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A B S T R A C T   

Herein we report the discovery of 1-(5-(tert-butyl)isoxazol-3-yl)-3- (3-fluorophenyl)urea derivatives as new FLT3 
inhibitors that are able to overcome the drug resistance mutations: the secondary D835Y and F691L mutations 
on the basis of the internal tandem duplications (ITD) mutation of FLT3 (FLT3-ITD/D835Y and FLT3-ITD/F691L, 
respectively). The most potent compound corresponds to 1-(5-(tert-butyl)isoxazol-3-yl)-3-(4-((6,7-dimethox-
yquinolin-4-yl)oxy)-3- fluorophenyl)urea (4d), which showed IC50s (half maximal inhibitory concentrations) of 
0.072 nM, 5.86 nM and 3.48 nM against FLT3-ITD, FLT3-ITD/F691L and FLT3-ITD/D835Y, respectively. 
Compound 4d also showed good selectivity for FLT3 in a kinase profiling assay. Collectively, 4d could be a good 
lead compound and deserves further in-depth studies.    

Acute myeloid leukemia (AML) is a hematological malignancy 
caused by abnormal proliferation of myeloid hematopoietic progenitor 
cells in the bone marrow. Clinical data have shown that approximately 
30% of patients have activating mutations of FMS-like tyrosine kinase 3 
(FLT3), and the most prevalent of which is internal tandem duplications 
(ITD) mutation in the juxtamembrane domain of FLT3.1–5 Numerous 
studies have indicated that FLT3 mutations are associated with a poor 
prognosis for overall survival.6–9 FLT3 has thus been considered as a 
valid target for the treatment of AML.10 Currently, a number of FLT3 
inhibitors have been reported, and three of them, Midostaurin, Gilter-
itinib and Quizartinib (AC220), have been approved to clinical use for 
the treatment of AML.11–19 Unfortunately, recent studies have shown 
that resistance to currently known FLT3 inhibitors emerged due to 
secondary point mutations in the kinase domain (KD) of FLT3. The most 
common mutation sites are phenylalanine at position 691 (F691) and 
aspartic acid at position 835 (D835).20–23 Drug discovery targeting the 
secondary mutations of FLT3-ITD has thus been an urgent task. 

In a previous study, we obtained a potent FLT3 inhibitor, 1-(4-((1H- 
pyrazolo [3, 4-d]pyrimidin-4-yl)oxy)-3-fluorophenyl)-3-(5-(tert-butyl) 
isoxazol-3-yl)urea (Figure 1a, SKLB-677). This compound showed an 
excellent activity against FLT3-ITD mutant with an IC50 value of 
1.3 nM.24 It also showed activity against the secondary mutations 

D835Y and F691L of FLT3-ITD with IC50 values of 0.129 μM and 
0.108 μM, respectively. Obviously, the potencies against these second 
mutations of FLT3-ITD are not good and need further improvement. We 
will in this investigation carry out a structural optimization to this 
compound to improve its potency against the second mutations of 
FLT3-ITD. 

Our structural optimization will focus on the 1H-pyrazolo [3,4-d] 
pyrimidine region (Figure 1 b) because 1-(5-(tert-butyl)isoxazol-3-yl)- 
3-(3-fluoro-4-hydroxyphenyl)urea has been determined as an optimal 
fragment in our previous study.24 We synthesized a total of 22 deri-
vatives (4a, 11a-o) of compound SKLB-677 with 1H-pyrazolo[3, 4-d] 
pyrimidine substituted by different heteroaryl rings containing a pyr-
idine or pyrimidine ring. 

In the first step, we replaced 1H-pyrazolo[3,4-d]pyrimidine with 
various pyridine (or pyrimidine) -fused five (or six) membered ring 
fragments and synthesized 7 compounds (4a-g). Synthetic routes for 
compounds 4a-g are depicted in Scheme 1. Commercially available 
reagents 1a-g reacted with 4-amino-2-fluorophenol through a nucleo-
philic substitution to give intermediate 2a-g. Condensation reaction 
between 2a-g and 5-(tert-butyl)-3-isocyanatoisoxazole (3) produced 
target compounds 4a-g. 

Bioactivities of compounds 4a-g together with AC220 and SKLB- 
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677 were then examined. Here cell-based bioactivity assays were 
adopted, in which Ba/F3 cells expressing FLT3-ITD, FLT3-ITD/D835Y 
and FLT3-ITD/F691L, as well as the parental Ba/F3 cells were used. The 
measured bioactivities of these compounds are displayed in Table 1. 
Compounds 4a, 4b, 4d and 4 g showed potent activity against both 
FLT3-ITD mutation and drug resistance mutations FLT3-ITD/D835Y 
and FLT3-ITD/F691L. Among them, 4d and 4 g, bearing quinoline and 
quinazoline in region A, respectively, are the most active ones in terms 
of the potency against drug resistance mutations FLT3-ITD/D835Y and 
FLT3-ITD/F691L. All of these compounds showed weak or no activity 
against the parental Ba/F3 cells, indicating that they indeed target the 
mutated FLT3, and also have a low toxicity. Considering the poor water 
solubility of 4 g, we chose 4d for further structural optimization. 

In the second step, we tested the possible influence of 6 and 7-po-
sitions of quinoline on the bioactivity. To this end, a total of 15 com-
pounds (11a-o) with difference substituents at the 6 or 7-position of 
quinoline were synthesized. Reaction routes for compounds 11a-o are 
summarized in Scheme 2. Demethylation of 4-chloro-6,7-dimethox-
yquinoline (5) under different conditions gave intermediates4-chloro-7- 
methoxyquinolin-6-ol (7) or 4-chloroquinoline-6, 7-diol (8). Commer-
cially available 4-chloro-6-methoxyquinolin-7-ol (6) and the synthe-
sized intermediates 7 and 8 reacted with various alkyl chloride to 
provide 9a-o. Nucleophilic substitution reactions between 9a-o and 4- 
amino-2-fluorophenol produced corresponding 10a-o. Reactions of in-
termediate 10a-o and 5-(tert-butyl)-3-isocyanatoisoxazole (3) offered 
final product compounds 11a-o by condensation reaction. 

Bioactivities of compounds 11a-o are displayed in Table 2. 

Compounds 11a-o all showed potent activity against FLT3-ITD, ITD/ 
D835Y and ITD/F691L, except 11 g, which displaced moderate activity. 
Nevertheless, their potency did not exceed that of compound 4d. 

Overall, through the above structural optimization and SAR studies, 
we obtained a number of new FLT3 inhibitors containing the scaffold 1- 
(5-(tert-butyl) isoxazol-3-yl)-3-(3-fluoro-4-(quinolin-4-yloxy)phenyl) 
urea. Among them, 4d is the most potent one, which exhibited excellent 
inhibitory activity against FLT3-ITD and drug-resistance mutations 
FLT3-ITD/D835Y and FLT3-ITD/F691L (Figure 2). Further bioactivity 
evaluations were then carried out on this compound. 

To examine the kinase selectivity of compound 4d, a kinase pro-
filing assay was performed through DiscoverX KINOMEscan kinase 
profiling services. The results showed that 4d has a good kinase se-
lectivity with the calculated selectivity scores, S(1), S(5) and S(10), 
being 0.082, 0.119 and 0.164, respectively (See Supporting Information  
Table S1). 

Molecular docking was then used to predict the binding model of 
the most active compound 4d in the active pocket of FLT3. The receptor 
structure was taken from the crystal structure of FLT3 (PDB ID: 4RT7). 
The preparation and preprocessing of the receptor and the ligand were 
performed on the platform of Discovery Studio 3.1. The program GOLD 
version 5.1 was adopted for molecular docking. The predicted inter-
action model between compound 4d and FLT3 is depicted in Figure 3. 
4d suitably resides in the ATP binding pocket of FLT3. Four hydrogen 
bonds are formed between 4d and FLT3: one is between quinoline (1-N) 
and Cys694; one is between oxygen of urea and ASP829; and the other 
two are between nitrogen of urea and Glu661. It is also obvious that the 
benzene ring of 4d forms good π-π interactions with the benzene rings 
of residues Phe691 and Phe830. 

Our previous study has shown that SKLB-677 could block the Wnt/ 
β-catenin signaling pathway. To examine whether 4d has a similar ef-
fect, we used the same STF3a cell model as before,24 which stably ex-
press both the STF (Super Top Flash) luciferase reporter promoter and 
the wnt3a gene. The results indicated that 4d was able to dose-de-
pendently inhibit the Wnt/β-catenin signaling with an IC50 value 
of  <  0.5 μM (Figure 4), which is very similar with SKLB-677. In the 
same experiment, AC220 exhibited very weak effect (Figure 4). 

In summary, we obtained a new 1-(5-(tert-butyl)isoxazol-3-yl)-3-(3- 

Fig. 1. (a) The chemical structure of compound SKLB-677; (b) Schematic 
showing the region being the focus of structural modification. 

Scheme 1. Synthetic routes for compounds 4a-g. Reagents and conditions: (a)t-BuOK, anhydrous DMF, 100 °C, overnight; (b) Et3N, EtOAc, 80 °C, overnight.  
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Table 1 
Inhibitory activities of compounds 4a-g against Ba/F3 cells expressing FLT3-ITD, FLT3-ITD/D835Y and FLT3-ITD/F691L, as well as the parental Ba/F3 cells. 

Cpd Region A FLT3-ITD(IC50, nM) FLT3-ITD/D835Y(IC50, nM) FLT3-ITD/F691L(IC50, nM) Ba/F3(IC50, nM)  

AC220 – 3.01  ±  0.79 520  ±  27.8 625  ±  31.2 9312.2  ±  16.0 
SKLB-677 – 0.038  ±  0.001 130  ±  14.6 108  ±  17.3 3156.3  ±  17.1 
4a 0.292  ±  0.054 34.3  ±  7.2 35.0  ±  2.7 2623.2  ±  10.0 

4b 0.015  ±  0.004 12.4  ±  5.7 18.6  ±  2.4 2084.0  ±  13.0 

4c 140.9  ±  7.3 741.1  ±  35.6 1023.7  ±  9.8  > 10000 

4d 0.072  ±  0.02 3.48  ±  0.59 5.86  ±  0.62 1212.4  ±  10.9 

4e 1258.0  ±  23.9  > 10000  > 10000  > 10000 

4f 1.20  ±  0.24 64.2  ±  11.7 1021.7  ±  6.8 3035.4  ±  12.0 

4 g 1.51  ±  0.32 7.93  ±  1.29 13.8  ±  2.8  > 1988.1  ±  13.5 

aAll IC50 values were obtained by triplet testing.  
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fluorophenyl)urea derivative (4d), which showed potent activity 
against both FLT3-ITD mutation and drug resistance mutations FLT3- 
ITD/D835Y and FLT3-ITD/F691L. This compound has a good kinase 
selectivity, and is able to inhibit the Wnt/β-catenin signaling pathway. 
Nevertheless, we have to mention that more studies, including in vivo 
anti-AML activity, and pharmacokinetic properties, as well as me-
chanism of actions, are still needed to evaluate its druggability. 
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Scheme 2. Synthetic routes for compounds 11a-o. Reagents and conditions: (a) L-Methionine, Methanesulfonic acid, 120 °C, 12 h; (b) BBr3, DCM, 0 °C-25 °C, 6 h; (c) 
K2CO3, DMF, 150 °C, 4 h; (d) t-BuOK, anhydrous DMF, 100 °C, overnight; (e) Et3N, EtOAc, 80 °C, overnight. 
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Table 2 
Inhibitory activities of compounds 11a-o against Ba/F3 cells expressing FLT3-ITD, FLT3-ITD/D835Y and FLT3-ITD/F691L, as well as parental Ba/F3 cells. 

Cpd R1 R2 FLT3-ITD (IC50, nM) FLT3-ITD/D835Y (IC50, nM) FLT3-ITD/F691L (IC50, nM) Ba/F3 (IC50, nM) 
4d 0.072  ±  0.020 3.48  ±  0.59 5.86  ±  0.62 1212.4  ±  10.9 

11a 5.20  ±  0.68 5.96  ±  0.57 8.31  ±  1.33 1645.6  ±  9.4 

11b 19.2  ±  7.2 14.9  ±  3.2 54.3  ±  5.9 4935.0  ±  15.0 

11c 3.22  ±  0.35 5.09  ±  1.18 9.93  ±  2.75 1097.1  ±  17.7 

11d 4.73  ±  0.24 5.35  ±  1.20 11.9  ±  1.6 1125.2  ±  13.0 

11e 66.5  ±  9.5 104  ±  16.0 189  ±  25.1 5556.1  ±  12.4 

11f 36.5  ±  4.5 62.4  ±  11.3 127  ±  13.4 4817.0  ±  7.2 

11g 2649.0  ±  11.1 3540.8  ±  21.3 5270.6  ±  15.5 9203.9  ±  28.5 

11h 7.25  ±  0.21 10.9  ±  2.9 29.9  ±  6.1 2877.7  ±  10.3 

11i 76.1  ±  9.4 160  ±  12.9 296  ±  19.3 7774.1  ±  20.0 

11j 5.77  ±  0.30 6.28  ±  0.82 16.8  ±  3.4 1840.0  ±  13.8 

11k 4.91  ±  0.53 10.1  ±  3.1 20.8  ±  4.5 3000.2  ±  11.4 

11l 6.88  ±  0.74 10.6  ±  4.0 23.1  ±  3.3 2034.8  ±  15.6 

11m 3.08  ±  1.16 15.5  ±  2.5 32.6  ±  1.4 3137.5  ±  28.6 

11n 5.17  ±  0.55 11.0  ±  3.7 16.0  ±  4.4 1996.3  ±  17.6 

11o 37.2  ±  6.3 27.9  ±  7.4 38.9  ±  9.1 6500.1  ±  19.4 

aAll IC50 values were obtained by triplet testing.  
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