Tetrahedron Letters 54 (2013) 4524-4525

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of 5-substituted 3-mercapto-1,2,4-triazoles via Suzuki–Miyaura reaction

Sarmite Katkevica, Pavlo Salun, Aigars Jirgensons*

Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia

ARTICLE INFO

ABSTRACT

Article history: Received 12 April 2013 Revised 1 June 2013 Accepted 14 June 2013 Available online 24 June 2013

Keywords: 5-Mercapto-1,2,4-triazoles Suzuki-Miyaura cross-coupling Benzyl protection Deprotection

Heterocyclic compounds incorporating the 3-mercapto-1,2,4triazole substructure exhibit a wide spectrum of biological activity.¹⁻³ In addition, 3-mercapto-1.2.4-triazole has the ability to coordinate metal ions.^{4–6} This property has been used to develop non-hydroxamate Zn-dependent enzyme inhibitors based on 3-mercapto-1,2,4-triazoles.⁷ Despite the broad utilization potential of 3-mercapto-1,2,4-triazoles, there are a limited number of methods available for their synthesis. The most common approach is an intramolecular cyclization of acyl-thiosemicarbazides under basic conditions.^{1–3,7–9} The intermediate acyl-thiosemicarbazides are prepared by the addition of hydrazides to isothiocyanates or by non-selective acylation of thiosemicarbazides. Thus, this approach is limited to hydrazines and carboxylic acid derivatives as starting materials. Another limitation is that substrates that tolerate relatively harsh basic conditions are needed to achieve the cyclization. Moreover, the substituent at position 5 of the resulting triazoles is introduced via a multistep procedure that is not suitable for rapid library generation.

Our synthetic strategy for the synthesis of 5-substituted-3-mercapto-1,2,4-triazoles was based on the Suzuki–Miyaura cross-coupling of N,S-diprotected building block **1** with boronic acid derivatives followed by deprotection (Scheme 1). Benzyl groups were chosen for N,S-protection as they are sufficiently stable to avoid catalyst poisoning by generation of thiol in the reaction mixture.¹⁰

3-Bromo- and 3-iodo-N,S-dibenzyl-5-mercapto-1,2,4-triazoles were prepared and demonstrated as ver-

satile building blocks for Suzuki-Miyaura cross-coupling with aryl, heteroaryl, and vinyl boronic acid

Scheme 1. Building block strategy for the synthesis of 5-substituted-3-mercapto-1,2,4-triazoles.

Scheme 2. Synthesis of building blocks 1a,b.

Building blocks **1a,b** were obtained in four steps starting from commercially available formylhydrazine (**2**) and benzylisothiocyanate (**3**) according to the reported approach for the synthesis of mercaptotriazoles (Scheme 2).¹¹ Intermediate acyl thiosemicarba-

etrahedror

^{*} Corresponding author. Tel.: +371 67 01 48 40; fax: +371 67 54 14 08. *E-mail address:* aigars@osi.lv (A. Jirgensons).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.06.067

scheme 3. Suzuki-Miyaura coupling of protected mercaptotriazole building blocks 1a,b and deprotection of the coupling products 8a-m.

Table 1

Suzuki-Miyaura cross-coupling of building	g block 1 with boronic acid derivatives 7
leading to intermediates 8 and deprotection	n to give mercaptotriazoles 9

Entry	Building block 1	Boronic acid derivative, 7	8 , Yield ^a (%)	9 , Yield ^a (%)
	DIOCK I			
1	1a	C ₆ H ₅ B(OH) ₂ , 7a	8a , 99	9a , 90
2	1b	$C_6H_5B(OH)_2$, 7a	8a , 70	
3	1b	4-(Me)C ₆ H ₄ B(OH) ₂ , 7b	8b , 89	9b , 85
4	1a	4-(<i>t</i> -Bu)C ₆ H ₄ B(OH) ₂ , 7c	8c , 86	9c , 95
5	1b	$4-(t-Bu)C_6H_4B(OH)_2$, 7c	8c , 71	
6	1a	3,5-(di-Me)C ₆ H ₃ B(OH) ₂ , 7d	8d , 77	9d , 94
7	1b	3,5-(di-Me)C ₆ H ₃ B(OH) ₂ , 7d	8d, 72	
8	1a	4-(F)C ₆ H ₄ B(OH) ₂ , 7e	8e , 91	9e , 96
9	1b	4-(F)C ₆ H ₄ B(OH) ₂ , 7e	8e , 79	
10	1a	2-(MeO)C ₆ H ₄ B(OH) ₂ , 7f	8f , 74	9f , 95 ^b
11	1b	2-(MeO)C ₆ H ₄ B(OH) ₂ , 7f	8f , 85	
12	1b	3-(MeO)C ₆ H ₄ B(OH) ₂ , 7g	8g , 81	9g , 91 ^b
13	1b	4-(MeO)C ₆ H ₄ B(OH) ₂ , 7h	8h , 89	9h , 93 ^b
14	1b	2-(H ₂ N)C ₆ H ₄ BPin, 7i	8i , 77	9i , 86
15	1b	3-(HO)C ₆ H ₄ B(OH) ₂ , 7 j	8 j, 80	9 j, 91
16	1b	3-PyBPin, 7k	8k , 43	9k , 72
17	1b	3-Quinolinyl-BPin, 71	81 , 60	91 , 80
18	1b	$4-(CN)C_{6}H_{4}B(OH)_{2}$, 7m	8m, 43	9m , 95
19	1b	trans-C ₆ H ₅ CH=CHB(OH) ₂ ,	8n, 51	_
		7n		
20	1b	$CH_2 = CHBF_3K_1$ 70	80 , 79	_
21	1b	Cvclohexen-1-vlB(OH) ₂ , 7p	8p . 60	_
22	1b	<i>i</i> -PrCH ₂ B(OH) ₂ , 7 a	8a.—	_
23	1b	B_2Pin_2 , 7r	8r,-	_

^a Isolated yields.

^b Cleavage of the Me group occurred.

zide **4** was subjected to base-promoted cyclization to give triazole **5**. Benzylation of compound **5** provided N,S-diprotected mercaptotriazole **6**, which was halogenated at position 5 with NBS or NIS yielding triazole derivatives **1a** and **1b**, respectively.

Mercapto triazole building blocks **1a,b** were subjected to Suzuki–Miyaura cross-coupling with Pd(PPh₃)₄ as the catalyst and K₂CO₃ as the base in degassed THF/H₂O (Scheme 3).^{12–14} The coupling reactions with a range of boronic acid derivatives **7** are summarized in Table 1. Both aromatic and vinyl boronic acids or their pinacol esters **7a–p** could be used as coupling partners to give 5substituted N,S-protected mercaptotriazoles **8a–p**. Aliphatic boronic acid **7q** and pinacolate diborane **7r** were also used to couple with building blocks **1a,b**. However, despite the wide range of catalytic systems investigated, no or very low conversion into the desired products and/or dehalogenated *N*,*S*-dibenzyl-mercaptotriazole was obtained as the major product.

Deprotection of triazole derivative **8a** was investigated under various conditions. No conversion was achieved with: (a) Sml₂ in THF at rt; (b) Mg and Zn, HCOO⁻NH₄⁺ in MeOH or THF at 80 °C. Mixtures of products were obtained with (a) KOtBu, O₂ in DMSO at rt; (b) Na in liquid NH₃ at -78 °C; (c) BBr₃ in CH₂Cl₂. Finally, we were pleased to find that deprotection could be achieved successfully using AlCl₃ in toluene at 80 °C.¹⁵ These conditions led to cleavage

of both the *N*- and *S*-benzyl protecting groups in coupling products **8a–m** to give mercaptotriazoles **9a–m** in good to high yields. With compounds **8f–h**, concomitant cleavage of the methyl groups took place providing hydroxyphenyl substituted triazoles **9f–h** (Table 1, entries 10–13). The deprotection conditions with AlCl₃ were also used for 5-(phenylvinyl)-mercaptotriazole **8n**, however this led to the formation of a mixture consisting of several unidentified decomposition products. Deprotection of other 5-vinyl-mercaptotriazole derivatives **8o** and **8p** were not attempted under these conditions.

In summary, we have demonstrated the synthesis of 5-substituted mercaptotriazoles via Suzuki–Miyaura reaction of specifically designed building blocks **1a,b** followed by deprotection. Building blocks **1a,b** might be useful in other types of coupling reactions to give modified triazoles.

Acknowledgment

Financial support from ESF grant No. 2009/ 0203/1DP/1.1.1.2.0/ 09/APIA/VIAA/023 is acknowledged.

Supplementary data

Supplementary data (experimental procedures for the synthesis of compounds **1–9** and characterization data) associated with this article can be found, in the online version, at http://dx.doi.org/ 10.1016/j.tetlet.2013.06.067.

References and notes

- 1. Shaker, R. M. Arkivoc 2006, ix, 59–112.
- 2. Zhou, C.-H.; Wang, Y. Curr. Med. Chem. 2012, 19, 239-280.
- Faridoon; Hussein, W. M.; Vella, P.; Islam, N. U.; Ollis, D. L.; Schenk, G.; McGeary, R. P. Bioorg. Med. Chem. Lett. 2012, 22, 380–386.
- Zhang, R.-B.; Li, Z.-J.; Cheng, J.-K.; Qin, Y.-Y.; Zhang, J.; Yao, Y.-G. Cryst. Growth Des. 2008, 8, 2562–2573.
- Wang, Y.-L.; Zhang, N.; Liu, Q.-Y.; Shan, Z.-M.; Cao, R.; Wang, M.-S.; Luo, J.-J.; Yang, E.-L. *Cryst. Growth Des.* 2010, *11*, 130–138.
 Sanina N. A.; Rakova O. A.; Aldoshin S. M.; Shilov G. V.; Shulga Y. M.; Kulikov
- Sanina, N. A.; Rakova, O. A.; Aldoshin, S. M.; Shilov, G. V.; Shulga, Y. M.; Kulikov, A. V.; Ovanesyan, N. S. *Mendeleev Commun.* 2004, 14, 7–8.
- Gilmore, J. L.; King, B. W.; Asakawa, N.; Harrison, K.; Tebben, A.; Sheppeck, J. E., II; Liu, R.-Q.; Covington, M.; Duan, J. J.-W. *Bioorg. Med. Chem. Lett.* 2007, 17, 4678–4682.
- Guda, D. R.; Wang, T.; Cho, H. M.; Lee, M. E. Tetrahedron Lett. 2012, 53, 5238– 5242.
- Yavari, I.; Shirgahi-Talari, F.; Hossaini, Z.; Sabbaghan, M.; Seyfi, S. Mol. Divers. 2012, 22, 380–386.
- Bromo-S-(4-methoxybenzyl)-5-mercapto-1,2,4-triazole was also prepared and tested in the Suzuki–Miyaura reaction, however, no coupling product was obtained.
- Kruse, L. I.; Kaiser, C.; DeWolf, W. E.; Finkelstein, J. A.; Frazee, J. S.; Hilbert, E. L.; Ross, S. T.; Flaim, K. E.; Sawyer, J. L. J. Med. Chem. **1990**, 33, 781–789.
- 12. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
- Hartnett, J. C.; Barnett, S. F.; Bilodeau, M. T.; Defeo-Jones, D.; Hartman, G. D.; Huber, H. E.; Jones, R. E.; Kral, A. M.; Robinson, R. G.; Wu, Z. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 2194–2197.
- Szommer, T.; Lukács, A.; Kovács, J.; Szabó, M. J.; Hoffmann, M. G.; Schmitt, M. H.; Gerencsér, J. Mol. Divers. 2012, 16, 81–90.
- 15. Fleš, D.; Markovac-Prpic, A.; Tomašic, V. J. Am. Chem. Soc. 1958, 80, 4654-4657.