
&Metathesis

The Key Role of the Nonchelating Conformation of the
Benzylidene Ligand on the Formation and Initiation of Hoveyda–
Grubbs Metathesis Catalysts
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Abstract: Experimental studies of Hoveyda–Grubbs meta-

thesis catalysts reveal important consequences of substitu-
tion at the 6-position of the chelating benzylidene ligand.

The structural modification varies conformational prefer-
ences of the ligand that affects its exchange due to the in-
teraction of the coordinating site with the ruthenium
center. As a consequence, when typical S-chelated sys-
tems are formed as kinetic trans-Cl2 products, for 6-substi-

tuted benzylidenes the preference is altered toward direct
formation of thermodynamic cis-Cl2 isomers. Activity data
and reactions with tricyclohexylphosphine (PCy3) support
also a similar scenario for O-chelated complexes, which

display fast trans-Cl2Qcis-Cl2 equilibrium observed by NMR
EXSY studies. The presented conformational model reveals

that catalysts, which cannot adopt the optimal nonchelat-
ing conformation of benzylidene ligand, initiate through
a high-energy associative mechanism.

Mechanistic studies play a dominant role in development of
catalytic systems, and olefin metathesis is one of the main

areas of the frontier research.[1] For the family of Hoveyda–
Grubbs complexes (e.g. , 1), numerous studies that focused on
the catalytic cycle[2] revealed the importance of the initiation

step as a key process[3] responsible for release of active species,
and involved in the bimolecular deactivation pathway.[4] In ki-
netic studies Plenio demonstrated that the initiation proceeds
by dissociative (D) or interchange mechanism (Ia), depending

on structure of the substrate and coordinating alkoxy group of

the catalyst.[5] In both scenarios the chelate ring opens and
olefin binds preferably in a trans position to the N-heterocyclic
carbene (NHC).[6] Further insights were delivered by reaction of
1 with excess of PCy3, in which pentavalent adduct 2 adopts

a nonchelating conformation of benzylidene ligand (Scheme 1,
top).[7] As supported by ab initio calculations, in a real catalytic

cycle the system rearranges in a similar way, distancing the
OiPr coordinating site from the metal center; the so-formed

olefin adduct evolves further into metallacyclobutane (MCB),

starting the initial turnover of the metathesis reaction.[2b, 8] Intri-
guingly, as the initiation process was studied in detail, much
less is known about the formation of Hoveyda-type complexes.

Important details of the mechanism delivers synthesis of
sulfur-chelated analogs (e.g. , 4).[9] Replacement into the heavi-

er coordinating heteroatom offers a unique opportunity to
follow conformational changes of the systems, which usually
form as kinetic trans-Cl2 products, slowly isomerizing to the
thermodynamic cis-Cl2 structures (Scheme 1, bottom).[10] Re-

cently, we observed that a S-chelating ligand with extended ar-
omatic framework adjacent to the olefinic substituent favors
direct formation of the cis-Cl2 isomer.[9b] In the current report
we explain the data by providing a concise mechanism based
on conformational considerations of the chelating benzylidene

ligand and its exchange in metathesis reactions. The presented
model is validated by experimental studies of formation and

initiation of S- and O-chelated Hoveyda–Grubbs complexes
bearing substituted benzylidene ligands.

Our studies started from the preparation of S-chelating li-

gands with various groups attached at the 6-position of the
benzylidene ring, to probe their ligand-exchange processes

(R = H, SMe, OMe, Me; 5 a–d ; Figure 1).[11] The substrates were
subjected to the commercially available ruthenium precursor 6
(M2), and the reactions were analyzed using 1H NMR spectros-

copy (CD2Cl2, 40 8C). As expected, 2-(thiomethyl)styrene (5 a ;
R = H) led to the formation of the initial product attributed to

the kinetic trans-Cl2 isomer with a resonance peak of benzyli-
dene proton observed at 17.2 ppm, which slowly converted

into another one detected at 17.0 ppm (cis-Cl2).[12] In contrast,
for substituted ligands 5 b–d (R¼6 H) one predominant product

Scheme 1. Selected reactions of O- (top) and S-chelated (bottom) Hoveyda-
type complexes.[7,9] Mes = 2,4,6-trimethylphenyl; Cy = cyclohexyl
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was formed in each case, with only trace amounts of accompa-

nying species. Analogously, in preparative experiments (CH2Cl2,
40 8C, 1 h) products 7 b–d were isolated in good yields, and

characterized with NMR and X-ray studies as cis-Cl2 isomers

(Scheme 2). From the results we suspected that substitution of
benzylidene ring in a position adjacent to the vinyl group in-

fluences mechanism of the ligand-exchange process. In
a search for the missing trans-Cl2 isomers complexes cis-7 b–d
were irradiated with UV light (366 nm), a technique used earli-
er for cis-to-trans-Cl2 isomerizations.[9a] In the mixtures we de-
tected formation of small amounts of products (expectedly

trans-Cl2 isomers), which remained stable under ambient con-
ditions and only slowly decayed, as detected by 1H NMR.[11] Im-

portantly, chemical shifts of the minor forms were consistent
with traces of accompanying species observed in previous

NMR experiments (cf. Figure 1). In the next step the prepara-
tive experiments were repeated in toluene, which favors for-
mation of kinetic trans-Cl2 isomers of S-chelated systems.[10a] In-
terestingly, a reaction of ligand 5 a afforded complex trans-7 a,

isolated in 64 % yield, whereas ligands 5 b–d displayed essen-
tially no conversion under the same conditions (toluene, 40 8C,
16 h).[11] Attempts at forcing the processes at 80 8C overcame
the inhibitory effect, but again formation of cis-Cl2 products
was observed, and only for ligand 5 c we isolated a small
amount of product characterized with NMR and X-ray studies
as trans-Cl2 complex 7 c (11 %).

Although all synthesized complexes cis-7 a–d displayed very
little activity in model metathesis reactions,[11] more pro-

nounced differences between catalysts were observed for

trans-Cl2 isomers of 7 a and 7 c (Figure 2, left).

Complex trans-7 a was moderately active, while trans-7 c re-
mained inactive at 40 8C. Moreover, NMR studies revealed that

trans-7 c isomerizes faster than trans-7 a (t1/2 = 13 h and 3 h for
7 a and 7 c, respectively; Figure 2, right), but the difference is

rather small, and thus cannot rationalize the observed lack of
activity of trans-7 c by fast isomerization to the latent cis-Cl2

form. For the same reason, it is unlikely that in NMR and prep-
arative experiments performed in CD2Cl2 (cf. Figure 1 and
Scheme 2) complex cis-7 c was formed by isomerization of the

transient trans-7 c. A more plausible mechanism should involve
an alternative direct pathway to the cis-Cl2 form.

On the basis of the presented data we considered the pro-
cess of formation of S-chelated complexes, following a general-

ly accepted mechanism of metathesis reaction,[2b, 8] with the ex-

changed olefin coordinated in a trans position to the NHC.[6]

The structure of the benzylidene ligand approaching the ruthe-

nium center was considered in two conformations: nonchelat-
ing (n-c) and chelating (c), and the two conformations led fur-

ther to parallel pathways of the ligand exchange process, as
presented in Scheme 3. In a less-hindered nonchelating confor-

Scheme 2. Preparative syntheses of complexes 7 a–d, and results of UV irra-
diation experiments.[11]

Figure 2. Activity profiles of 1.0 mol % of catalysts trans-7 a, c in ring closing
metathesis (RCM) of diethyl diallylmalonate (DEDAM; c = 0.2 m ; left), and iso-
merization studies of the complexes detected by 1H NMR (right).[11]

Figure 1. 1H NMR studies of synthesis of complexes 7 a–d. The array experi-
ments were conducted in CD2Cl2 at 40 8C, and the NMR acquisitions were re-
peated at 30 min intervals.[11]
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mation (available for 5 a ; R = H), where interaction between
the SMe coordinating site and the metal center is reduced, the
olefin acts virtually as a monodentate ligand on steps An-c!
Bn-c!Cn-c. However, a close parallel orientation of NHC and
benzylidene aromatic rings in Cn-c prevents a direct rotation
around the =C¢CAr bond, and thus a rotation around the Ru=C

bond leads to an intermediate Dn-c, which then cyclizes to
complex trans-Cl2. The mechanism agrees well with the ob-
served kinetic formation of trans-Cl2 isomer of 7 a, and synthe-

ses of similar S-chelated complexes described in the litera-
ture.[9b, 10a] In contrast, for ligands substituted at the 6-position

of the benzylidene ring (5 b-d ; R¼6 H) an alternative mechanism
operates. Accordingly, when the chelating conformation pre-

vails in the exchange process, the SMe coordination site of the

chelating ligand begins to interact with the ruthenium center
in the initial steps, giving a transient structure Bc,

[13] which de-

coordinates olefin directly to complex cis-Cl2. As ligand 5 a (R =

H) forms a kinetic trans-Cl2 product, and the direct formation

of cis-Cl2 isomers is observed only for 5 b–d (R¼6 H), it becomes
apparent that the first pathway, realized by a nonchelating

conformation, is more energetically preferred. Interestingly,
when considering initiation of complexes trans-7 a and trans-
7 c the same two mechanisms remain valid. For unsubstituted
catalyst 7 a (independent of olefin participation in the chelate
opening) steps trans-7 a!Dn-c!Cn-c lead to an adduct Bn-c, fol-
lowing a mechanism of initiation of O-chelated catalysts (cf.

Scheme 1, top).[2b, 7, 8] In turn, opening of the chelate and coor-
dination of the olefin in trans-7 c (R = OMe) leads to an inter-
mediate E, which may enter the metathesis cycle only by a ro-

tation around the Ru=C bond, and recoordination of the SMe
group[14] (Scheme 4).

Therefore, instead of initiation by a six-coordinated structure

Bc, olefin may dissociate with the formation of cis-Cl2 isomer,
and thus no appreciable progress of the metathesis reaction is

observed. An important consequence of this reasoning is
a demand for an associative mechanism of initiation, when the

nonchelating conformation of benzylidene ligand is inaccessi-

ble. This may be the case for 6-substituted benzylidenes dis-
cussed here, or complexes for which cisQtrans-Cl2 equilibrium

is strongly shifted to the left.[9b, 10a, 15] Moreover, as in the disso-
ciative and interchange mechanism, a nonchelating conforma-

tion enables a stepwise decoordination of the ligand with
opening of the chelate ring separated from the metathesis
cycle; in the associative mechanism, a simultaneous breaking

of the Ru···heteroatom bond is required, making the process
difficult.[13]

To further verify the idea we synthesized a set of O-chelated
complexes 9 a–c (Scheme 5). Activity data of the catalysts were

very similar to their S-chelated counterparts (Figure 3). As ex-
pected, complex 9 a (R = H) was active under ambient condi-

tions, whereas substituted derivatives 9 b and 9 c (R¼6 H) re-
mained intact, and required elevated temperature to initiate

Scheme 3. Proposed mechanism of formation of S-chelated Hoveyda-type
complexes. Typical benzylidene ligands are exchanged in a nonchelating
conformation giving kinetic trans-Cl2 products (left path), whereas ligands
substituted at the 6-position prefer a chelating conformation and, therefore,
thermodynamic cis-Cl2 isomers are formed directly (right path). Geometries
of the structures and their interconversion trajectories are idealized to em-
phasize key conformational changes.

Scheme 4. Proposed mechanism of initiation of 6-substituted trans- and cis-
Cl2 complexes (R¼6 H).

Scheme 5. Syntheses of O-chelated complexes 9 a–c, and their transQcis-Cl2

equilibria detected with 1H NMR EXSY at 80 8C.[11] [a] A longer reaction time
(4.5 h) was required to complete conversion of 6 ; [b] the structure of com-
plex 9 b was confirmed with X-ray studies; [c] contents of the isomers ob-
served in CD2Cl2 at RT by 1H NMR.
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(55 8C). Similar differences were observed also in reactions of
the complexes with excess of PCy3. As observed by 1H NMR

measurements, unsubstituted complex 9 a easily transformed
into adduct, similar to 2 (cf. Scheme 1), whereas under the

same conditions 9 b and 9 c did not react, suggesting pro-

nounced difficulties for formation of 6-coordinated struc-
tures.[11] Interestingly, in contrast to properties of 1, the OMe-

chelated complexes existed in two forms in CD2Cl2 at RT, and
displayed equilibria observed with NMR EXSY studies at higher

temperatures. On the base of literature data[16] we assigned
the dynamic process to the fast transQcis-Cl2 isomerization in

solution.[9b, 10, 17] In this case the substitution of benzylidene ring

had only a limited effect on contents of the individual forms,
slightly destabilizing the minor cis-Cl2 isomers for complexes

9 b and 9 c (R¼6 H).
In conclusion, we have presented a conformational model,

which describes an exchange process of chelating benzylidene
ligand in Hoveyda–Grubbs metathesis catalysts. Accordingly,

the formation of S-chelated complexes proceeds through

a nonchelating conformation, which minimizes interaction of
the SMe coordinating site with the ruthenium center, giving ki-
netic trans-Cl2 isomers. However, substitution at the 6-position
of the benzylidene ring varies the preference toward a chelat-

ing conformation and, as a consequence, the complexes form
directly as cis-Cl2 structures. The differences concern also a re-

verse process of catalyst initiation. The nonchelating conforma-
tion of benzylidene ligand enables its stepwise decoordination
by opening of the chelate ring followed by a metathesis cycle.

However, when the conformation is not available, an associa-
tive mechanism operates, requiring formation of six-coordinat-

ed intermediate, and breaking of the Ru···heteroatom bond in
the course of the metathesis cycle.

Experimental Section

CCDC 1044950, 1044951, 1044952, 1055099, and 1055105 (cis-7b,
9b, cis-7c, trans-7a, and trans-7c, respectively) contain the supple-
mentary crystallographic data for this paper. These data are provid-
ed free of charge by The Cambridge Crystallographic Data Centre.
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Figure 3. Activity profiles of complexes 9 a–c in RCM of DEDAM in 0.2 m sol-
utions detected by 1H NMR. The catalysts were tested at 0.2 mol % at 25 8C
(left), and 1.0 mol % at 55 8C (in sealed tubes; right).[11]
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