
Synthetic Methods
DOI: 10.1002/anie.200903192

Targeting Structural and Stereochemical Complexity by
Organocascade Catalysis: Construction of Spirocyclic Oxindoles
Having Multiple Stereocenters**
Giorgio Bencivenni, Li-Yuan Wu, Andrea Mazzanti, Berardino Giannichi, Fabio Pesciaioli,
Mao-Ping Song, Giuseppe Bartoli, and Paolo Melchiorre*

Dedicated to Professor Alfredo Ricci on the occasion of his 70th birthday

The structural complexity and well-defined three-dimen-
sional architecture of natural molecules are generally corre-
lated with specificity of action and potentially useful biolog-
ical properties.[1] This complexity has inspired generations of
synthetic chemists to design novel enantioselective strategies
for assembling challenging target structures and reproducing
the rich structural diversity inherent in natural molecules.
This symbiotic correlation between natural compounds syn-
thesis and the discovery of effective asymmetric—generally
catalytic[2]—technologies lies at the heart of the synthetic
chemistry innovation.[3] Despite the substantial advances
made thus far, the construction of highly strained polycyclic
structures (particularly those that contain spiro-stereocen-
ters) and the generation of all-carbon quaternary stereocen-
ters still remain daunting targets for synthesis.[4,5]

The spirocyclic oxindole core is featured in a number of
natural products[6] as well as medicinally relevant com-
pounds[7] (Figure 1), but its stereocontrolled synthesis, partic-
ularly installing the challenging spiro-quaternary stereocen-
ter, poses a great synthetic problem. Only a few venerable
asymmetric transformations, such as cycloaddition process-
es[8] or the intramolecular Heck reaction,[9] have proven
suitable for achieving this challenging goal.

Herein we show that asymmetric organocascade cataly-
sis,[10] which exploits the ability of chiral amines to efficiently
combine two modes of catalyst activation of carbonyl com-
pounds (iminium and enamine catalysis) into one mecha-

nism,[11] allows the direct, one-step synthesis of complex spiro-
oxindolic cyclohexane derivatives; these products have three
or four stereogenic carbon atoms and are obtained with
extraordinary levels of stereocontrol starting from simple
precursors. Specifically, we developed complementary orga-
nocatalytic multicomponent domino reactions based on two
distinct organocatalysts, A and B, which efficiently activate
carbonyl compounds such as ketones and aldehydes, respec-
tively, toward multiple asymmetric transformations in a well-
defined cascade sequence. Both strategies provide straight-
forward access to natural product inspired compound collec-
tions,[12] which would be difficult to synthesize by other
enantioselective methods.

The recent advances achieved in the field of chiral
secondary amine catalysis[13] have set the conditions for the
development of many asymmetric cascade reactions based on
the efficient activation of aldehydes.[11] However, minor
progress has been achieved in the corresponding transforma-
tions of ketones.[14] This lack in progress is a result of the

Figure 1. Naturally occurring and biologically active spirocyclic oxin-
doles.
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inherent difficulties in generating congested covalent inter-
mediates from chiral secondary amines and ketones.
Recently, we introduced 9-amino(9-deoxy)epi-hydroquinine
A, a chiral primary amine derived in a single step from the
cinchona alkaloid hydroquinine, as a general and selective
catalyst for ketone activations.[15] Catalyst A proved efficient
even for the catalysis of an intramolecular tandem reaction of
a,b-unsaturated ketones through an iminium–enamine path-
way.[16] We speculated that the versatility of A may be
additionally exploited to design a novel organocascade to
access valuable, spirocyclic scaffolds.[14b]

From the outset, a central tenet of our approach was the
identification of a suitable compound, 1, bearing the oxindole
moiety. As shown in Scheme 1, we anticipated that compound
1 would first act as a Michael acceptor, intercepting the
nucleophilic dienamine intermediate I generated by the
condensation of catalyst A with the a,b-unsaturated ketone
2.[14] The resulting carbon nucleophile II would then selec-
tively engage itself in an intramolecular, iminium-catalyzed
conjugate addition to afford the spiro-oxindole derivative
3.[17] Our organocascade strategy with enones was evaluated
by conducting the tandem reactions in toluene at 60 8C for 48–
72 hours, under an aerobic atmosphere. Optimization experi-
ments revealed that the best results in terms of both yield and
stereoselectivity were achieved using 20 mol% of amine A in
combination with an acidic co-catalyst, such as ortho-fluo-
robenzoic acid (30 mol%). Importantly, using the pseudo-
enantiomeric amine catalyst, prepared from hydroquinidine,
affords the opposite antipode of the spyrooxindole product,
ent-3, with similar results (see Figure 1 in the Supporting
Information). As highlighted in Scheme 1, there appears to be
significant tolerance toward structural and electronic varia-
tions of both the precursors, 1 and 2, to enable access to a
variety of complex spiro-oxindoles (3a–e) having three and
even four (compound 3 f) stereocenters with high diastereo-
meric ratio and excellent optical purity. Notably, the main
diastereomer can be easily isolated by simple column
chromatography.

Moreover, the presented organocascade is also effective
with cyclohexenone derivatives, giving access to the highly
congested bicyclo[2.2.2]octanes 3g and 3h adorned with a
spiro-oxindole moiety. The spiro-bicycle 3h is a completely
unknown complex scaffold possessing two contiguous all-
carbon quaternary stereocentres, a daunting synthetic chal-
lenge for which only a few direct strategies have been devised
to date.[18]

To illustrate the value of our organocascade in the
synthesis of biologically relevant compounds, we carried out
the one-step preparation of the chiral spiro-oxindole 7
[Eq. (1)]. The spiro-oxindole 7 (recently patented by Hoff-
mann-La Roche)[19] serves as a specific and potent inhibitor of
the MDM2–p53 interaction, an innovative target for the
discovery of anticancer agents.[20] The biological properties of
this compound have been evaluated on the racemic mixture,
hence the availability of a fast and easy method for obtaining
stereochemistry-based structure and activity relationships
might enable the identification of a more selective and
potent antitumor lead.

We then focused on the development of a complementary
organocascade strategy based on the activation of aldehydic
compounds, in which the spiro-oxindole cyclohexane archi-
tecture was constructed with the simultaneous creation of

Scheme 1. Tandem double Michael additions (enamine–iminium acti-
vation sequence) toward spirocyclic oxindolic cyclohexanones. [a] Yield
of isolated product calculated on the sum of the diastereomers,
whereas other yields are given on the single major diastereomer.
[b] Enantiomeric excess obtained after a single crystallization.
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three bonds and four stereogenic centers in a single chemical
step (Table 1).

The rationale behind this approach arises from the studies
by Enders and co-workers who demonstrated the catalytic
ability of the chiral secondary amine B to realize an enamine–
iminium–enamine sequential activation of aldehydes 4 and
a,b-unsaturated aldehydes 5.[11e] We later exploited the same
catalytic machinery to stereoselectively install all-carbon
quaternary stereocenters in complex molecules.[21] Here, by
including compound 1 as the third component of the three-
component cascade strategy, the triple organocascade pro-
vides a fast and easy access to challenging spirocyclohexene
oxindoles. This three-component cascade reaction proceeds
at 40 8C in the presence of the catalytic salt B·o-FC6H4CO2H
(15 mol %) in toluene by way of a catalyzed Michael/Michael/
aldol condensation sequence affording the complex products
6 with almost perfect stereocontrol.

The described complementary approaches demonstrate
the potential of organocascade catalysis to face challenging

synthetic problems using disparate tactics. Here the asym-
metric one-step construction of multiple stereocenters in
complex spirocyclic oxindoles was achieved with very high
fidelity.[22] Such complexity- and diversity-generating process-
es, providing access to pre-validated nature-inspired com-
pound collections with appropriate efficiency, scale, purity,
and cost, and in a short period of time, may constitute a useful
synthetic approach in other scientific domains such as
medicinal chemistry and chemical biology research.[23]
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Table 1: Triple organocascade mediated by chiral secondary amine B by
way of an enamine–iminium–enamine activation of aldehydes.[a]

6 R1 R2 R3 R4 Yield
[%][b]

d.r.[c] de, ee
[%][d]

a Ph Me Ph H 74 12:1 >99
b Ph Me p-MeOPh H 70 16:1 >99
c Ph Me p-NO2Ph H 35 >19:1 >99
d Ph Me p-FPh H 50 >19:1 >99
e Ph Me o-MePh H 50 >19:1 98
f Ph Me Ph Cl 47 12:1 >99
g Ph Me Ph Me 40 12:1 >99
h propyl Me Ph H 40 19:1 98
i CO2Et Me Ph H 60 12:1 >99
j C(=O)Ph Me Ph H 46 >19:1 >99
k CO2Et Me Me H 58 >19:1 98
l CO2Et n-butyl Ph H 65 >19:1 >99
m CO2Et benzyl Ph H 65 19:1 >99
n CO2Et allyl Ph H 64 19:1 >99

[a] The triple organocascade proceeds by way of an enamine-catalyzed
Michael addition of 4 to 1 and subsequent iminium-mediated Michael
addition of the chiral nucleophilic intermediate III to 5, and an enamine-
catalyzed intramolecular aldol reaction to afford IV. The last dehydration
step leads to the spirocyclic compounds 6. [b] Yield of the isolated major
diastereomer. [c] The diastereomeric ratio (d.r.) was determined by
1H NMR analysis of the crude reaction mixture. [d] The diastereomeric
and enantiomeric excess (de, ee) were determined by HPLC analysis on
chiral stationary phases.
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