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Abstract This study presents a convenient synthesis of pyrrolo[1,2-a]quinolines and

pyrrolo[2,1-alisoquinolines with simple quinolines or isoquinolines and Morita—Baylis—Hillman

carbonates in the presence of copper acetate. A range of functionalized benzoindolizines could be

assembled through SN2’/deprotonation/1,5-electrocyclization/oxidation cascade pathway in a one-step

process.

Keywords: Pyrroloquinoline, Pyrroloisoquinoline, Electrocyclization, Quinoline, Isoquinoline

INTRODUCTION

Benzoindolizine is an important framework possessing wide occurrence in biologically active compounds
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(Fig 1).! Furthermore, related benzoindolizine derivatives can also be used as useful building blocks and

functional materials.? The great importance of potential applications have created a significant need for the

development of convenient synthetic methods as well as structurally diversified benzoindolizines.

Accordingly, a large number of attractive methodologies, including multicomponent reactions?®, 1,3-dipolar

cycloadditions?, intramolecular cyclizations®, coupling/cyclization cascades®, C-H activation’,

condensation/cyclization cascades®, Michael addition/cyclization cascades’, substitution/cyclization

cascades!?, amination/C-H activation cascades'!, have been well established in past decades for the

construction of benzoindolizine derivatives. From the standpoint of green and sustainable chemistry, the

preparation of complex molecules bearing this privileged framework from readily available material is an

interesting and longstanding topic in synthetic chemistry. Therefore, considering the great significance of

structurally diversified pyrrolo[1,2-a]quinolines and pyrrolo[2,1-a]isoquinolines, the facile construction of

these molecules in a straightforward fashion from simple and easily accessible material is extremely

desirable.
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Figure 1. Representative Examples of Bioactive Pyrrolo[1,2-a]quinolines and

Pyrrolo[2,1-alisoquinolines

Cyclizations based on the formation of 1,n-dipoles (n>3) and conjugated 1,3-dipoles have been

enabling the facile synthesis of highly functionalized and diversified azacycles in recent years.!>!# Fruitful

achievements in the construction of interesting nitrogen-containing molecules have been realized through

this strategy. In our previous work, we have developed a catalyst-free [2+2+2] cyclization of

dihydro-B-carboline and ynone allowing access to novel complex dimeric B-carboline derivatives in a

single step.!-16 The in situ generated 1,6-dipole was proposed as the key intermediate in this process. Based

on the same 1,n-dipole cyclization strategy, we have subsequently disclosed the formal [34+2] cyclizations

of dihydroisoquinoline with Morita—Baylis—Hillman (MBH) carbonates.'”!3 Electrocyclizations of in situ

formed conjugated azomethine ylides successfully provided a range of interesting

tetrahydropyrrolo[2,1-a]isoquinolines and tetrahydroisoquinoline fused spirooxindoles. To prepare more

interesting heterocycles possessing privileged scaffold from simple material, we then tried to explore

further application of 1,n-dipole cyclization strategy on the synthesis of functionalized benzoindolizines.
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Inspired by the reported achievements and on the basis of retrosynthetic analysis, we envisioned that the

synthesis of pyrrolo[1,2-a]quinoline and pyrrolo[2,1-aJisoquinolines could be achieved by electrocyclic

closure of conjugated azomethine ylides and subsequent oxidation (Scheme 1). This retrosynthetic analysis

points to commercially available quinolines, isoquinolines and simple MBH carbonates as logical

precursors for synthesis. Here, we report our development of a formal [3+2] cyclization of (iso)quinolines

and MBH carbonates.
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Scheme 1. Retrosynthetic Analysis.

RESULTS AND DISCUSSION

Initially, a catalyst-free reaction between quinoline 1a and MBH carbonate 2a in DMF was performed at

120 °C (Table 1, entry 1). We were pleased to find that the desired pyrrolo[1,2-a]quinoline 3a could be

detected in an encouraging 48% yield under aerobic oxidation of dioxygen in air. However, the reaction

failed to run completely under the current conditions even after prolonged reaction time. As copper is an

inexpensive and environment-friendly metal catalyst used extensively in aromatization by oxidation, we

guessed that the employment of catalytic amount of copper salts would be helpful for the completion of
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reaction. Thus, a series of copper catalysts as well as palladium salt were screened in order to improve the
yield (entries 2-9). The screening of copper sources identified Cu(OAc), as the optimal catalyst which gave
a dramatically increased yield (76%). Examination of temperature and solvent led to a 98% NMR yield and
88% isolated yield of 3a (entries 10-15). As a control experiment, a 49% isolated yield was obtained in the
absence of Cu(OAc), indicating that the use of copper salts as oxidation catalyst is critical for this process
(entry 16). The role of Cu(OAc), as oxidant was further supported by the reaction performed under Ar
atmosphere, which provided 59% yield (entry 17). The use of undistilled solvent may also have influence
on reaction yield. The reaction under O, atmosphere gave only 33% yield and more complicated
byproducts could be observed compared with other cases, although reaction could be completed in a much
shorter reaction time (entry 18). The reason for unexpected reaction yields obtained in these two reactions

(entries 17 and 18) has not been fully understood yet.

Table 1 Optimization of Reaction Conditions for Synthesis of 3a.%*

OBoc O X
N
O - o SO
~
N

Me
. ’a ,, COOMe

Entry  Catalyst Solvent T(C) t(h) ;(/'Oe]fjd
1 - DMF 120 28 48

2 CuBr, DMF 120 9 69

3 cucl, DMF 120 12 25

4 cucl DMF 120 7 56

5 CuBr DMF 120 7 64

6 Cu(OAc)H,0  DMF 120 95 76

7 Cu(NOy), DMF 120 115 14

8 cul DMF 120 115 65

9 Pd(OAC), DMF 120 115 18
10 Cu(OAchH,0 DMF 140 3 e
11 Cu(OAc)H,0 DMF 100 20 38
12 Cu(OAc)H,0 DMF 50 45 30
13 Cu(OAc)H,0 DMF t 88 <5
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14 Cu(OAc)H,0 DMSO 120 53 56

15 Cu(OAc),H,0  NMP 120 35 98 (88)
16 - NMP 120 35 49

17 Cu(OAc),H,0  NMP 120 35 59

18 Cu(OAc),H,0  NMP 120 12 33ce

@1a (3 equiv, 0.6 mmol), 2a (1 equiv, 0.2 mmol), catalyst (20 mol%), solvent (0.2 mL), in air. * Determined by 'H NMR using CH,Br,

as internal standard. ¢ Isolated yield. ¢ Under Ar atmosphere. ¢ Under O, atmosphere.

Next we turned our attention to the examination of substrate scope. As summarized in Table 2,

aromatic MBH carbonates bearing electron-donating groups can be successfully applied in this process

(3a-3d, 77-88%).'° The applicability of our process was demonstrated by gram-scale reaction of quinoline

1a and MBH carbonate 2d (methyl 2-(((tert-butoxycarbonyl)oxy)(phenyl)methyl)acrylate), affording 3d in

71% yield. However, regarding MBH carbonates with electron-withdrawing groups, steric and electronic

effects played an important role in the formation of final product. Bromo substituent at the 2-position of

phenyl ring (MBH carbonate 2e) led to 16% yield likely due to steric reason (3e). While reactions of MBH

carbonates with chloro substituents (MBH carbonates 2f and 2g) proceeded readily affording 3f and 3g in

65% and 80% yield respectively. Furfuryl group could be incorporated into benzoindolizine delivering

target molecule 3h in 30% yield by using MBH carbonate 2h. In the case of aliphatic aldehyde-derived

MBH carbonate 2i, no reaction was observed (3i). We reasoned that the formation of conjugated

azomethine ylides was difficult when lacking the stabilization effect of aromatic ring.? MBH carbonates

bearing the groups of COOEt, COOBn and CN could be tolerated in this system giving 3j, 3k and 31 in

58-62% yield. A range of quinolines was then submitted to this process. Electronic nature of substituted

groups on the quinoline ring (Me, BocNH, MOMO, MeO and Br) has a limited effect on reaction yield,

while the position of substituents significantly influenced the reaction yield. For example, quinoline with a

substituent at C8 position gave no product at all. We reasoned that 8-methylquinoline is too sterically
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hindered to act as nucleophile in this cascade sequence. The failure of preparation of compound 3m is due

to side reactions that involve the C4-methyl group of the quinoline precursor.?!

oNOYTULT D WN =

12 Table 2 Examination of substrate scope.*?
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3a, R=Me, 35h, 88% 3c, 37 h, 78% g

3b, R =MeO, 19 h, 88% 255

O X Br Cl
cl
T o M
COOMe COOMe COOMe
3d, 35h, 77% 3e, 42 h, 16% 3f, 76 h, 65%

Gram-scale: 27 h, 71%

L, A2 )
N CI N S %//

COOMe COOMe COOMe
3g, 29 h, 80% 3h, 29h,30% 3i, 65h, 0%
Me R
\ OMe =
S Me
N NI
EWG — OMe COOMe
3j, EWG = COOE, 42 h, 62% COOMe 3n, R = BocNH, 26 h, 74%
3k, EWG = COOBN, 42 h, 60% 3m, 120 h, trace 30, R=0Bn, 37 h, 87%
31, EWG = CN, 25 h, 58% 3p, R =Me, 45 h, 70%
O " s Cr
Me Me
NN O MOMO NX O NS O
— ES Me =
OMe
COOMe COOMe COOMe
3q, 31 h, 63% 3r, 20 h, 58% 3s, 41h,0%
Br
oM
O B © OMe
X
O
2 )
OMe —
COOMe OMe
COOMe
3t, 53 h, 62% 3u, 41h, 66%

@1a (3 equiv, 0.6 mmol), 2a (1 equiv, 0.2 mmol), Cu(OAc),H,O (20 mol%), NMP (0.2 mL), in air. ? Isolated yield.

Then we focused on the synthesis of pyrrolo[2,1-a]isoquinolines using isoquinolines. MBH carbonates
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bearing electron-donating groups and electron-withdrawing groups could be tolerant in this process,

providing corresponding pyrroloisoquinolines in moderate to good yields (51-81%, Table 3, compounds

oNOYTULT D WN =

9 5a-5h). It’s worthy of note that the gram-scale reaction of isoquinoline 2a with MBH carbonate 21
12 (tert-butyl (2-cyano-1-phenylallyl) carbonate) was successful providing compound 5f in 63% yield. Furan
moiety can also be successfully incorporated into pyrroloisoquinoline in 82% yield. Substituted
17 isoquinolines reacted with MBH carbonates smoothly giving the desired products in 59-81% yield (5j, 5k

20 and 51).

25 Table 3 Examination of substrate scope.**
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Cu(OAc),H,0 N
RN OBOCEWG NMP, 120°C,air  R'g__I_ N
oI —_—
\ A~ 2N RZJ\H/ \ /
R?  EWG
4 2 5
X R A
N N N
W \ \
MeO O COOMe Q COOMe Q COOMe
OMe MeO Me
5a, 41 h, 51% 5b, 31h, 70% 5¢c, 32 h, 81%

A A AN
98 LI \
\ / \ / \ 7
Q EWG Q COOMe Q COOMe
cl c

|
Cl
5d, EWG = COOMe, 26 h, 79% .
5e, EWG = COOEt, 22h, 67% 59, 28 h, 61% 5h, 31h, 75%
5f, EWG =CN, 17 h, 63% (Gram-scale) Br

) 0. O
N N
N
® \ \ /
o\ OOMe R Q COOMe MeO Q COOMe
N
OMe

R
5i, 31 h, 82% .
5j, R=H, 44 h, 59% 51, 35h, 81%

5k, R=MeO, 45 h, 63%

@1a (3 equiv, 0.6 mmol), 2a (1 equiv, 0.2 mmol), Cu(OAc), H,O (20 mol%), NMP (0.2 mL), in air. ® Isolated yield.

We tried to further extend this methodology to other MBH adducts and nitrogen-containing aromatic
ring. As shown in Scheme 2, the reaction of MBH acetate 2p proceeded smoothly affording 3d in 61%
yield. Phenanthridine 6 is also a suitable candidate for this process, giving -corresponding
pyrrolo[1,2-flphenanthridine 7 in excellent yield (90%). 2-Phenylpyridine and 2,3-dimethylpyrazine failed

to deliver the desired azacycles 9 and 11, probably due to side reactions.
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OAc Cu(OAc),H,0 X
COOMe  NMP, 120 °C, air
—_ N™N
2p COOMe
3d, 36.5h, 61%
OBoc O
COOMe  CU(OAc)H,0 N
NMP, 120 °C, air \
%
MeO COOMe
OMe
2c
OMe
7, 46 h, 90%
OBoc Cu(OAc)yH,0 | X
COOMe  Nmp, 120 °C, air Me
2a COOMe
9, 50 h, 0%

OBoc Cu(OAc),-H,0

Me N\
COOMe NMP, 120 °C, air :[
R - Me
Me NN
2a =

COOMe
11, 99 h, 0%

Scheme 2. Attempts of further extension of substrate scope.

The synthetic application of the obtained pyrrolo[1,2-a]quinolines 3 was successfully demonstrated by

easy transformation to highly functionalized molecules 12-17 (Scheme 3). Mannich reaction of 3a at room

temperature gave tertiary amine 12 in 78% yield, while Vilsmeier-Haack reaction led to the formation of
p g ry y

compound 13 in 77% yield. Bromination of pyrrolo[1,2-a]quinolines 3d and 3f with NBS proceeded

readily providing compound 14 and 15 (66% and 81% yields respectively). The subsequent Suzuki

coupling of 15 afforded highly fused heterocycles 16 and 17 respectively in excellent yields.
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Morpholine
N Cl HCHO, AcOH R POCly
MeCN, rt DMF rt al
N O CI \ NTNR
\_ N R= CI
H
COOMe COOMe COOMe
C\> 13, 77%
o
12, 78% NBS, DCE, rt
Pd(PPha), Pd(PPhs),
Na,CO; R Na,CO3
H,0, DMF O A H,0, DMF O X
120 °C NN O R 4200c NN O
—~———— _
o Br coome \J_k COOMe
B 14, R = Cl, 66% 0.0
Xy ~0 » R =Cl, 66% B
16, quant | 15,R=H, 81% O,N
4 “ 17, quant
N
NO,

Scheme 3. Transformations of pyrrolo[1,2-a]quinoline 3

Based on these results and previous reportsc-4£121417.18 e proposed a possible mechanism (Scheme
b

4). MBH carbonate 2a can be attacked by quinoline 1a giving intermediate A. The subsequent

deprotonation by the in situ generated tert-butoxide anion'’?? affords intermediates B and C.

Electrocyclization of conjugated azomethine ylide and a final oxidation of intermediate D?* provide

pyrrolo[1,2-a]quinolone 3a. Both copper acetate and oxygen in air play an important role in the final

oxidative aromatization of intermediate D.?* The possible intermolecular allylic alkylation reaction of

intermediate A may be the reason for the low yield observed in the case of 3m.!” While the lack of aromatic

ring resulted poor stability of intermediate B and C should be responsible for the failure of compound 3i.
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Scheme 4. Proposed mechanism

CONCLUSION

In summary, we have established a convenient method for the construction of pyrrolo[1,2-a]quinolines and

pyrrolo[2,1-aJisoquinolines with simple quinolines or isoquinolines and MBH carbonates as starting

material in the presence of copper acetate in air. A variety of benzoindolizines could be accessed in

moderate to good yields (up to 90% yield) through a Sy2’/deprotonation/electrocyclization/oxidation

pathway. The utility of this synthetic methodology has been demonstrated by easy transformations to

highly functionalized azacycles.

EXPERIMENTAL SECTION

General methods 'H NMR and '3C NMR spectra were recorded at Bruker Avance 400. Chemical shifts

are reported in ppm downfield from CDCl; (8 = 7.26 ppm) for 'H NMR and relative to the central CDCl;
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resonance (8 = 77.0 ppm) for 3C NMR spectroscopy. Coupling constants are given in Hz. ESI-MS analysis

was performed using a LTQ Orbitrap mass spectrometer.

All reagents and solvents were obtained from commercial sources and used without further

purification. Substituted quinolines 1 and MBH carbonates 2 were prepared according to reported

procedure. 2225

General procedure for the synthesis of compounds 3, 5 and 7

A mixture of quinoline 1 (or 4, 6) (0.6 mmol), MBH carbonate 2 (0.2 mmol), Cu(OAc),H,O (0.04 mmol)

and NMP (0.2 mL) was stirred at 120 °C in air. Upon the consumption of MBH carbonate 2 (monitored by

TLC), the mixture was concentrated and the residue was purified by a silica gel flash chromatography

(PE/EtOACc) to afford 3 (or 5, 7).

Methyl 3-(p-tolyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3a). Purified by flash column chromatography

(PE/EA =200:3); 56.0 mg, 88% yield, yellow solid; m.p. 108-111°C. "H NMR (400 MHz, CDCl;) & 8.46 (s,

1H), 7.94 (d, J = 8.4 Hz, 1H), 7.62 (dd, J = 0.8, 7.6 Hz, 1H), 7.56-7.51 (m, 1H), 7.41-7.36 (m, 3H),

7.27-7.25 (m, 3H), 6.98 (d, J= 9.6 Hz, 1H), 3.81 (s, 3H), 2.43 (s, 3H); 3C{'H} NMR (100 MHz, CDCl;) 3

165.2, 136.5, 132.8, 130.7, 130.5, 129.5, 128.74, 128.65, 128.2, 125.0, 124.7, 120.3, 119.2, 118.2, 116.65,

116.61, 114.4, 51.2, 21.3; IR (CH,Cl,, cm™) v 1697, 1607, 1561, 1539, 1518, 1503, 1463, 1452, 1436,

1235, 1140, 793, 735; ESI-HRMS: calcd. for C;;H;sNO,* (M+H)* 316.1332, found 316.1337.

Methyl 3-(4-methoxyphenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3b). Purified by flash column

chromatography (PE/EA = 50:1); 58.4 mg, 88% yield, yellow solid; m.p. 166-170°C. "H NMR (400 MHz,

CDCLy) & 8.46 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.56-7.52 (m, 1H), 7.43-7.36 (m,

3H), 7.26-7.24 (m, 1H), 7.01-6.97 (m, 3H), 3.87 (s, 3H), 3.81 (s, 3H), *C{'H} NMR (100 MHz, CDCL;) &

ACS Paragon Plus Environment
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165.1, 159.2, 135.1, 132.8, 129.6, 128.8, 128.3, 125.0 124.7, 123.3, 120.5, 118.9, 118.2, 116.8, 116.7,

116.4, 1144, 112.5,55.3, 51.2; IR (CH,Cl,, cm™) v 1714, 1606, 1548, 1515, 1498, 1482, 1450, 1217, 1175,

792, 756; ESI-HRMS: caled. for C,1H;sNO5;" (M+H)" 332.1281, found 332.1285.

Methyl 3-(3,5-dimethoxyphenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3c). Purified by flash column

chromatography (PE/EA = 100:3); 56.7 mg, 78% yield, yellow solid; m.p. 140-144°C. "H NMR (400 MHz,

CDCLy) & 8.46 (s, 1H), 7.95-7.92 (m, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.57-7.53 (m, 1H), 7.39 (t, J= 7.6 Hz,

1H), 7.32 (d, J=9.6 Hz, 1H), 7.01 (d, J = 9.6 Hz, 1H), 6.66 (d, J = 2.4 Hz, 2H), 6.49 (t, J = 2.0 Hz, 1H),

3.85 (s, 6H), 3.84 (s, 3H); 3C{'H} NMR (100 MHz, CDCL;) & 165.1, 160.2, 135.7, 132.8, 129.6, 128.8,

128.3, 125.0, 124.7, 120.6, 118.9, 118.2, 116.8, 116.7, 114.4, 109.0, 107.3, 99.3, 55.4, 51.3; IR (CH,Cl,,

cm!) v 1715, 1594, 1456, 1427, 1401, 1205, 1153, 840; ESI-HRMS: calcd. for C,H,)NO4" (M+H)*

362.1387, found 362.1390.

Methyl 3-phenylpyrrolo[1,2-a]quinoline-2-carboxylate (3d). Purified by flash column chromatography

(PE/EA = 80:1); 46.6 mg, 77% yield, yellow solid; m.p. 138-141°C. 'H NMR (400 MHz, CDCl;) & 8.35 (s,

1H), 7.81 (d, J = 8.4 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.43-7.39 (m, 3H), 7.37-7.33 (m, 2H), 7.26 (t, J =

7.2 Hz, 2H), 7.16-713 (m, 1H), 6.87 (d, J = 9.6 Hz, 1H), 3.71 (s, 3H); *C{'H} NMR (100 MHz, CDCL;) &

165.2, 133.8, 132.8, 130.7, 129.6, 128.8, 128.3, 127.9, 126.8, 125.0, 124.7, 120.5, 119.2, 118.1, 116.7,

116.7, 114.4, 51.2; IR (CH,Cl,, cm™') v 1700, 1645, 1599, 1562, 1539, 1506, 1479, 1453, 1434, 1209, 727,

ESI-HRMS: calcd. for CyoH;sNO," (M+H)* 302.1176, found 302.1178.

Methyl 3-(2-bromophenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3e). Purified by flash column

chromatography (PE/EA = 90:1); 12.5 mg, 16% yield, yellow solid; m.p. 157-158°C. '"H NMR (400 MHz,

CDClLy) & 8.49 (s, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.65 (dd, J = 0.8, 7.6 Hz, 1H),
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7.59-7.54 (m, 1H), 7.42-7.36 (m, 3H), 7.27-7.23 (m, 1H), 7.03 (d, /= 9.6 Hz, 1H), 6.99 (d, J=9.2 Hz, 1H),

3.76 (s, 3H); BC{'H} NMR (100 MHz, CDCl;) § 163.9, 134.3, 131.8, 131.53, 131.51, 128.6, 127.85,

127.77,127.4, 125.8, 124.8, 124.0, 123.5, 119.7, 116.9, 116.7, 116.6, 115.0, 113.4, 50.3; IR (CH,Cl,, cm™")

v 1699, 1607, 1561, 1514, 1468, 1435, 1208, 1147, 747; ESI-HRMS: calcd. for C,0H;sBrNO," (M+H)"

380.0281, found 380.0284.

Methyl 3-(3,4-dichlorophenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3f). Purified by flash column

chromatography (PE/EA = 120:1); 48.3 mg, 65% yield, yellow solid; m.p. 173-175°C. "H NMR (400 MHz,

CDCl;) 6 8.47 (s, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.59-7.55 (m, 2H), 7.50 (d, J =

8.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.35-7.33 (m, 1H), 7.21 (d, /= 9.2 Hz, 1H), 7.07 (d, J = 9.2 Hz, 1H),

3.82 (s, 3H); 3C{!H} NMR (100 MHz, CDCl;) § 164.9, 133.9, 132.7, 132.3, 131.8, 130.9, 130.3, 129.8,

129.7, 128.9, 128.6, 125.3, 124.6, 121.5, 117.3, 117.0, 116.6, 116.4, 114.5, 51.4; IR (CH,Cl,, cm!) v 1716,

1613, 1595, 1566, 1537, 1502, 1471, 1453, 1439, 1209, 1143, 744; ESI-HRMS: calcd. for CyoH,;,CuNO,*

(M+H)* 370.0396, found 370.0398.

Methyl 3-(4-chlorophenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3g). Purified by flash column

chromatography (PE/EA = 100:1); 53.8 mg, 80% yield, yellow solid; m.p. 178-179°C. "H NMR (400 MHz,

CDCl;) 6 8.48 (s, 1H), 7.95 (d, /= 8.4 Hz, 1H), 7.65 (d, /= 8.0 Hz, 1H), 7.58-7.54 (m, 1H), 7.44-7.39 (m,

S5H), 7.22 (d, J = 9.6 Hz, 1H), 7.03 (d, J= 9.2 Hz, 1H), 3.81 (s, 3H); *C{'H} NMR (100 MHz, CDCL;) &

165.0, 132.8, 132.3, 132.0, 129.6, 128.8, 128.4, 128.1, 125.1, 124.6, 120.9, 117.8, 117.7, 116.8, 116.6,

114.4, 51.3; IR (CH,Cl,, cm") v 1721, 1561, 1540, 1500, 1478, 1451, 1440, 1407, 1397, 1210, 1139, 740;

ESI-HRMS: calcd. for CyoH;sCINO," (M+H)*336.0786, found 336.0788.

Methyl  3-(furan-2-yl)pyrrolo[1,2-a]quinoline-2-carboxylate ~ (3h). Purified by flash column
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chromatography (PE/EA = 130:1); 17.3 mg, 30% yield, yellow solid; m.p. 91-92 C. 'H NMR (400 MHz,

CDCLy) & 8.45 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 5.6 Hz, 1H), 7.66 (d, J = 5.6 Hz, 1H),

oNOYTULT D WN =

9 7.57-7.53 (m, 2H), 7.40 (t, J= 5.6 Hz, 1H), 7.10 (d, J= 2.0 Hz, 1H), 7.05 (d, /= 3.2 Hz, 1H), 6.55-6.54 (m,
12 1H), 3.90 (m, 3H); ¥C{'H} NMR (100 MHz, CDCl;) 5 164.8, 148.6, 141.2, 132.6, 129.8, 128.7, 128.4,
1252, 124.6, 121.1, 119.4, 117.6, 115.6, 114.4, 111.2, 109.5, 108.3, 51.5; IR (CH,Cl,, cm™") v 1714, 1590,
17 1561, 1502, 1471, 1434, 1407, 1260, 1206, 1127, 763; ESI-HRMS: calcd. for C;gHsNOs;" (M+H)*
20 292.0968, found 292.0972.

22 Ethyl 3-phenylpyrrolo[1,2-a]quinoline-2-carboxylate (3j). Purified by flash column chromatography
25 (PE/EA = 100:1); 38.8 mg, 62% yield, yellow solid; m.p. 93-94°C. '"H NMR (400 MHz, CDCl;) & 8.47 (s,
1H), 7.94 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.55-7.48 (m, 3H), 7.43 (t, J = 7.6 Hz, 2H),
30 7.39-7.33 (m, 2H), 7.26-7.24 (m, 1H), 6.98 (d, J=9.6 Hz, 1H), 4.27 (q, J= 7.2 Hz, 2H), 1.26 (t, /= 7.2 Hz,
33 3H); BC{'H} NMR (100 MHz, CDCl;) & 164.8, 133.9, 132.8, 130.8, 129.6, 128.7, 128.3, 127.8, 126.8,
35 124.9, 124.7, 120.4, 119.2, 118.1, 117.2, 116.6, 114.4, 60.0, 14.2; IR (CH,Cl,, cm™) v 1696, 1597, 1558,
38 1538, 1503, 1477, 1451, 1442, 1235, 758; ESI-HRMS: calcd. for C; H;sNO,* (M+H)" 316.1332, found
316.1337.

43 Benzyl 3-phenylpyrrolo[1,2-a]quinoline-2-carboxylate (3k). The mixture was passed through a pad of
46 silica gel eluted with PE/EA (80/1). The eluate was concentrated and the residue was recrystallized with
48 PE/EA affording 3k as yellow solid, 45.5 mg, 60% yield; m.p. 144-147°C. '"H NMR (400 MHz, CDCl;) &
51 8.43 (s, 1H), 7.86 (d, J= 8.4 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.48-7.42 (m, 3H), 7.36 (t, J = 7.2 Hz, 2H),
7.33-7.25 (m, 5H), 7.22-7.17 (m, 3H), 6.92 (d, J = 9.6 Hz, 1H), 5.22 (s, 2H); *C{'H} NMR (100 MHz,

56 CDCLy) § 164.6, 136.3, 133.8, 132.8, 130.8, 129.7, 128.8, 128.4, 128.3, 128.1, 127.9, 126.8, 125.0, 124.7,
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120.5, 118.1, 116.9, 116.8, 114.5, 65.8; IR (CH,Cl,, cm™) v 1693, 1645, 1601, 1558, 1547, 1514, 1495,

1477, 1452, 1232, 1154, 750; ESI-HRMS: calcd. for CsH,)NO," (M+H)* 378.1489, found 378.1489.

3-Phenylpyrrolo[1,2-a]quinoline-2-carbonitrile (3l). Purified by flash column chromatography (PE/EA

=120:1); 31.1 mg, 58% yield, white solid; m.p. 147-150°C. '"H NMR (400 MHz, CDCl;) & 8.30 (s, 1H),

7.89 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.64-7.62 (m, 2H), 7.58 (d, J = 8.0 Hz, 1H), 7.53-7.49

(m, 2H), 7.47-7.37 (m, 3H), 7.14 (d, J = 9.6 Hz, 1H); 3C{'H} NMR (100 MHz, CDCl;) & 132.4, 132.3,

129.0, 128.9, 128.8, 128.1, 127.5, 125.6, 124.5, 122.0, 120.4, 118.0, 117.4, 116.1, 114.4, 96.7; IR (CH,Cl,,

cm!) v 2219, 1739, 1645, 1599, 1560, 1542, 1500, 1476, 1452, 1443, 1402, 1195, 743; ESI-HRMS: calcd.

for CioH 3N, (M+H)* 269.1073, found 269.1075.

Methyl 7-((tert-butoxycarbonyl)amino)-3-(p-tolyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3n).

Performed at 0.05 mmol scale; Purified by flash column chromatography (PE/EA = 25:1); 16.0 mg, 74%

yield, yellow solid; m.p. 154-158°C. "H NMR (400 MHz, CDCls) § 8.39 (s, 1H), 7.84 (d, J = 8.8 Hz, 1H),

7.75 (s, 1H), 7.45 (dd, J=2.4, 9.2 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.26-7.23 (m, 3H), 6.93 (d, J= 9.6 Hz,

1H), 6.63 (s, 1H), 3.80 (s, 3H), 2.41 (s, 3H), 1.55 (s, 9H); 3C{'H} NMR (100 MHz, CDCl;) § 165.2, 152.8,

136.4, 135.4, 130.7, 130.5, 129.3, 128.7, 128.6, 125.4, 120.2, 119.5, 119.3, 119.2, 119.2, 118.8, 116.4,

115.0, 51.2, 28.4, 21.3, 14.1; IR (CH,Cl,, cm™) v 1700, 1570, 1548, 1532, 1506, 1444, 1418, 1397, 1213,

1154, 1137, 812; ESI-HRMS: calcd. for CsH,7N,O4" (M+H)* 431.1965, found 431.1967.

Methyl 7-(benzyloxy)-3-(p-tolyl)pyrrolo[l1,2-a]quinoline-2-carboxylate (30). The mixture was passed

through a pad of silica gel eluted with Hexane/EA (40/1). The eluate was concentrated and the residue was

recrystallized with PE/EA affording 30 as yellow solid, 73.2 mg, 87% yield; m.p. 155-157°C. 'H NMR

(400 MHz, CDCl;) § 8.38 (s, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.47 (d, J = 7.2 Hz, 2H), 7.43-7.33 (m, SH),
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7.26-7.24 (m, 3H), 7.20 (dd, J=2.8, 9.2 Hz, 1H), 7.14 (d, J= 2.4 Hz, 1H), 6.90 (d, J = 9.6 Hz, 1H), 5.15 (s,

2H), 3.80 (s, 3H), 2.42 (s, 3H); BC{'H} NMR (100 MHz, CDCL) § 165.2, 155.9, 136.6, 136.4, 130.8,

130.5, 129.2, 128.7, 128.6, 128.2, 127.5, 125.8, 120.0, 119.3, 118.8, 117.1, 116.3, 116.2, 115.7, 111.9,

100.0, 70.5, 51.2, 21.3; IR (CH,Cl,, cm™') v 1695, 1614, 1564, 1518, 1492, 1466, 1434, 1402, 1206, 1138,

1023, 729; ESI-HRMS: calcd. for CgH4NO5* (M+H)* 422.1751, found 422.1752.

Methyl 7-methyl-3-(p-tolyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3p). Purified by flash column

chromatography (PE/EA = 80:1); 45.4 mg, 70% yield, yellow solid; m.p. 184-185°C. '"H NMR (400 MHz,

CDCly) & 8.40 (s, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.40-7.38 (m, 3H), 7.33-7.31 (m, 1H), 7.26-7.21 (m, 3H),

6.90 (d, J=9.2 Hz, 1H), 3.80 (s, 3H), 2.45 (s, 3H), 2.42 (s, 3H); *C{'H} NMR (100 MHz, CDCl;) § 165.2,

136.3, 134.6, 130.9, 130.8, 130.5, 129.5, 129.4, 128.6, 128.6, 127.4, 120.2, 119.1, 118.2, 116.4, 116.4,

114.2, 51.1, 21.3, 21.0; IR (CH,Cl,, cm!) v 1705, 1642, 1563, 1492, 1434, 1233, 1209, 767; ESI-HRMS:

caled. for CH,oNO,* (M+H)* 330.1489, found 330.1490.

Methyl 3-(3,5-dimethoxyphenyl)-7-methoxypyrrolo[1,2-a]quinoline-2-carboxylate (3q). Purified by flash

column chromatography (PE/EA = 10:1); 49.2 mg, 63% yield, yellow solid; m.p. 150-155°C. '"H NMR (400

MHz, CDCl;) & 8.38 (s, 1H), 7.86 (d, J = 9.2 Hz, 1H), 7.31 (d, /= 9.6 Hz, 1H), 7.14 (dd, J = 2.4, 9.2 Hz,

1H), 7.07 (d, J = 2.8 Hz, 1H), 6.95 (d, J = 9.6 Hz, 1H), 6.66 (s, 1H), 6.65 (s, 1H), 6.48 (m, 1H), 3.90 (s,

3H), 3.83 (s, 6H), 3.81 (s, 3H); *C{'H} NMR (100 MHz, CDCl;) § 165.1, 160.2, 156.8, 135.8, 129.3,

127.2, 125.8, 120.4, 118.8, 118.7, 116.6, 116.4, 116.3, 115.7, 110.6, 108.9, 99.2, 55.7, 554, 51.3; IR

(CHyCl, cm™) v 1700, 1586, 1566, 1456, 1425, 1292, 1153, 1134, 809; ESI-HRMS: calcd. for

CpH,oNOst (M+H)*™ 392.1493, found 392.1494.

Methyl §-(methoxymethoxy)-3-(p-tolyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3r). Performed at 0.045
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mmol scale; Purified by flash column chromatography (PE/EA = 10:1); 9.8 mg, 58% yield, yellow solid;

m.p. 150-151°C. 'H NMR (400 MHz, CDCls) § 8.37 (s, 1H), 7.60 (d, J = 1.6 Hz, 1H), 7.54 (d, J = 8.8 Hz,

1H), 7.38 (d, J = 8.0 Hz, 2H), 7.26-7.24 (m, 2H), 7.16 (d, J = 9.6 Hz, 1H), 7.08 (dd, J = 2.0, 8.8 Hz, 1H),

6.94 (d, J = 9.6 Hz, 1H), 5.32 (s, 2H), 3.81 (s, 3H), 3.55 (s, 3H), 2.42 (s, 3H); BC{'H} NMR (100 MHz,

CDCl;) 6 165.2, 157.5, 136.4, 133.8, 130.8, 130.5, 129.9, 129.7, 128.6, 120.0, 119.3, 118.8, 116.8, 116.4,

116.0, 114.5, 101.3, 94.7, 56.2, 51.2, 21.3; IR (CH,Cl,, cm™") v 1721, 1624, 1607, 1552, 1492, 1440, 1142,

817; ESI-HRMS: calcd. for C,3H,NO,™ (M+H)" 376.1543, found 376.1545.

Methyl 4-bromo-3-(3,5-dimethoxyphenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (3t). Performed at 0.26

mmol scale; Purified by flash column chromatography (PE/EA = 10:1); 71.0 mg, 62% yield, yellow solid;

m.p. 132-133°C. 1H NMR (400 MHz, CDCl3) § 8.47 (s, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.58-7.55 (m, 2H),

7.41-7.37 (m, 1H), 7.30 (s, 1H), 6.55 (d, J = 2.4 Hz, 2H), 6.51 (t, J = 2.0 Hz, 1H), 3.81 (s, 6H), 3.74 (s,

3H); 3C{'H} NMR (100 MHz, CDCL;) § 164.4, 159.3, 136.4, 131.9, 128.7, 127.9, 125.7, 125.4, 124.6,

124.1, 121.7, 118.5, 116.8, 114.4, 112.1, 110.5, 105.5, 99.7, 55.3, 51.4; IR (CH,Cl,, cm™") v 1693, 1588,

1509, 1496, 1455, 1434, 1410, 1204, 1136, 745; ESI-HRMS: calcd. for C,,H;9BrNO," (M+H)* 440.0492,

found 440.0498.

Methyl 6-bromo-3-(3,5-dimethoxyphenyl)pyrrolof1,2-a]quinoline-2-carboxylate (3u). The mixture was

passed through a pad of silica gel eluted with PE/EA/DCM (200/3/2). The eluate was concentrated and the

residue was recrystallized with PE/EA affording 3u as yellow solid, 57.7 mg, 66% yield; m.p. 139-141°C.

'H NMR (400 MHz, CDCls) § 8.45 (s, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.37 (t, J =

7.6 Hz, 3H), 6.65 (s, 1H), 6.64 (s, 1H), 6.50 (t, J = 2.0 Hz, 1H), 3.81 (s, 6H), 3.78 (s, 3H); *C{'H} NMR

(100 MHz, CDCl;) 6 164.9, 160.3, 135.2, 133.8, 129.4, 129.2, 128.6, 124.1, 123.5, 119.7, 119.4, 119.2,
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117.5,117.2, 113.9, 108.9, 99.4, 55.4, 51.4; IR (CH,Cl,, cm™) v 1729, 1593, 1537, 1502, 1464, 1446, 1433,

1422, 1402, 1113, 1134, 1154, 757; ESI-HRMS: calcd. for CpH;¢BrNO," (M+H)" 440.0492, found

440.0498.

Methyl 1-(3,5-dimethoxyphenyl)pyrrolo[2,1-aJisoquinoline-2-carboxylate (5a). Purified by flash column

chromatography (PE/EA = 80:1); 36.8 mg, 51% yield, yellow solid; m.p. 144-146°C. '"H NMR (400 MHz,

CDCLy) & 7.84 (s, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H),

7.31-7.27 (m, 1H), 7.18 (t, J = 8.0 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 6.60-6.57 (m, 3H), 3.80 (s, 6H), 3.72

(s, 3H); BC{'H} NMR (100 MHz, CDCL;) & 164.8, 160.8, 138.2, 127.7, 127.5, 127.1, 126.8, 126.2, 126.2,

124.0, 123.3, 119.6, 118.9, 117.2, 113.7, 108.4, 100.0, 55.4, 51.2; IR (CH,Cl,, cm™) v 1715, 1592, 1520,

1453, 1422, 1398, 1146, 776; ESI-HRMS: calcd. for C,H,)NO4" (M+H)* 362.1387, found 362.1389.

Methyl 1-(4-methoxyphenyl)pyrrolo[2, 1-afisoquinoline-2-carboxylate (5b). Purified by flash column

chromatography (PE/EA = 200:3); 46.2 mg, 70% yield, yellow solid; m.p. 182-185°C. "H NMR (400 MHz,

CDCLy) 6 7.84 (s,1 H), 7.67 (d, J = 7.2 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.35 (d,

J = 8.4 Hz, 2H), 7.29-7.26 (m, 1H), 7.17-7.13 (m, 1H), 7.04 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 7.2 Hz, 1H),

3.91 (s, 3H), 3.72 (s, 3H); BC{'H} NMR (100 MHz, CDCl;) é 165.0, 158.9, 131.6, 128.2, 127.6, 127.5,

127.1, 127.0, 126.5, 126.1, 124.1, 122.9, 119.6, 118.9, 117.3, 114.0, 113.6, 55.2, 51.1; IR (CH,Cl,, cm™') v

1711, 1646, 1598, 1508, 1462, 1436, 1398, 1177, 1028, 765; HRMS (ESI) m/z caled for CpH;gNO;*

(M+H)*332.1281, found 332.1284.

Methyl  1-(p-tolyl)pyrrolo[2, I-aJisoquinoline-2-carboxylate ~ (5¢). Purified by flash column

chromatography (PE/EA = 110:1); 51.1 mg, 81% yield, yellow solid; m.p. 100-103°C. "H NMR (400 MHz,

CDCLy) § 7.76 (s, 1H), 7.58 (d, J = 7.2 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.36-7.34 (m, 1H), 7.26-7.18 (m,
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5H), 7.09-7.05 (m, 1H), 6.71 (d, J = 7.2 Hz, 1H), 3.64 (s, 3H), 2.40 (s, 3H); BC{'H} NMR (100 MHz,

CDCl;) 6 164.9, 136.9, 133.0, 130.4, 129.3, 127.6, 127.5, 127.1, 127.0, 126.1, 124.1, 123.0, 120.0, 118.9,

117.2, 113.6, 51.1, 21.5; IR (CH,Cl,, cm™) v 1716, 1644, 1604, 1496, 1460, 1438, 1399, 1022, 950, 826;

HRMS (ESI) m/z calcd for C;;H1sNO," (M+H)* 316.1332, found 316.1334.

Methyl  1-phenylpyrrolof2,1-afisoquinoline-2-carboxylate  (5d).  Purified by flash column

chromatography (PE/EA = 120:1); 47.4 mg, 79% yield, yellow solid; m.p. 177-179°C. '"H NMR (400 MHz,

CDCLy) & 7.86 (s, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.51-7.43 (m, 6H), 7.35 (d, J = 8.4 Hz, 1H), 7.29-7.26 (m,

1H), 7.15-7.11 (m, 1H), 6.80 (d, J = 7.2 Hz, 1H), 3.70 (s, 3H); *C{'H} NMR (100 MHz, CDCl;) 4 164.9,

136.2, 130.6, 128.5, 127.6, 127.5, 127.4, 127.1, 126.9, 126.3, 126.1, 124.1, 122.9, 119.9, 119.0, 117.2,

113.7, 51.1; IR (CH,Cl,, ecm™) v 1706, 1604, 1512, 1496, 1459, 1439, 1398, 1096, 772; HRMS (ESI) m/z

calcd for CyoH(NO," (M+H)* 302.1176, found 302.1179.

Ethyl 1-phenylpyrrolo[2, 1-a]isoquinoline-2-carboxylate (5e). Purified by flash column chromatography

(PE/EA = 60:1); 42.1 mg, 67% vield, yellow solid; m.p. 105-107°C. "H NMR (400 MHz, CDCl;) 5 7.87 (s,

1H), 7.68 (d, J=7.6 Hz, 1H), 7.50-7.42 (m, 6H), 7.36 (d, J = 8.0 Hz, 1H), 7.29-7.25 (m, 1H), 7.14-7.10 (m,

1H), 6.79 (d, J= 7.2 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 1.12 (t, J = 7.2 Hz, 3H); *C{'H} NMR (100 MHz,

CDCl;) 6 164.7, 136.5, 130.6, 128.4, 127.6, 127.5, 127.3, 127.1, 127.0, 126.2, 126.1, 124.1, 122.9, 119.8,

119.0, 117.8, 113.6, 59.8, 14.0; IR (CH,Cl,, cm’) v 1702, 1645, 1604, 1513, 1459, 1434, 1208, 779;

HRMS (ESI) m/z calcd for C;;H;sNO," (M+H)*316.1332, found 316.1335.

Methyl 1-(4-chlorophenyl)pyrrolo[2, I-aJisoquinoline-2-carboxylate (5g). Purified by flash column

chromatography (PE/EA = 120:1); 40.7 mg, 61% yield, yellow solid; m.p. 130-134°C. "H NMR (400 MHz,

CDCLy) 6 7.85 (s, 1H), 7.68 (d, J = 7.2 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.48-7.46 (m, 2H), 7.39-7.35 (m,
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3H), 7.32-7.29 (m, 1H), 7.20-7.15 (m, 1H), 6.81 (d, J = 7.2 Hz, 1H), 3.72 (s, 3H); *C{'H} NMR (100

MHz, CDCl;) 6 164.8, 134.8, 133.3, 132.1, 128.7, 127.7, 127.6, 127.3, 126.7, 126.3, 124.0, 122.8, 119.2,

118.4, 117.2, 113.8, 100.0, 51.1; IR (CH,Cl,, cm™!) v 1712, 1603, 1545, 1515, 1490, 1472, 1460, 1439,

1185, 770; HRMS (ESI) m/z calcd for C,oH;5sCINO," (M+H)* 336.0786, found 336.0789.

Methyl 1-(3,4-dichlorophenyl)pyrrolo[2,1-afisoquinoline-2-carboxylate (5h). Purified by flash column

chromatography (PE/EA = 50:1); 55.7 mg, 75% yield, yellow solid; m.p. 134-138°C. '"H NMR (400 MHz,

CDCLy) § 7.76 (s, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.49-7.43 (m, 3H), 7.29-7.20 (m, 3H), 7.17-7.11 (m, 1H),

6.74 (d, J = 7.6 Hz, 1H), 3.64 (s, 3H); BC{'H} NMR (100 MHz, CDCl;) § 164.6, 136.5, 132.7, 132.4,

131.5, 130.41, 130.37, 127.9 127.7, 127.4, 126.6, 126.5, 126.4, 124.0, 122.8, 119.3, 117.1, 116.9, 113.9,

51.2; IR (CH,CL, cm™) v 1713, 1605, 1518, 1486, 1466, 1458, 1438, 1186, 773; HRMS (ESI) m/z calcd

for C0H4CLLNO," (M+H)* 370.0396, found 370.0399.

Methyl 1-(furan-2-yl)pyrrolo[2, I-aJisoquinoline-2-carboxylate (5i). The mixture was passed through a

pad of silica gel eluted with PE/EA (200:3). The eluate was concentrated and the residue was recrystallized

with PE/EA affording 5i as yellow solid, 48.0 mg, 82% yield; m.p. 145-148°C. 'H NMR (400 MHz, CDCl;)

§ 7.85 (s, 1H), 7.69-7.66 (m, 2H), 7.54 (d, J = 7.6 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.38-7.35 (m, 1H),

7.33-7.29 (m, 1H), 6.85 (d, J = 7.2 Hz, 1H), 6.64-6.63 (m, 1H), 6.53 (d, J = 2.8 Hz, 1H), 3.78 (s, 3H);

13C{'H} NMR (100 MHz, CDCl;) § 164.5, 147.4, 142.2, 129.3, 128.1, 127.8, 127.2, 126.8, 126.1, 123.9,

1232, 119.4, 118.5, 114.1, 111.3, 110.5, 107.4, 51.4; IR (CH,Cl,, cm™') v 1704, 1625, 1517, 1495, 1458,

1439, 1183, 1126, 748; HRMS (ESI) m/z calcd for C;sH,NO5;" (M+H)" 292.0968, found 292.0969.

Methyl 7-bromo-1-phenylpyrrolo[2, I-a]isoquinoline-2-carboxylate (5j). The mixture was passed through

a pad of silica gel eluted with PE/EA (120:1). The eluate was concentrated and the residue was
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recrystallized with PE/EA affording 5j as yellow solid, 44.5 mg, 59% yield; m.p. 142-145°C. '"H NMR (400

MHz, CDCl3) § 7.88 (s, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.53-7.45 (m, 4H), 7.41-7.39 (m, 2H), 7.32 (d, J =

8.0 Hz, 1H), 7.28-7.26 (m, 1H), 6.94 (t, J = 8.0 Hz, 1H), 3.70 (s, 3H); *C{'H} NMR (100 MHz, CDCL;) &

164.7, 135.9, 130.4, 130.1, 128.6, 128.6, 128.2, 127.6, 126.6, 125.5, 125.3, 122.3, 122.1, 120.6, 119.1,

117.9, 112.1, 51.2; IR (CH,Cl,, cm™) v 1710, 1592, 1510, 1469, 1441, 1108, 783; HRMS (ESI) m/z calcd

for C0H;sBrNO," (M+H)" 380.0281, found 380.0286.

Methyl 7-bromo-1-(3,5-dimethoxyphenyl)pyrrolof2,1-ajisoquinoline-2-carboxylate (5k). The mixture

was passed through a pad of silica gel eluted with PE/EA (120:1). The eluate was concentrated and the

residue was recrystallized with PE/EA affording 5k as yellow solid, 55.4 mg, 63% yield; m.p. 168-170°C.

'"H NMR (400 MHz, CDCl;) 6 7.89 (s, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.45 (d, J =

7.6 Hz, 1H), 7.31-7.26 (m, 1H), 7.03 (t, J = 8.0 Hz, 1H), 6.59-6.56 (m, 3H), 3.83 (s, 6H), 3.75 (s, 3H);

13C{'H} NMR (100 MHz, CDCl;) § 164.5, 160.9, 137.8, 130.1, 128.5, 128.4, 126.6, 125.4, 125.3, 122.6,

122.0, 1204, 119.0, 117.9, 112.1, 108.3, 100.0, 55.4, 51.3; IR (CH,Cl,, cm'!) v 1702, 1587, 1509, 1453,

1434, 1224, 1152, 780; HRMS (ESI) m/z calcd for C,,H;9BrNO4" (M+H)* 440.0492, found 440.0498.

Methyl §-bromo-1-(3,5-dimethoxyphenyl)pyrrolo[2, 1-afisoquinoline-2-carboxylate (5l). Purified by

flash column chromatography (PE/EA = 50:1); 71.0 mg, 81% yield, yellow solid; m.p. 148-150C . 'H

NMR (400 MHz, CDCls) § 7.79 (s, 1H), 7.63 (d, J = 7.2 Hz, 1H), 7.58 (d, J = 1.6 Hz, 1H), 7.24-7.21 (m,

2H), 6.66 (d, J= 7.2 Hz, 1H), 6.51 (s, 3H), 3.75 (s, 6H), 3.67 (s, 3H); BC{'H} NMR (100 MHz, CDCl;) §

164.6, 160.9, 137.8, 130.7, 129.3, 129.2, 125.7, 125.5, 125.1, 124.8, 120.0, 119.8, 119.2, 117.6, 112.5,

108.3, 100.0, 55.4, 51.2; IR (CH,Cl,, cm™") v 1716, 1611, 1582, 1538, 1512, 1461, 1428, 1202, 1162, 763;

HRMS (ESI) m/z calcd for C,,HsBrNO4* (M+H)" 440.0492, found 440.0500.
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Methyl 1-(3,5-dimethoxyphenyl)pyrrolo[1,2-f]phenanthridine-2-carboxylate (7). The mixture was passed

through a pad of silica gel eluted with PE/EA/DCM (200:3:2). The eluate was concentrated and the residue

was recrystallized with PE/EA affording 7 as yellow solid, 73.9 mg, 90% yield; m.p. 206-208 C. '"H NMR

(400 MHz, CDCL3) & 8.44 (s, 1H), 8.34 (d, J = 8.0 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.0 Hz,

1H), 7.56 (t,J = 7.2 Hz, 1H), 7.49-7.43 (m, 2H), 7.36 (t, J=7.2 Hz, 1H), 7.19 (t,J = 7.6 Hz, 1H), 6.60-6.58

(m, 3H), 3.81 (s, 6H), 3.75 (s, 3H); 3C{'H} NMR (100 MHz, CDCL;) § 164.7, 160.9, 138.3, 132.3, 128.9,

128.1, 126.5, 126.3, 125.7, 125.2, 124.2, 124.0, 122.4, 121.3, 117.8, 117.3, 115.2, 108.3, 100.0, 55.4, 51.2;

IR (CH,Cly, cm) v 1710, 1609, 1584, 1516, 1504, 1492, 1473, 1453, 1427, 1404, 1201, 1021, 716; HRMS

(ESI) m/z caled for C,HoNO4" (M+H)* 412.1543, found 412.1547.

Gram-scale reaction of quinoline 1a and MBH carbonate 2d (Synthesis of compound 3d)

A mixture of quinoline 1a (3 eq, 10.2 mmol, 1.2 mL), MBH carbonate 2d (1 eq, 3.4 mmol, 1.0 g),

Cu(OAc),"H,0 (0.2 eq, 0.68 mmol, 0.136 g) and NMP (3.4 mL) was stirred at 120 °C in air. Upon the

consumption of 2d (monitored by TLC), the mixture was passed through a pad of silica gel eluted with

PE/EtOAc (25/1). The eluate was concentrated and the residue was recrystallized with PE/EtOAc affording

3d as yellow solid (0.727 g, 71% yield).

Gram-scale reaction of isoquinoline 4a and MBH carbonate 21 (Synthesis of compound 5f)

A mixture of isoquinoline 1a (3 eq, 12.0 mmol, 1.55g), MBH carbonate 21 (1 eq, 4.0 mmol, 1.04 g),

Cu(OAc),"H,0 (0.2 eq, 0.8 mmol, 0.160 g) and NMP (4.0 mL) was stirred at 120 °C in air. Upon the

consumption of 21 (monitored by TLC), the mixture was passed through a pad of silica gel eluted with

PE/EtOAc (6/1). The eluate was concentrated and the residue was recrystallized with EtOH affording 5f as

yellow solid (0.453 g). The mother liquid was concentrated and the residue was purified by flash
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chromatography to give 0.227 g of 5f as yellow solid (63% yield totally).!4

Synthesis of compound 12

To a solution of 3f in acetonitrile (0.5 mL) was added a mixture of morpholine (0.12 mmol, 1.2 eq, 10.5

uL), paraformaldehyde (4.5 eq, 0.45 mmol, 13.4 mg) and acetic acid (87.6 uL). After the mixture was

stirred at rt for 39 h (monitored by TLC), it was diluted with DCM and washed with sat aq K,CO; and

brine. The organic phase was dried over anhydrous Na,SO,, filtered and concentrated. The residue was

purified by a silica gel flash chromatography (PE/DCM/EtOAc = 50:20:3) to give compound 12 (Methyl

3-(3,4-dichlorophenyl)-1-(morpholinomethyl)pyrrolo [1,2-a]quinoline-2-carboxylate, 36.7 mg, 78% yield,

yellow solid, m.p. 75-76 C); '"H NMR (400 MHz, CDCl;) & 9.04 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 6.8 Hz,

1H), 7.56-7.52 (m, 1H), 7.50-7.48 (m, 2H), 7.42 (t, /= 7.6 Hz, 1H), 7.21-7.17 (m, 2H), 7.07 (d, J = 9.6 Hz,

1H), 4.32 (s, 2H), 3.75-3.72 (m, 7H), 2.72 (t, J = 4.4 Hz, 4H); *C{'H} NMR (100 MHz, CDCL;) § 166.3,

135.0, 134.8, 132.04, 131.97, 130.7, 130.4, 129.9, 129.8, 128.7, 128.3, 127.9, 126.1, 124.9, 122.0, 120.3,

119.2,117.2, 115.6, 77.2, 67.2, 52.5, 51.4; IR (CH,Cl,, cm™") v 1707, 1591, 1557, 1510, 1468, 1436, 1369,

1246, 1113, 751; ESI-HRMS: caled. for CysHy3CLN,05* (M+H)* 469.1080, found 469.1085

Synthesis of compound 13

POCI; (0.3 mmol, 3 eq, 27.5 puL) was added to 1 mL of DMF and the mixture was stirred at rt for 10 min

before a solution of compound 3f (0.1 mmol, 1 eq, 37.0 mg) in DMF (1 mL) was added. The resulting

mixture was stirred at rt until the reaction was complete (monitored by TLC). The reaction was then

quenched by addition of water and extracted with DCM. The organic phase was washed with water and

brine, dried over anhydrous Na,SO,, filtered and concentrated. The residue was purified by a silica gel

flash  chromatography  (PE/DCM/EtOAc = 4:3:1) to give compound 13  (Methyl
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3-(3,4-dichlorophenyl)-1-formylpyrrolo[1,2-a]quinoline-2-carboxylate, 30.5 mg, 77% yield, yellow solid;

m.p. 155-156°C); 'H NMR (400 MHz, CDCL;) & 10.31 (s, 1H), 8.84 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 8.0 Hz,

1H), 7.70-7.86 ( m, 1H), 7.58-7.52 (m, 4H), 7.34 (d, J = 9.6 Hz, 1H), 7.29-7.26 (m, 1H), 3.83 (s, 3H);

13C{'H} NMR (100 MHz, CDCl;) § 178.4, 164.8, 136.2, 133.8, 132.7, 132.6, 132.0, 131.9, 130.6, 130.4,

129.6, 128.8, 128.6, 128.1, 128.0, 126.4, 125.9, 121.2, 118.4, 116.0, 52.5; IR (CH,Cl,, cm'") v 1704, 1646,

1553, 1476, 1465, 1447, 1436, 1242, 1131, 808, 732; ESI-HRMS: caled. for CpH;«CLNO;* (M+H)*

398.0345, found 398.0349.

Synthesis of compound 14 or 15

A mixture of compound 3 (1 eq, 0.1 mmol), NBS (1.2 eq, 0.12 mmol, 21.4 mg), in DCE (0.1M, 1.0 mL)

was stirred at rt. Upon the consumption of 3 (monitored by TLC), the mixture was purified directly by a

silica gel flash chromatography (PE/ EtOAc) to afford compound 14 or 15.

Methyl 1-bromo-3-phenylpyrrolo[1,2-a]quinoline-2-carboxylate (14). Purified by flash column

chromatography (PE/EA = 120:1); 29.6 mg, 66% yield, yellow solid; m.p. 174-176°C. "H NMR (400 MHz,

CDCLy) §9.53 (d, J = 8.4 Hz, 1H), 7.65 (dd, J= 0.8, 7.6 Hz, 1H), 7.55 (td, J= 1.2, 7.2 Hz, 1H), 7.51-7.48

(m, 2H), 7.46-7.42 (m, 1H), 7.21 (dd, J = 2.0, 8.4 Hz, 1H), 7.14 (d, J= 9.2 Hz, 1H), 7.07 (d, J = 9.6 Hz,

1H), 3.76 (s, 3H); BC{'H} NMR (100 MHz, CDCL;) § 163.5, 133.5, 132.9, 131.1, 131.0, 130.4, 130.2,

129.0, 128.8, 127.8, 126.2, 125.2, 124.5, 121.2, 118.5, 116.4, 116.0, 115.9, 98.9, 50.7; IR (CH,Cl,, cm™') v

1706, 1659, 1632, 1594, 1557, 1536, 1493, 1467, 1442, 1246, 1190, 748; ESI-HRMS: calcd. for

CyH;sBrNO," (M+H)" 380.0281, found 380.0284.

Methyl 1-bromo-3-(3,4-dichlorophenyl)pyrrolo[1,2-a]quinoline-2-carboxylate (15). Purified by flash

column chromatography (PE/EA = 100:3); 30.6 mg, 81% yield, yellow solid; m.p. 187-189 C. '"H NMR
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(400 MHz, CDCl;) 8 8.46 (s, 1H), 8.05 (dd, J = 1.2, 8.0 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.63-7.58 (m,

2H), 7.49-7.44 (m, 5H), 7.42-7.36 (m, 1H), 3.80 (s, 3H); *C{'H} NMR (100 MHz, CDCl;) § 164.8, 133.1,

133.0, 130.6, 129.5, 129.3, 128.9, 128.0, 127.2, 125.6, 123.3, 121.5, 119.4, 117.13, 117.05, 114.8, 114.5,

51.4; IR (CH,CL, cm) v 1696, 1597, 1559, 1532, 1497, 1475, 1436, 1235, 1144, 750; ESI-HRMS: calcd.

for CH3BrCL,NO,* (M+H)* 447.9501 found 447.9508.

Synthesis of compound 16

A mixture of compound 15 (1 eq, 0.1 mmol, 38.0 mg), 3-(4,4,5,5 tetramethyl

-1,3,2-dioxaborolan-2-yl)pyridine (2 eq, 0.2 mmol, 21.2 mg), Pd(PPh;), (0.1 eq, 0.01 mmol, 11.6 mg) and

Na,CO; (2 eq, 0.2 mmol, 21.2 mg) in DMF (0.8 mL) and H,O (0.2 mL) was stirred at 120 °C. Upon the

consumption of 15 (monitored by TLC), the reaction mixture was then cooled to rt, diluted with EtOAc,

washed with sat Na,CO; and brine, dried over anhydrous Na,SQ,, filtered and concentrated. The residue

was purified by a silica gel flash chromatography (PE/EtOAc = 9:1) to give compound 16 (Methyl

1-(4-nitrophenyl)-3-phenylpyrrolo[1,2-a]quinoline-2-carboxylate, 42.6 mg, quant, yellow solid; m.p.

150-151C); 1H NMR (400 MHz, CDCl;) & 8.70-8.65 (m, 2H), 8.54 (s, 1H), 8.05 (d, J = 8.0 Hz, 1H),

7.77-7.75 (m, 1H), 7.63-7.33 (m, 9H), 7.21 (s, 1H), 3.82 (s, 3H); C{'H} NMR (100 MHz, CDCl;) 3

165.0, 150.3, 148.9, 137.1, 134.8, 133.4, 132.9, 130.6, 129.0, 128.9, 128.8, 128.0, 127.0, 127.0, 125.1,

123.8, 123.3, 120.2, 118.9, 117.2, 116.9, 114.9, 51.4; IR (CH,Cl,, ecm™') v 1695, 1601, 1560, 1536, 1508,

1496, 1479, 1455, 1445, 1433, 1244, 1235, 1194, 752; ESI-HRMS: caled. for CpsHioN,Oy" (M+H)*

379.1441, found 379.1445.

Synthesis of compound 17

A mixture of compound 15 (1 eq, 0.1 mmol, 38.0 mg), 4,4,55-tetramethyl-2-(4-nitrophenyl)
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-1,3,2-dioxaborolane (2 eq, 0.1 mmol, 49.8 mg), Pd(PPh3), (0.1 eq, 0.01 mmol, 11.6 mg) and Na,CO; (2

eq, 0.2 mmol, 21.2 mg) in DMF (0.8 mL) and H,O (0.2 mL) was stirred at 120 °C. Upon the consumption

oNOYTULT D WN =

9 of 15 (monitored by TLC), the reaction mixture was cooled to rt, diluted with DCM, washed with sat
12 Na,CO; and brine, dried over anhydrous Na,SO,, filtered and concentrated. The mixture was passed
through a pad of silica gel and eluted with PE/EtOAc (25/2). The eluate was concentrated and recrystallized
17 from PE/EtOAc affording 17 (Methyl 3-phenyl-1-(pyridin-3-yl)pyrrolo[1,2-a]quinoline-2-carboxylate, 42.4
20 mg, quant, red solid; m.p. 209-211°C); 'H NMR (400 MHz, CDCls) & 8.55 (s, 1H), 8.32 (d, J = 8.4 Hz, 2H),
22 8.06 (d, J= 8.4 Hz, 1H), 7.64-7.57 (m, 4H), 7.51-7.49 (m, 2H), 7.44 (t, J = 7.2 Hz, 2H), 7.39-7.34 (m, 2H),
25 7.22 (s, 1H), 3.82 (s, 3H); BC{'H} NMR (100 MHz, CDCl;) & 164.9, 147.3, 145.9, 133.3, 132.9, 130.63,

130.55, 130.4, 129.0, 128.7, 128.0, 127.1, 126.9, 125.2, 123.8, 123.3, 120.8, 118.9, 117.4, 117.1, 115.0,
30 51.4; IR (CH,Cly, cm™) v 1693, 1646, 1592, 1510, 1494, 1469, 1435, 1409, 1342, 1087, 759; ESI-HRMS:

33 caled. for CysH oN,O4" (M+H)* 423.1339, found 423.1336
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