(t, /=6.18 Hz, 2H), 4.18 (t, J=6.18 Hz, 2H), 7.13-7.15 (m, 2H), 7.31 (t,
J=6.84Hz, 1H), 742 (1, J=6.84Hz, 1H), 7.71-7.77 ppm (m, 3H);
BC NMR (150 MHz, CDCl;): 6=29.7, 58.9, 64.9, 69.4, 106.7, 119.0, 123.6,
1264, 126.8, 127.7, 128.9, 129.4, 134.7, 157.0 ppm; MS (EI): m/z: 216
[M]*; HRMS (EI): m/z caled for C,H;sO,: 216.1150 [M]*; found:
216.1149. Registry No. provided by the author: 1006374-27-1.
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