

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 15 (2007) 3524–3538

Novel 5-substituted 1-pyrazolol analogues of ibotenic acid: Synthesis and pharmacology at glutamate receptors

Charlotte G. Jørgensen,^a Hans Bräuner-Osborne,^a Birgitte Nielsen,^a Jan Kehler,^b Rasmus P. Clausen,^a Povl Krogsgaard-Larsen^a and Ulf Madsen^{a,*}

^aThe Danish University of Pharmaceutical Sciences, Department of Medicinal Chemistry, 2100 Copenhagen, Denmark ^bH. Lundbeck A/S, 2500 Valby, Copenhagen, Denmark

> Received 3 May 2006; revised 23 November 2006; accepted 26 February 2007 Available online 3 March 2007

Abstract—5-Substituted 1-pyrazolol analogues of ibotenic acid have been synthesized and pharmacologically characterized on ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs). The syntheses involved introduction of bromide, alkyls, phenyl and arylalkyls in the 5-position of 1-benzyloxypyrazole leading to 5-substituted (*RS*)-2-amino-(1-hydroxy-4-pyrazolyl)acetic acids (**5a**–I). The pharmacological activities of the synthesized analogues ranged from the 5-cyclopropylmethyl analogue (**5f**) with weak but selective affinity for NMDA receptors (IC₅₀ = 35 μ M), over the 5-*n*-propyl analogue (**5c**), which was a selective mGluR2 agonist (EC₅₀ = 72 μ M), to the 5-cyclohexylmethyl analogue (**5g**), which was a selective mGluR2 antagonist ($K_i = 32 \mu$ M), and the 5-phenylethyl analogue (**5j**), which was a weak but apparently selective mGluR1 antagonist ($K_i = 230 \mu$ M). This series of compounds afforded GluR ligands with a broad spectrum of pharmacological profiles, and showing potential for development of new compounds with subtype-selective activities at various GluRs. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

(S)-Glutamic acid (Glu) is the main excitatory neurotransmitter in the central nervous system and is involved in many important physiological and pathophysiological functions.¹⁻⁴ The action of Glu is mediated by activation of two groups of receptors, the ionotropic and metabotropic Glu receptors (iGluRs and mGluRs).

The iGluR family is divided according to the agonists that were originally identified to activate the receptors selectively.² The compounds are *N*-methyl-D-aspartic acid (NMDA), (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid ((S)-AMPA) and kainic acid (KA).²

The eight mGluRs are separated into three groups according to protein sequence homology and signal transduction pathways, Group I (mGluR1 and

mGluR5), Group II (mGluR2 and mGluR3) and Group III (mGluR4, mGluR6, mGluR7 and mGluR8).⁴

Several heterocyclic amino acids, which are mimicking Glu structurally and pharmacologically, have been isolated from nature or synthesized in the laboratory. Ibotenic acid ((RS)-2-amino-(3-hydroxy-5-isoxazolyl)acetic acid, Ibo) isolated from *Amanita muscaria* and the synthetic analogue (S)-AMPA both contain a 3-isoxazolol moiety, which is acidic and mimics the distal carboxyl group in Glu (Fig. 1).^{5–8}

The 1-pyrazolols 1-4 are analogues of Ibo and (S)-AMPA and have shown interesting pharmacological activity at both iGluRs and mGluRs (Fig. 1).^{8,9}

Compounds 1 and 3 are equipotent agonists and compound 2 is a partial agonist at mGluR2 receptors, whereas 1 is a weak agonist and 2 and 3 weak antagonists at NMDA receptor subtypes.⁹ Based on these results, four groups of derivatives were selected in order to gain further knowledge of the structure-activity relationship of the compounds: the bromo analogue (5a), the alkyl analogues (5b-e), the more bulky alkyl analogues (5f, g) and the phenylalkyl analogues (5h-l) (Fig. 2).

Keywords: Synthesis; Pyrazole; 1-Pyrazolol; Ibotenic acid; Amino acids; Ionotropic and metabotropic glutamate receptor ligands. * Corresponding author. Fax: +45 35306040; e-mail: um@dfuni.dk

^{0968-0896/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2007.02.047

Figure 2. Structures of new 1-pyrazolol analogues (5a-l).

2. Chemistry

The 5-position of 1-benzyloxypyrazole (6) has been met-N, N, N', N'-tetramethylethylenediamine allated with (TMEDA) and n-BuLi and reacted with a variety of electrophiles, such as D₂O, MeI, DMF, C₂Cl₆, CBr₄, Br₂ and I₂.¹⁰ We took advantage of this reactivity and synthesized a variety of alcohols 7b-g, i, k-l using n-BuLi (Scheme 1). The use of TMEDA resulted in lower yields of alcohols. The alcohols were reduced by ionic hydrogenation^{11,12} to the alkyls **8b–g**, **i–l** using trifluoroacetic acid and triethylsilane. The synthesis of phenylposed ethylalcohol problems (7i)due to polymerization of phenylacetaldehyde. Therefore, the 5-iodo compound (9) was prepared and treated with *i*-PrMgCl and phenylacetaldehyde to give alcohol 7*i*. The phenyl 8h was obtained in high yields using standard Suzuki conditions (Scheme 1 and Table 1).

Iodination of the 4-position of compounds **8b–l** was achieved in high yields using iodine monochloride under neutral conditions (Scheme 2).¹³ The dihalogenated compound (**10a**) was synthesized from **9** or **8a** using

Scheme 1. Reagents: (a) *n*-BuLi, aldehyde or ketone, THF; (b) Et₃SiH, TFA, CH₂Cl₂; (c) *n*-BuLi, I₂, THF; (d) PhB(OH)₂, PdCl₂(PPh₃)₂, K₂CO₃ (aq), DMF; (e) *i*-PrMgCl, PhCH₂CHO, THF (yields in Table 1).

LDA/tetrabromomethane or iodine monochloride, respectively (Scheme 2 and Table 1).

Derivatization of the 4-position of 1-benzyloxypyrazole can be achieved using an iodine-magnesium exchange reaction of 4-iodo compound, **9**, followed by addition of an electrophile (Scheme 3).^{13,14} Recurrent problems were encountered concerning storage of the ketimine, 2-(N-tert-butoxycarbonylimino)malonic acid diethyl ester, used previously for the synthesis of amino acids 1-3,^{15,16} and the purification of the resulting protected amino acids. Therefore, the aldimine, (N-tert-butoxycarbonylimino)acetic acid ethyl ester (11), was used instead. The aldimine, 11, was prepared from α -bromoglycine using a scavenger amine, morpholinomethyl-polystyrene.¹⁷ The freshly prepared aldimine, **11**, was kept in solution and added to the reactors with the magnesium halides of compounds 9 and 10a-l. The protected amino acids, 12 and 13a-l, were achieved in moderate yields (Scheme 3 and Table 1).

For compounds 12 and 13a–e, g–l, the deprotection was performed in two steps using basic hydrolysis and acidic treatment to generate the amino acids 5a–e, g–l and 2. The amino acids were obtained as zwitterions after adjustment of pH. In the case of the cyclopropylmethyl analogue (5f), which was unstable upon hydrogen bromide treatment, a previously described three-step deprotection¹⁶ was employed starting with 13f (Scheme 3 and Table 1).

3. pK_a values

The pK_a values of 1-pyrazolol and derivatives **5b**, **e** and **g** were determined by potentiometric titration (Table 2).

Table 1. Isolated yields (%) of intermediates and amino acids 2 and $5a-l^a$

Compound.	Substituent in 5-position	Alcohol	Substituent (halogen, alkyl, aryl)	Iodide ^b	Protected amino acid	Deprotected amino acid 1. LiOH ^b /2. HBr
2	Hydrogen	_	_	_	42	98/35
5a	Bromine	_	81 ^c	21	33	99/66
5b	Ethyl	90	69	98	64	86/58
5c	Propyl	88	29	97	44	83/50
5d	Butyl	85	69	100	48	100/36
5e	Pentyl	80	73	100	46	100/41
5f	Cyclopropylmethyl	84	65	100	48	69/100/89 ^d
5g	Cyclohexylmethyl	83	70	100	51	100/15
5h	Phenyl	_	78 ^e	97	74	88/60
5i	Benzyl	76	77	97	60	98/54
5j	Phenylethyl	57 ^d	71	96	49	76/49
5k	Phenylpropyl	63	65	99	43	80/25
51	Benzhydryl	77	46	97	46	74/60

^a Reactions described in Schemes 1-3.

^b Crude yields.

^c From 1-benzyloxypyrazole (6).

^d Used other protocol: 1. Pd/C/H₂, 69%, 2. LiOH, 100% (crude yield), 3. HCl, 89%.

^e From 1-benzyloxy-5-iodo-pyrazole (9).

Scheme 2. Reagents: (a) I–Cl, K_2CO_3 , CHCl₃; (b) LDA, CBr₄, THF (yields in Table 1).

Scheme 3. Reagents: (a) *i*-PrMgCl, THF, then 11, THF; (b) LiOH (aq), THF; (c) HBr (aq). For 13f–5f; (d) H₂, Pd/C, MeOH; (e) LiOH (aq), THF; (f) HCl (aq) (yields in Table 1).

Table 2. pK_a Values of heterocyclic hydroxy moieties and amino groups determined by potentiometric titration^a

	ОН	NH ₂
1-Pyrazolol	6.1 (6.3) ^b	_
3-Isoxazolol ^c	5.85	_
Ibo ^d	5.04	8.16
5b (Ethyl)	6.0	9.6
5e (Pentyl)	6.2	9.5
5g (Cyclohexylmethyl)	6.1	9.4
4, 1-pyrazolol-AMPA ^e	5.89	9.81
$AMPA^{f}$	5.12	10.09

^a Due to the low pK_a values of the carboxyl group, the determinations of these values were not reliable.

^b Ref. 20.

^c Ref. 18.

^d Ref. 19.

^e Ref. 8.

The pK_a values of 1-pyrazolol and 3-isoxazolol¹⁸ were found to be of equal magnitude. With the presence of the amino acid moiety in Ibo,¹⁹ the pK_a value of 3-isoxazolol was lowered by almost one unit, whereas for the 1-pyrazolol analogues **5b**, **e** and **g**, the pK_a value was retained. Interestingly, the pK_a value of the amino group was approximately one and a half unit higher in compounds **5b**, **e** and **g** as compared to Ibo¹⁹. Based on the determined pK_a values of **5b**, **e** and **g**, all the 1-pyrazolol analogues (**5a**–I) are expected to be fully ionized at physiological pH.

4. Pharmacology

All compounds were pharmacologically characterized at native iGluRs on rat cortical membranes using [³H]AMPA, [³H]KA and [³H]CGP39653 binding assays representing AMPA, KA and NMDA receptors, respectively (Table 3). The bromo and ethyl compounds (**5a**, **b**) showed weak affinity for NMDA receptors and were approximately equipotent with the chloro and methyl

^f Ref. 21.

Table 3. Receptor binding affinities at native iGluRs on rat cortical membranes and pharmacological activities at cloned mGluRs expressed in CHO cells^{a,b}

AMPA [³ H]AMPA IC ₅₀ (µM)		KA [³ H]KA IC ₅₀ (μM)	NMDA [³ H]CGP- 39653 K; (µM)	EC_{50} (μ M) or K_i (μ M)			
				mGluR1a	mGluR2	mGluR4a	
Glu	0.34 ^c	0.38 ^c	0.20 ^d	13 ^e	4.4 ^e	13 ^e	
Ibo	>100 ^f	22^{f}	5.3 ^f	43 ^e	110 ^e	>1000 ^e	
1 (H)	>100 ^g	>100 ^g	39 ^{g,h}	85 ^g	230 ^g	24 ^g	
2 (Chloro)	47 ^g	>100 ^g	64 ^{g,i}	>1000 ^g	51 (67%) ^{g,j}	>1000 ^g	
3 (Methyl)	>100 ^g	>100 ^g	56 ^{g,i}	>1000 ^g	100 ^g	>1000 ^g	
5a (Bromo)	>100	>100	$25 [4.60 \pm 0.02]$	>1000	$170 (43\%)^{j} [3.82 \pm 0.15]$	>1000	
5b (Ethyl)	>100	>100	$32 [4.50 \pm 0.05]$	>1000	57 $[4.25 \pm 0.05]$	>1000	
5c (Propyl)	>100	>100	>100	>1000	72 [4.17 ± 0.09]	>1000	
5d (Butyl)	>100	>100	>100	>1000	>1000	>1000	
5e (Pentyl)	>100	>100	>100	>1000	>1000	>1000	
5f (Cyclopropylmethyl)	>100	>100	35 [4.47 ± 0.04]	>1000	>1000	>1000	
5g (Cyclohexylmethyl)	>100	>100	>100	>1000	32 [4.50 ± 0.03]	>1000	
5h (Phenyl)	>100	>100	>100	>1000	180 [3.75 ± 0.03]	>1000	
5i (Benzyl)	>100	>100	67 [4.18 ± 0.03]	>1000	120 [3.93 ± 0.08]	>1000	
5j (Phenylethyl)	>100	>100	>100	230 [3.71 ± 0.16]	>1000	>1000	
5k (Phenylpropyl)	>100	>100	54 [4.27 ± 0.02]	260 [3.59 ± 0.01]	67 [4.19 ± 0.06]	>1000	
51 (Benzhydryl)	>100	47 [4.33 ± 0.06]	>100	>1000	>1000	>1000	

^a iGluRs: data are given as means of at least three to four independent experiments and the numbers in brackets indicate [pIC₅₀ ± SEM] or [p K_i ± SEM].

^b mGluRs: antagonist activity in bold. Data are given as means of at least three independent experiments and the numbers in brackets indicate $[pEC_{50} \pm SEM]$ or $[pK_i \pm SEM]$.

^c Ref. 22.

^d Ref. 9.

^e Ref. 23.

^g Ref. 9.

^hAgonist in functional assay see Ref. 9.

ⁱAntagonist in functional assay see Ref. 9.

^j Partial agonist, X% of max. response.

compounds (2, 3). The cyclopropylmethyl analogue, 5f, showed similar affinity, whereas the *n*-propyl analogue (5c) showed no affinity. Compounds containing larger substituents generally resulted in inactive compounds at NMDA receptors, except for the benzyl (5i) and phenylpropyl compounds (5l), which retained low affinity. No affinity for AMPA and KA receptors was observed for any of the compounds except for the diphenylmethyl compound, 5l, which displayed weak affinity for KA receptors (Table 3).

The compounds (5a-1) were tested functionally at mGluR1a, mGluR2 and mGluR4a representing Group I, II and III receptors, respectively. All compounds were inactive at mGluR1 except for compounds 5j and 5k, which turned out to be weak antagonists. At mGluR2, the bromo compound, 5a, was a partial agonist, which was also observed with the chloro compound, 2. The ethyl and propyl compounds (5b, c) were agonists at mGluR2 and with activities comparable to those of the unsubstituted analogue (1) and the methyl analogue (3).

The butyl, pentyl, cyclopropylmethyl substituted compounds (5d–f) were all inactive at mGluR2 both as agonist and antagonists (at 1 mM). The more bulky cyclohexylmethyl compound, 5g, turned out to be an antagonist with a K_i value of 32 μ M. The phenyl and benzyl compounds (5h, i) were also antagonists at mGluR2. The bulky phenylethyl and diphenylmethyl analogues (**5j** and **l**) had no activity at mGluR2, whereas the phenylpropyl compound (**5k**) turned out to be an antagonist almost as potent as compound **5g** (cyclohexylmethyl).

5. Conclusion

New methods were developed for introduction of alkyl substituents in the 5-position of protected 1-pyrazolols. Reaction of 5-metallated 1-benzyloxypyrazole with aldehydes and ketones gave the corresponding alcohols, which were reduced to the respective alkanes using triethylsilane and trifluoroacetic acid. Subsequent iodination using iodine monochloride to obtain 4-iodinated pyrazoles followed by metal-halogen exchange and reaction with aldimine **11** afforded protected amino acids. Deprotection in two steps gave the desired amino acids (**5a**–**I**) in zwitterionic form.

The pK_a determination of three of the pyrazole analogues (**5b**, **e**, **g**) gave pK_a values of the 1-pyrazolol moiety ranging from 6.0 to 6.2 as compared to a pK_a value of 5.04 of the 3-isoxazolol moiety in Ibo. This illustrates the potential of using the 1-pyrazolol moiety for bioisosteric replacement of the distal carboxyl group of Glu. Notably, the pK_a values of the ammonium groups of the 1-pyrazolol amino acids were approximately 1.5 unit

^fRef. 24.

higher compared to Ibo. This may be explained by the stronger inductive effect of the neighbouring oxygen in the isoxazole ring, compared to the more distant and less electronegative nitrogen in the pyrazole ring. An analogous effect can be seen in morpholine ($pK_a = 8.7$) compared to piperidine ($pK_a = 11.2$).²⁵ However, all of the compounds are primarily tri-ionized at physiological pH and the determined pK_a values determined for **5b**, **e** and **g** show very little variation. Therefore, the observed differences in pharmacology cannot be explained by differences in pK_a values.

The pharmacological characterization of the 1-pyrazolol compounds at iGluRs and mGluRs showed a remarkable variation of pharmacological profiles. Compounds containing small substituents, bromide (5a), ethyl (5b) or cyclopropylmethyl (5f), showed weak affinities for NMDA receptors, whereas most other analogues were without affinity for the NMDA site. Compound 5f was the only analogue with affinity for the NMDA receptor site showing no activity at any of the mGluRs. Although weak NMDA receptor affinities were observed for the benzyl (5i) and phenylpropyl (5k) analogues, the phenyl (5h) and phenylethyl (5j) analogues were found to be inactive (IC₅₀ > 100 μ M).

The most intriguing results were related to the activities observed at mGluRs. In contrast to the unsubstituted analogue 1, all of the substituted analogues (2, 3 and 5a-l) were inactive at mGluR4. Similarly, most analogues were inactive at mGluR1. However, the phenylethyl (5i) and the phenylpropyl analogues (5k) were antagonists at mGluR1. This means that compound 5j was a weak but selective antagonist at mGluR1. Notably, the activities at mGluR2 showed remarkable variations. The ethyl- (5b) and propyl-substituted (5c) compounds were agonists with EC₅₀ values below 100 µM, and 5c was thus a selective mGluR2 agonist. The compounds containing extended alkyls, butyl (5d) and pentyl (5e), and the cyclopropylmethyl (5f) analogue showed no activity at mGluRs, whereas the bulky and lipophilic cyclohexylmethyl (5g), phenyl (5h), benzyl (5i) and phenylpropyl (5k) analogues were antagonists with K_i values in the range of 32–180 μ M. The cyclohexylmethyl (5g) and phenylpropyl (5k) analogues showed the highest potencies. Compound 5g only inhibited mGluR2 and was thus a selective mGluR2 antagonist. When comparing mGluR activity with iGluR activity, it is important to note that mGluR activity generally is 10- to 50-fold lower than iGluR activity as seen for Glu itself (Table 3). Thus, the observed mGluR activities in the range 30-230 µM are indicative of selectivity when comparing with iGluR data.

The results for the mGluR2 agonists indicate limited space for agonist molecules. We have previously hypothesized that interaction of the substituent of 5-substituted pyrazol analogues with Gly296 in mGluR2 reduces the efficacy of the compounds.⁹ The ligand binding domain is formed like a venus fly-trap that closes around the ligand resulting in receptor activation. Reduced domain closure due to steric clash between the substituent and Gly296 leads to reduced activation of the receptor. Current data confirm this hypothesis since the degree of activation decreases in the substituent series Me > Cl > Br > Ph.

Clearly, this series of compounds shows potential for development of ligands with multiple activities at the various GluR sites, especially the mGluRs, some analogues being selective agonists and some being selective antagonists.

6. Experimentals

6.1. Chemistry

All materials were obtained from commercial suppliers and used without further purification unless otherwise stated. 1-Benzyloxypyrazole was prepared as previously described.¹⁰ *i*-PrMgCl and *n*-BuLi were titrated prior to use.^{26,27} THF was distilled from Na/benzophenone under N₂. All air-sensitive reactions were carried out under N2. Melting points were measured in open capillary tubes by normal oil bath method or an OptiMelt MPA100 apparatus (SRS) and are all uncorrected. Compounds were visualized on TLC (silica gel 60 F254 plates) using UV light, FeCl₃ or KMnO₄. Flash chromatography (FC) was performed on a glass column (silica gel 60, 0.040–0.063 mm), a FlashMasterTM Personal one column (FP) (ISOLUTE^R SPE Columns) or a FlashMasterTM (F) (ISOLUTE^R SPE Columns) apparatus. Preparative HPLC was performed on an XTerra Prep MS C_{18} column (10 × 300 mm, 10 µm) equipped with an XTerra guard column $(10 \times 10 \text{ mm})$ connected to a Jasco 880 pump (flow = 10 mL/min), a Rheodyne 7125 injector, a 5 mL loop, a TSP UV100 spectrophotometer (210 nm) and a Hitachi D-2000 Chromato-Integrator.

¹H, ¹³C and APT NMR spectra were recorded on a 300/ 75 MHz Varian (Gemini) instrument or on a 500/ 125 MHz Bruker Avance DRX500 instrument. TMS was used as internal reference for ¹H NMR spectra and CDCl₃ was used as internal reference standard for ¹³C NMR spectra. Elemental analyses were carried out at the Analytical Research Department, H. Lundbeck A/S, Denmark.

Accurate mass determination (HRMS) was performed on a Micromass Q-Tof mass spectrometer (MeOH, 8.74 μ L min⁻¹) in electrospray (ES) mode. GCMS analyses were performed using electron ionization. Analytical LCMS data were obtained on a PE Sciex API 150EX instrument equipped with atmospheric pressure photo ionization and a Shimadzu LC-10ADvp system. Column: 30×4.6 mm Waters Symmetry C18 column with 3.5 μ m particle size; Solventsystem: A = water/trifluoroacetic acid (100:0.05) and B = water/acetonitrile/trifluoroacetic acid (5:95:0.035); Method: Linear gradient elution with 90% A to 100% B in 10 min and with a flow rate of 2 mL/min. Purity was determined by integration of the UV (254 nm) and ELSD trace by using a Shimadzu SPD-10Advp UV detector and a Sedere Sedex 55 ELSD detector. The retention times (T_R) are expressed in minutes.

The p K_a values were measured potentiometrically using a Sirius GLpKa Auto-titrator and the data were analyzed with Sirius pKaLOGP software (version 5.2). Multiple runs were performed using MeOH/H₂O mixtures. The derived p K_a values were extrapolated to zero organic solvent using Yasuda–Shedlovsky plots.^{28,29} The samples were run from low pH to high pH using first HCl (aq) to obtain a pH of 2 and then titrated with KOH (aq).

6.1.1. (RS)-2-Amino-(1-hydroxy-4-pyrazolyl)acetic acid (2). Compound 12 (90 mg, 0.25 mmol) was dissolved in THF (0.4 mL) and 2.5 M LiOH (aq) (0.2 mL, 0.5 mmol) was added. The reaction mixture was left stirring for 4 h at rt, then cooled to 0 °C and pH adjusted to \sim 1 using 1 M HCl (aq). The mixture was extracted using EtOAc $(3\times)$, and the combined organic phases were washed with brine, dried using MgSO₄ and concentrated in vacuo yielding crude (RS)-2-(1-benzyloxy-4-pyrazolyl)-2-(N-tert-butoxycarbonylamino)acetic acid as a foamy oil (85 mg). ¹H NMR (CDCl₃) δ 1.37 and 1.45 (2× br s, 9H), 5.06–5.44 (m, α-CH, NH, CH₂, 4H), 7.09–7.33 (m, phenyl, H-3, H-5, 7H), 10.23 (br s, COOH, 1H). 48% HBr (aq) (1.1 mL) was added to (RS)-2-(1-benzyloxy-4-pyrazolyl)-2-(N-tert-butoxycarbonyl-amino)acetic acid (69 mg, 0.2 mmol). The mixture was left stirring overnight at rt and concentrated in vacuo. The oil was dissolved in 70% EtOH (aq) (1.5 mL) and treated with propylene oxide (0.4 mL) to give 2 as the zwitterion (11 mg, 35%). Mp decomp. >178 °C. ¹H NMR (DMSO- d_6) δ 4.13 (s, α -CH, 1H), 7.09 (br s, H-3, 1H), 7.41 (br s, H-5, 1H), 7.78 (br s, 1H). Anal. Calcd for C₅H₇N₃O₃·1/3H₂O: C, 36.81; H, 4.74; N, 25.76. Found: C, 36.62; H, 4.61; N, 25.45.

6.1.2. (*RS*)-2-Amino-(5-bromo-1-hydroxy-4-pyrazolyl) acetic acid (5a). The title compound was prepared according to the procedure described for 2 starting with 13a (81 mg, 0.18 mmol). Treatment with LiOH gave crude (*RS*)-2-(1-benzyloxy-5-bromo-4-pyrazolyl)-2-(*N*-tert-butoxycarbonylamino)acetic acid (77 mg, 99%). HBr treatment of 69 mg of this intermediate gave 5a as the zwitterion (25 mg, 66%). Mp decomp. >220 °C. ¹H NMR (DMSO-*d*₆) 3.95 (s, α-CH, 1H), 7.22 (s, H-3, 1H), 7.90 (br s, 2H). Anal. Calcd for C₅H₆BrN₃O₃·2/ 3H₂O: C, 24.21; H, 2.98; N, 16.94. Found: C, 24.07; H, 3.01; N, 16.60.

6.1.3. (*RS*)-2-Amino-(5-ethyl-1-hydroxy-4-pyrazolyl)acetic acid (5b). The title compound was prepared according to the procedure described for 2 starting with 13b (147 mg, 0.38 mmol). Treatment with LiOH gave crude (*RS*)-2-(1-benzyloxy-5-ethyl-4-pyrazolyl)-2-(*N*-tert-butoxycarbonylamino)acetic acid (122 mg, 86%). HBr treatment of 107 mg of this intermediate gave 5b which was isolated as the zwitterion (31 mg, 58%). Mp decomp. >182 °C. ¹H NMR (DMSO-*d*₆) δ 1.11 (t, J = 8 Hz, CH₃, 3H), peak hidden under DMSO (CH₂), 4.02 (s, α-CH, 1H), 7.00 (s, H-3, 1H). ¹H NMR (D₂O) δ 1.17 (t, J = 8 Hz, CH₃, 3H), 2.64–2.73 (m, CH₂, 2H), 4.75 (s, α-CH, 1H), 7.20 (s, H-3, 1H). Anal. Calcd for C₇H₁₁N₃O₃·1/6H₂O: C, 44.68; H, 6.07; N, 22.33. Found: C, 44.55; H, 6.35; N, 22.21. 6.1.4. (*RS*)-2-Amino-(1-hydroxy-5-propyl-4-pyrazolyl) acetic acid (5c). The title compound was prepared according to the procedure described for 2 starting with 13c (258 mg, 0.64 mmol). Treatment with LiOH gave crude (*RS*)-2-(1-benzyloxy-5-propyl-4-pyrazolyl)-2-(*N*-tert-butoxycarbonylamino)acetic acid (206 mg, 83%) and further treatment with HBr gave 5c isolated as the zwitterion (53 mg, 50%). Mp decomp >182 °C. ¹H NMR (DMSO-*d*₆) δ 0.91 (t, *J* = 7 Hz, CH₃, 3H), 1.54–1.58 (m, CH₂, 2H), 2.59–2.65 (m, peak partly hidden under DMSO, CH₂), 4.04 (s, α-CH, 1H), 7.03 (s, H-3, 1H). Anal. Calcd for C₈H₁₃N₃O₃·1/2H₂O: C, 46.15; H, 6.78; N, 20.18. Found: C, 46.27; H, 6.40; N, 19.94.

(RS)-2-Amino-(1-benzyloxy-5-butyl-4-pyrazolyl) 6.1.5. acetic acid (5d). The title compound was prepared according to the procedure described for 2 starting with 13d (462 mg, 1.11 mmol). Treatment with LiOH gave (RS)-2-(1-benzvloxy-5-butyl-4-pyrazolyl)-2-(Ncrude tert-butoxycarbonylamino)acetic acid (447 mg, 100%). Further treatment with HBr gave 5d but instead of isolating the zwitterion using propylene oxide, the pH was adjusted to 3-4 with 4 M NaOH (aq) followed by HPLC (15 mM AcOH (aq)) purification and recrystallization (H_2O) (85 mg, 36%). Mp decomp. >188 °C. ¹H NMR (DMSO- d_6) δ 0.89 (t, J = 8 Hz, CH₃, 3H), 1.30–1.34 (m, CH₂, 2H), 1.49–1.53 (m, CH₂, 2H), 2.50–2.55 (m, peak below DMSO, CH in CH₂, 1H), 2.60-2.65 (m, CH in CH₂, 1H), 4.05 (s, α-CH, 1H), 7.02 (s, H-3, 1H). Anal. Calcd for C₉H₁₅N₃O₃·1/4H₂O: C, 49.65; H, 7.17; N, 19.30. Found: C, 49.59; H, 7.40; N, 19.35.

(RS)-2-Amino-(1-hvdroxy-5-pentyl-4-pyrazolyl) 6.1.6. acetic acid (5e). The title compound was prepared according to the procedure described for 5d starting with 13e (545 mg, 1.26 mmol). Treatment with LiOH gave crude (RS)-2-(1-benzyloxy-5-pentyl-4-pyrazolyl)-2-(*N-tert*-butoxycarbonylamino)acetic acid (526 mg, 100%). Further treatment with HBr, pH adjustment with NaOH (aq), HPLC purification (5% MeOH in 15 mM AcOH (aq)) and recrystallization (H₂O) gave **5e** (117 mg, 41%). Mp decomp. >183 °C. ¹H NMR $(DMSO-d_6) \delta 0.88$ (t, J = 8 Hz, CH_3 , 3H), 1.30–1.31 (m, 2× CH₂, 4 H), 1.53–1.55 (m, CH₂, 2H), 2.54 (m, below DMSO, CH in CH2aryl, 1H), 2.60-2.65 (m, CH in CH₂aryl, 1H), 4.04 (s, α -CH, 1H), 7.02 (s, H-3, 1H). Anal. Calcd for C₁₀H₁₇N₃O₃·1/3H₂O: C, 51.49; H, 7.63; N, 18.01. Found: C, 51.75; H, 7.66; N, 18.12.

61.7. (*RS*)-2-Amino-(5-cyclopropylmethyl-1-hydroxy-4pyrazolyl)acetic acid (5f). Compound 13f (475 mg, 1.1 mmol) was dissolved in MeOH (5 mL). Pd/C (68 mg) was added and the reaction mixture was hydrogenated (Schmidlin NM hydrogen generator) at 0 °C for 1 h. The mixture was filtered and concentrated in vacuo giving 2-(*N*-tert-butoxycarbonylamino)-2-(5-cyclopropylmethyl-1-hydroxy-4-pyrazolyl)acetic acid methyl ester (257 mg, 69%). ¹H NMR (CDCl₃) δ 0.29–0.31 (m, CH₂, 2H), 0.49 (br d, J = 8 Hz, CH₂, 2H), 1.02–1.07 (m, CH, 1H), 1.42 (s, t-bu, 9H), 2.67 (br d, J = 7 Hz, CH₂, 2H), 3.73 (s, CH₃, 3H), 5.23–5.25 (m, α -CH and NH, 2H), 7.05 (s, H-3, 1H). ¹³C NMR (CDCl₃) δ 4.8 (CH₂), 9.9 (CH), 27.5 (CH₂), 28.4 (CH₃), 49.2 (CH), 52.8 (CH₃), 80.5 (C), 112.4 (C), 129.0 (CH), 134.4 (C), 155.0 (C), 171.7 (C). 2-(N-tert-Butoxycarbonylamino)-2-(5-cyclopropylmethyl-1-hydroxy-4-pyrazolyl)acetic acid methyl ester (230 mg, 0.71 mmol) was dissolved in THF (0.6 mL) and 2.5 M LiOH (aq) (0.57 mL, 1.41 mmol) was added. The reaction mixture was left stirring for 4 h at rt, then cooled to 0 °C and pH adjusted to ~ 2 using 1 M HCl (aq). The mixture was extracted using EtOAc (3×), filtered through Na₂SO₄ (Isolute SPE column) and concentrated in vacuo yielding crude 2-(Ntert-butoxycarbonylamino)-2-(5-cyclopropylmethyl-1hydroxy-4-pyrazolyl)acetic acid in quantitative yield. The compound was finally deprotected using 2 M HCl (aq) (3.5 mL) under rt overnight. The mixture was concentrated in vacuo and titrated several times with dry Et₂O giving **5f** as the HCl salt (157 mg, 89%). Mp decomp. >176 °C. ¹H NMR (D₂O) δ 0.29 (br d, J = 4 Hz, CH₂, 2H), 0.53 (br d, J = 8 Hz, CH₂, 2H), 1.04-1.06 (m, CH, 1H), 2.63-2.77 (m, CH₂, 2H) 5.18 (s, α -CH, 1H), 7.37 (s, H-3, 1H). Anal. Calcd for C₉H₁₃N₃O₃·HCl·1/3H₂O: C, 42.61; H, 5.83; N, 16.56. Found: C, 42.48; H, 6.02; N, 16.49.

6.1.8. (RS)-2-Amino-(5-cyclohexylmethyl-1-hydroxy-4pyrazolyl)acetic acid (5g). The title compound was prepared according to the procedure described for 5d starting with 13g (667 mg, 1.46 mmol). Treatment with LiOH gave crude (RS)-2-(1-benzyloxy-5-cyclohexylmethyl-4-pyrazolyl)-2-(N-tert-butoxycarbonylamino)acetic acid (646 mg, 100%). Further treatment with HBr, pH adjustment with NaOH (aq), HPLC (10% MeOH in 15 mM AcOH (aq)) purification and recrystallization (H₂O) gave 5g (58 mg, 15%). Mp decomp. >210 °C. ¹H NMR (DMSO- d_6) δ 0.96 (br s, 2H), 1.12–1.14 (m, 3H), 1.16–1.63 (m, 6H), 2.43 (dd, J = 7, 15 Hz, CH in CH₂, 1H), 2.57 (dd, J = 7, 14 Hz, CH in CH₂, 1H), 4.04 (s, α-CH, 1H), 7.03 (s, H-3, 1H). Anal. Calcd for C₁₂H₁₉N₃O₃·1/3H₂O: C, 55.58; H, 7.64; N, 16.20. Found: C, 55.48; H, 7.56; N, 16.04.

6.1.9. (*RS*)-2-Amino-(1-hydroxy-5-phenyl-4-pyrazolyl) acetic acid (5h). The title compound was prepared according to the procedure described for 2 starting with 13h (106 mg, 0.24 mmol). Treatment with LiOH gave crude (*RS*)-2-(1-benzyloxy-5-phenyl-4-pyrazolyl)-2-(*N*-tert-butoxycarbonylamino)acetic acid (91 mg, 88%). HBr treatment of 82 mg of this intermediate gave 5h as the zwitterion (27 mg, 60%). Mp decomp. >199 °C. ¹H NMR (DMSO-*d*₆) δ 3.99 (s, α-CH, 1H), 7.29 (s, H-3, 1H), 7.45 (t, *J* = 7 Hz, 1H), 7.51 (t, *J* = 8 Hz, 2H), 7.90 (d and br s, *J* = 8 Hz, 3H). Anal. Calcd for C₁₁H₁₁N₃O₃·1/2H₂O: C, 54.54; H, 4.99; N, 17.35. Found: C, 54.83; H, 5.00; N, 17.01.

6.1.10. (*RS*)-2-Amino-(5-benzyl-1-hydroxy-4-pyrazolyl) acetic acid (5i). The title compound was prepared according to the procedure described for 2 starting with 13i (193 mg, 0.43 mmol). Treatment with LiOH gave crude (*RS*)-2-(5-benzyl-1-benzyloxy-4-pyrazolyl)-2-(*N*-tert-butoxycarbonylamino)acetic acid (184 mg, 98%). HBr treatment of 159 mg of this intermediate gave 5i as the zwitterion (49 mg, 54%). Mp decomp. >162 °C. ¹H NMR (DMSO-*d*₆) δ 3.97 (d, *J*_{AB} = 15 Hz, CH in

CH₂, 1H), 4.10 (s, α-CH, 1H), 4.12 (d, J_{AB} = 15 Hz, CH in CH₂, 1H), 7.10 (s, H-3, 1H), 7.17–7.29 (m, 5H), 7.87 (br s, 2H). Anal. Calcd for C₁₂H₁₃N₃O₃·1H₂O: C, 54.33; H, 5.70; N, 15.84. Found: C, 54.28; H, 5.79; N, 17.47.

6.1.11. (*RS*)-2-Amino-(1-hydroxy-5-phenylethyl-4-pyrazolyl)acetic acid (5j). The title compound was prepared according to the procedure described for 2 starting with 13j (150 mg, 0.32 mmol). Treatment with LiOH gave crude (*RS*)-2-(1-benzyloxy-5-phenylethyl-4-pyrazolyl)-2-(*N*-tert-butoxycarbonylamino)acetic acid (95 mg, 76%) and further treatment with HBr gave 5j isolated as the zwitterion (27 mg, 49%). Mp decomp. >166 °C. ¹H NMR (DMSO-*d*₆) δ 2.80–2.91 (m, 2× CH₂, 4H), 4.11 (s, α-CH, 1H), 7.05 (s, H-3, 1H), 7.19–7.84 (m, 5H). Anal. Calcd for C₁₃H₁₅N₃O₃·1H₂O: C, 55.91; H, 6.13; N, 15.05. Found: C, 56.11; H, 6.42; N, 14.69.

6.1.12. (*RS*)-2-Amino-[1-hydroxy-5-(3-phenylpropyl)-4pyrazolyl]acetic acid (5k). The title compound was prepared according to the procedure described for **2** starting with **13k** (219 mg, 0.46 mmol). Treatment with LiOH gave crude (*RS*)-2-(1-benzyloxy-5-(3-phenylpropyl)-4-pyrazolyl)-2-(*N*-tert-butoxycarbonylamino)acetic acid (171 mg, 80%) and further treatment with HBr gave **5k** isolated as the zwitterion (25 mg, 25%). Mp decomp. >162 °C. ¹H NMR (DMSO-*d*₆) δ 1.87–1.90 (m, CH₂, 2H), 2.54–2.70 (m, 2× CH₂, 4H), 4.03 (s, α-CH, 1H), 7.04 (s, H-3, 1H), 7.17–7.29 (m, 5H). Anal. Calcd for C₁₄H₁₇N₃O₃·2/3H₂O: C, 58.53; H, 6.43; N, 14.63. Found: C, 58.83; H, 6.39; N, 14.38.

6.1.13. (*RS*)-2-Amino-(5-benzhydryl-1-hydroxy-4-pyrazolyl)acetic acid (51). The title compound was prepared according to the procedure described for 2 starting with 13I (246 mg, 0.47 mmol). Treatment with LiOH gave crude (*RS*)-2-(1-benzyloxy-5-benzhydryl-4-pyrazolyl)-2-(*N-tert*-butoxycarbonylamino)acetic acid (178 mg, 74%) and further treatment with HBr gave 5I isolated as the zwitterion (67 mg, 60%). Mp decomp. >175 °C. ¹H NMR (DMSO-*d*₆) δ 3.72 (s, α-CH, 1H), 5.95 (s, CHPh₂, 1H), 7.14–7.31 (m, H-3 and 2× Ph, 11H). Anal. Calcd for C₁₈H₁₇N₃O₃.1H₂O: C, 63.33; H, 5.61; N, 12.31. Found: C, 63.01; H, 5.69; N, 12.10.

6.1.14. 1-(1-Benzyloxy-5-pyrazolyl)ethanol (7b). 1-Benzyloxypyrazole (390 mg, 2.2 mmol) in THF (10 mL) was cooled to -78 °C and *n*-BuLi in hexanes (1.68 M, 2 mL, 3.4 mmol) was added over 5 min. The mixture was left stirring for 5 min at -78 °C before CH₃CHO (0.2 mL, 158 mg, 3.6 mmol) was added. The mixture was left stirring at -78 °C for 1 h and then warmed to rt over 3 h and left at rt for 1 h. Satd NH₄Cl (aq) was added followed by additional water. The mixture was extracted using EtOAc (3×). The organic phases were pooled, washed with brine, dried using MgSO₄ and concentrated in vacuo. FC (F, petroleum ether/EtOAc) gave 7b (440 mg, 90%) as a clear oil. TLC (petroleum ether/ EtOAc 3.1) $R_{\rm f}$ 0.14. ¹H NMR (CDCl₃) δ 1.29 (d, J = 7 Hz, CH₃, 3H), 2.55 (br s, OH, 1H), 4.59 (q, J = 7 Hz, CHOH, 1H), 5.29 (s, CH₂, 2H), 6.04 (d, J = 2 Hz, H-4, 1H), 7.19 (d, J = 2 Hz, H-3, 1H),

7.27–7.37 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 21.8 (CH₃), 60.4 (CH), 80.1 (CH₂), 100.5 (CH), 128.8 (CH), 129.5 (CH), 130.1 (CH), 132.6 (C), 133.6 (C), 139.9 (C). LCMS *m*/*z* 219 (M+H⁺); $T_{\rm R}$ = 1.98; purity (UV, ELSD): 87%, 98%. The reaction was also tried using TMEDA (1.1 equiv), *n*-BuLi (1.1 equiv) and CH₃CHO (5 equiv) and the conditions described in the literature but the reaction resulted in lower yields.¹⁰

6.1.15. 1-(1-Benzyloxy-5-pyrazolyl)propan-1-ol (7c). The title compound was prepared according to the procedure described for **7b** starting with 1-benzyloxypyrazole (1.00 g, 5.7 mmol). FC (F, petroleum ether/EtOAc) gave **7c** as a clear oil (1.18 g, 88%). TLC (petroleum ether/EtOAc 3:1) $R_{\rm f}$ 0.19. ¹H NMR (CDCl₃) δ 0.79 (t, J = 8 Hz, CH₃, 3H), 1.55 (m, CH, 1H), 1.68 (m, CH, 1H), 3.27 (br s, OH, 1H), 4.37 (t, J = 7 Hz, CHOH, 1H), 5.24 (d, $J_{\rm AB}=10$ Hz, CH in CH₂, 1H), 5.25 (d, $J_{\rm AB} = 10$ Hz, CH in CH₂, 1H), 6.02 (d, J = 2 Hz, H-4, 1H), 7.16 (d, J = 2 Hz, H-3, 1H), 7.27–7.32 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 9.8 (CH₃), 28.9 (CH₂), 65.5 (CH), 80.0 (CH₂), 100.8 (CH), 128.5 (CH), 129.2 (CH), 129.8 (CH), 132.4 (CH), 133.5 (C), 139.0 (C).

6.1.16. 1-(1-Benzyloxy-5-pyrazolyl)butan-1-ol (7d). The title compound was prepared according to the procedure described for **7b** starting with 1-benzyloxypyrazole (1.00 g, 5.7 mmol). FC (F, petroleum ether/EtOAc) gave **7d** as a clear oil (1.19 g, 85%). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.29. ¹H NMR (CDCl₃) δ 0.86 (t, J = 7 Hz, CH₃, 3H), 1.20 (m, CH, 1H), 1.33 (m, CH, 1H), 1.49 (m, CH, 1H), 1.56 (br s, 1H, OH), 1.68 (m, CH, 1H), 4.38 (dd, J = 6, 8 Hz, CHOH, 1H), 5.33 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 6.03 (d, J = 2 Hz, H-4, 1H), 7.25–7.40 (m, phenyl, H-3, 6H). ¹³C NMR (CDCl₃) δ 13.8 (CH₃), 18.9 (CH₂), 38.0 (CH₂), 64.4 (CH), 80.1 (CH₂), 100.8 (CH), 129.0 (CH), 129.7 (CH), 130.3 (CH), 133.0 (CH), 133.9 (C), 139.3 (C).

6.1.17. 1-(1-Benzyloxy-5-pyrazolyl)pentan-1-ol (7e). The title compound was prepared according to the procedure described for **7b** starting with 1-benzyloxypyrazole (1.00 g, 5.7 mmol). FC (F, petroleum ether/EtOAc) gave **7e** as a clear oil (1.19 g, 80%). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.29. ¹H NMR (CDCl₃) δ 0.85 (t, J = 7 Hz, CH₃, 3H), 1.10–1.35 (m, 2× CH₂, OH, 5H), 1.50–1.70 (2× m, CH₂, 2H), 4.36 (br t, J = 8 Hz, CHOH, 1H), 5.32 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.37 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 6.03 (d, J = 2 Hz, H-4, 1H), 7.25–7.40 (m, H-3, phenyl, 6H). ¹³C NMR (CDCl₃) δ 14.1 (CH₃), 22.5 (CH₂), 27.8 (CH₂), 35.7 (CH₂), 64.7 (CH), 80.1 (CH₂), 100.8 (CH), 129.0 (CH), 129.7 (CH), 130.3 (CH), 132.9 (CH), 133.9 (C), 139.3 (C).

6.1.18. (1-Benzyloxy-5-pyrazolyl)cyclopropylmethanol (7f). The title compound was prepared according to the procedure described for 7b starting with 1-ben-zyloxypyrazole (1.00 g, 5.7 mmol). FC (F, petroleum ether/EtOAc) gave 7f as a clear oil (1.18 g, 84%). TLC (petroleum ether/EtOAc 2:1) R_f 0.22. ¹H NMR (CDCl₃) δ 0.09 (m, CH, 1H), 0.33 (m, CH, 1H), 0.46 (m, CH, 1H), 0.59 (m, CH, 1H), 1.18 (m, CH, 1H), 1.95 (br s,

OH, 1H), 3.71 (d, J = 8 Hz, CHOH, 1H), 5.35 (s, CH₂, 2H), 6.14 (d, J = 2 Hz, H-4, 1H), 7.26–7.39 (m, phenyl, H-3, 6H). ¹³C NMR (CDCl₃) δ 2.4 (CH₂), 3.65 (CH₂), 16.1 (CH), 68.8 (CH), 80.3 (CH₂), 101.4 (CH), 128.9 (CH), 129.6 (CH), 130.2 (CH), 132.8 (CH), 133.9 (C), 138.3 (C).

6.1.19. (1-Benzyloxy-5-pyrazolyl)cyclohexylmethanol (7g). The title compound was prepared according to the procedure described for 7b starting with 1-benzyloxypyrazole (1.00 g, 5.7 mmol). FC (F, petroleum ether/EtOAc) gave 7g as a clear oil (1.36 g, 83%). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.32. ¹H NMR (CDCl₃) δ 0.78– 0.84 (m, 1H), 0.89-0.97 (m, 1H), 1.03-1.19 (m, 3H), 1.31 (d, J = 13 Hz, 1H), 1.51–1.61 (m, 3H), 1.70 (d, J = 13 Hz, 1H), 1.93 (d, J = 13 Hz, 1H), 2.29 (d, J = 5 Hz, 1H), 4.21 (dd, J = 5, 8 Hz, CHOH), 5.25 $(d, J_{AB} = 11 \text{ Hz}, \text{ CH in CH}_2, 1\text{H}), 5.29 (d, J_{AB} = 11 \text{ Hz},$ CH in CH₂, 1H), 6.02 (\overline{d} , J = 2 Hz, H-4, 1H), 7.20 (d, J = 2 Hz, H-3, 1H), 7.28–7.37 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 25.7 (CH₂), 25.8 (CH₂), 26.3 (CH₂), 28.7 (CH₂), 28.9 (CH₂), 43.1 (CH), 69.3 (CH), 80.0 (CH₂), 101.3 (CH), 128.7 (CH), 129.3 (CH), 130.0 (CH), 132.7 (CH), 133.7 (C), 138.4 (C).

6.1.20. (1-Benzyloxy-5-pyrazolyl)phenylmethanol (7i). The title compound was prepared according to the procedure described for 7b starting with 1-benzyloxypyrazole (1.00 g, 5.7 mmol). FC (F, petroleum ether/EtOAc) gave 7i as a clear oil (1.21 g, 76%). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.29. ¹H NMR (CDCl₃) δ 2.41 (br s, OH, 1H), 5.19 (d, $J_{\rm AB}$ = 10 Hz, CH in CH₂, 1H), 5.26 (d, $J_{\rm AB}$ = 10 Hz, CH in CH₂, 1H), 5.53 (s, CHOH, 1H), 5.85 (d, J = 2 Hz, H-4, 1H), 7.20 (d, J = 2 Hz, H-3, 1H), 7.21-7.40 (m, 2× Ph, 10H). ¹³C NMR (CDCl₃) δ 67.1 (CH), 80.2 (CH₂), 102.6 (CH), 126.4 (CH), 128.2 (CH), 128.6 (CH), 133.7 (C), 138.7 (C), 140.7 (C). LCMS m/z 281 (M+H⁺); $T_{\rm R}$ = 2.77; purity (UV, ELSD): 85%, 98%.

6.1.21. 1-(1-Benzyloxy-5-pyrazolyl)-2-phenylethanol (7j). 1-Benzyloxy-5-iodopyrazole (9) (743 mg, 2.5 mmol) in THF (10 mL) was cooled to 0 °C. i-PrMgCl (2.1 M, 1.4 mL, 3.0 mmol) was added to the solution dropwise. The mixture was warmed to rt and left stirring for 1 h. The mixture was cooled to 0 °C and freshly prepared phenylacetaldehyde³⁰ in THF (2 mL) was added whereupon the mixture turned from turbid to clear. The mixture was left for 1 h at rt, whereupon satd NH₄Cl (aq) was added followed by extraction using EtOAc $(3\times)$. The pooled organic phases were washed with brine and dried using MgSO4. FC (FP, petroleum ether/ EtOAc 2:1) gave 7j as a clear oil (304 mg, 57%). TLC (petroleum ether/EtOAc 2:1) Rf 0.20. ¹H NMR (CDCl₃) δ 2.34 (s, OH, 1H), 2.80–2.95 (m, CH2, 2H), 4.66 (t, J = 6 Hz, CHOH, 1H), 5.07 (d, $J_{AB} = 11$ Hz, CH in CH₂, 1H), 5.20 (d, $J_{AB} = 11$ Hz, CH in CH₂, 1H), 6.05 (d, J = 2 Hz, H-4, 1H), 7.05–7.07 (m, 2H), 7.17–7.36 (m, 9H). ¹³C NMR (CDCl₃) δ 42.5 (CH₂), 65.6 (CH), 80.2 (CH₂), 101.3 (CH), 126.7 (CH), 128.4 (CH), 128.8 (CH), 129.5 (CH), 130.0 (CH), 132.7 (CH), 133.7 (C), 137.2 (C), 138.3 (C). The compound could also be

synthesized from 1-benzyloxypyrazole-5-carbaldehyde¹⁰ (200 mg, 1 mmol) in THF followed by the addition of benzyl magnesium chloride in THF (2 M, 0.6 ml, 1.2 mmol) at 0 °C and left stirring for 150 min at rt. The reaction was worked-up according to the abovementioned synthesis. FC (F, petroleum ether/EtOAc) gave **7i** as a clear oil (57 mg, 20%).

6.1.22. 1-(1-Benzyloxy-5-pyrazolyl)-3-phenylpropan-1-ol (**7k**). The title compound was prepared according to the procedure described for **7b** starting with 1-benzyloxypyrazole (1.00 g, 5.7 mmol). FC (F, petroleum ether/EtOAc) gave **7k** as a clear oil (1.12 g, 63%). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.19. ¹H NMR (CDCl₃) δ 1.36 (d, J = 4 Hz, OH, 1H), 1.82–2.03 (2× m, CH₂, 2H), 2.50–2.68 (2× m, CH₂, 2H), 4.36 (m, CHOH, 1H), 5.26 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.35 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 5.35 (d, $J_{\rm AB} = 11$ Hz, CH in CH₂, 1H), 6.04 (d, J = 2 Hz, H-4, 1H), 7.13–7.38 (m, 2× phenyl and H-3, 11H). ¹³C NMR (CDCl₃) δ 31.8 (CH₂), 37.4 (CH₂), 63.9 (CH), 80.1 (CH₂), 100.9 (CH), 126.1, 128.6, 128.6, 129.0, 129.6, 130.3, 133.0, 133.8, 139.0, 141.3.

6.1.23. (1-Benzyloxy-5-pyrazolyl)diphenylmethanol (71). The title compound was prepared according to the procedure described for 7b starting with 1-benzyloxypyrazole (1.00 g, 5.7 mmol). FC (F, petroleum ether/EtOAc) gave 7l as a white solid (1.56 g, 77%). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.5. ¹H NMR (CDCl₃) δ 3.96 (s, OH, 1H), 4.91 (s, CH₂, 2H), 5.57 (d, J = 2 Hz, H-4, 1H), 6.93 (br d, J = 7 Hz, 2H), 7.19 (d, J = 2 Hz, H-3, 1H), 7.26–7.38 (m, 13H).

6.1.24. 1-Benzyloxy-5-bromopyrazole (8a). 1-Benzyloxypyrazole (1.05 g, 6.0 mmol) in THF (35 ml) was cooled to -78 °C. n-BuLi in hexanes (2 M, 3.2 mL, 6.4 mmol) was added to the solution. The mixture was left stirring at -78 °C for 15 min followed by the addition of solid CBr_4 (3.8 g, 11.5 mmol) in THF (7 ml). The mixture was left stirring at -78 °C for 1 h, whereupon satd NH₄Cl (aq) was added. The mixture was extracted using EtOAc (3×). The organic phases were pooled, washed with brine, dried using MgSO₄ and concentrated in vacuo. FC (FP, toluene/petroleum ether 0:1-1:1) gave 8a as an oil (1.24 g, 81%). TLC (toluene/ petroleum ether/EtOAc 4:4:1) $R_{\rm f}$ 0.5. The NMR data were consistent with the literature data.¹⁰

6.1.25. 1-Benzyloxy-5-ethylpyrazole (8b). Compound 7b (1.16 g, 5.3 mmol) was dissolved in dry CH₂Cl₂ (15 mL). The mixture was put under N₂ and cooled to 0 °C. Triethylsilane (4.2 mL, 26.4 mmol) was added followed by the addition of trifluoroacetic acid (12 mL). The mixture was left refluxing at 50 °C overnight. The mixture was cooled to 0 °C and H₂O was added to the reaction mixture followed by extraction with Et₂O (3×). The pooled organic phases were washed with satd NaHCO₃ (aq) until a pH of ~7 was obtained. The organic phase was washed with brine, dried with MgSO₄ and concentrated in vacuo. FC (4:4:1 toluene/petroleum ether/EtOAc) afforded **8b** as a yellow oil (745 mg, 69%). ¹H NMR (CDCl₃) δ 1.04 (t, J = 8 Hz, CH₃, 3H,), 2.28 (q, J = 8 Hz, CH₂, 2H), 5.27 (s, CH₂, 2 H), 5.86 (d,

J = 2 Hz, H-4, 1H), 7.22 (d, J = 2 Hz, H-3, 1H), 7.29– 7.37 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 12.5 (CH₃), 17.5 (CH₂), 79.9 (CH₂), 101.0 (CH), 128.7 (CH), 129.4 (CH), 130.1 (CH), 132.7 (CH), 134.1 (C), 138.4 (C). *m*/*z* (EI) 202 (7%), 185, 105, 91 (100%). HRMS *m*/*z* found: 225.1006 [M+Na⁺]. Calcd for C₁₂H₁₄N₂ONa: 225.1004 [M+Na⁺].

6.1.26. 1-Benzyloxy-5-propylpyrazole (8c). The title compound was prepared according to the procedure described for 8b starting with 7c (1.18 g, 5.1 mmol), but with modifications. After work up and chromatography (FC (F, petroleum ether/EtOAc)), NMR showed a 1:1 mixture of R–O–COCF₃ and product. The mixture was heated at 60 °C with MeOH overnight and concentrated in vacuo. FC (F, petroleum ether/EtOAc) gave 8c as a clear oil (322 mg, 29%). TLC (petroleum ether/ EtOAc 9:1) $R_{\rm f}$ 0.44. ¹H NMR (CDCl₃) δ 0.84 (t, J = 8 Hz, CH₃, 3H), 1.39–1.46 (m, CH₂, 2H), 2.22 (t, J = 8 Hz, CH₂Ar, 2H), 5.24 (s, CH₂, 2H), 5.83 (d, J = 2 Hz, H-4, 1H), 7.19 (d, J = 2 Hz, H-3, 1H), 7.26– 7.30 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 13.6 (CH₃), 21.3 (CH₂), 29.6 (CH₂), 79.6 (CH₂), 101.4 (CH), 128.5 (CH), 129.1 (CH), 129.8 (CH), 132.4 (CH), 133.9 (C), 136.5 (C). m/z (EI) 216 (7%), 199, 105, 91 (100%). HRMS *m*/*z* found: 239.1166 [M+Na⁺]. Calcd for $C_{13}H_{16}N_2ONa$: 239.1160 [M+Na⁺].

6.1.27. 1-Benzyloxy-5-butylpyrazole (8d). The title compound was prepared according to the procedure described for **8b** starting with **7d** (877 mg, 3.6 mmol). FC (petroleum ether/EtOAc 1:0–2:1) gave **8d** as a clear oil (569 mg, 69%). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.6. ¹H NMR (CDCl₃) δ 0.83 (t, J = 7 Hz, CH₃, 3H), 1.23 (m, CH₂, 2H), 1.37 (m, CH₂, 2H), 2.23 (t, J = 8 Hz, CH₂Ar, 2H), 5.25 (m, CH₂, 2H), 5.83 (d, J = 2 Hz, H-4, 1H), 7.20 (d, J = 2 Hz, H-3, 1H), 7.27–7.33 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 13.6 (CH₃), 22.2 (CH₂), 23.5 (Ar–CH₂), 30.1 (CH₂), 79.6 (CH₂), 101.4 (CH), 128.5 (CH), 129.1 (CH), 129.9 (CH), 132.5 (CH), 133.9 (C), 136.8 (C). *m*/*z* (EI) 230 (3%), 213, 171, 91 (100%). HRMS *m*/*z* found: 253.1325 [M+Na⁺]. Calcd for C₁₄H₁₈N₂ONa: 253.1317 [M+Na⁺].

6.1.28. 1-Benzyloxy-5-pentylpyrazole (8e). The title compound was prepared according to the procedure described for 8b starting with 7e (1.13 g, 4.3 mmol), but instead of using satd NaHCO₃ (aq), a 1:1 solution of concentrated NH₄OH and H₂O was used to adjust the pH to ~7. FC (petroleum ether/EtOAc 1:0-2:1) gave 8e as a clear oil (775 mg, 73%). TLC (petroleum ether/ EtOAc 2:1) $R_{\rm f}$ 0.6. ¹H NMR (CDCl₃) δ 0.84 (t, J = 7 Hz, CH₃, 3H), 1.16–1.26 (m, 2× CH₂, 4H), 1.36– 1.42 (m, CH₂, 2H), 2.22 (t, J = 8 Hz, CH₂Ar, 2H), 5.25 (s, CH₂, 2H), 5.83 (d, J = 2 Hz, H-4, 1H), 7.19 (d, J = 2 Hz, H-3, 1H), 7.26–7.32 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 13.9 (CH₃), 22.2 (CH₂), 23.7 (CH₂), 27.6 (CH₂), 31.2 (CH₂), 79.6 (CH₂), 101.3 (CH), 128.5 (CH), 129.1 (CH), 129.8 (CH), 132.4 (CH), 133.9 (C), 136.8 (C). m/z (EI) 244 (1%), 171, 105, 91 (100%). HRMS m/z found: 267.1465 [M+Na⁺]. Calcd for C₁₅H₂₀N₂ONa: 267.1473 [M+Na⁺].

6.1.29. 1-Benzyloxy-5-cyclopropylmethylpyrazole (8f). The title compound was prepared according to the procedure described for 8e starting with 7f (620 mg, 2.5 mmol). FC (petroleum ether/EtOAc 1:0-2:1) gave 8f as a clear oil (377 mg, 66%). TLC (petroleum ether/ EtOAc 2:1) $R_{\rm f}$ 0.6. ¹H NMR (CDCl₃) δ 0.11 (q, J = 5 Hz, CH_2 , 2H), 0.53 (q, J = 5 Hz, CH_2 , 2H), 0.84-0.91 (m, CH, 1H), 2.22 (d, J = 7 Hz, CH₂, 2H), 5.35 (s, CH₂, 2H), 6.07 (d, J = 1 Hz, H-4, 1H), 7.31 (d, H-3, J = 2 Hz, 1H), 7.35–7.44 (m, phenyl, 5H). TMS is hidden in spectra so used CH₂ in OBn as internal reference (5.35 in **8e**). ¹³C NMR (CDCl₃) δ 4.6 (CH₂), 9.2 (CH), 28.8 (CH₂), 79.8 (CH₂), 101.7 (CH), 128.6 (CH), 129.2 (CH), 130.0 (CH), 132.6 (CH), 134.0 (C), 136.5 (C). m/z (EI) 228 (2%), 211, 171, 91 (100%). HRMS m/z found: 229.1347 [M+H⁺]. Calcd for C₁₄H₁₇N₂O: 229.1341 [M+H⁺].

6.1.30. 1-Benzyloxy-5-cyclohexylmethylpyrazole (8g). The title compound was prepared according to the procedure described for **8e** starting with **7g** (1.36 g, 4.76 mmol). FC (petroleum ether/EtOAc 1:0–2:1) gave **8g** as a clear oil (902 mg, 70%). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.6. ¹H NMR (CDCl₃) δ 0.78–0.85 (m, 2H), 1.04–1.18 (m, 3H), 1.33 (m, 1H, CH), 1.58–1.65 (m, phenyl, 5H), 2.17 (d, J = 7 Hz, 2H), 5.26 (s, CH₂, 2H), 5.83 (d, J = 2 Hz, H-4), 7.20 (d, J = 2 Hz, H-3), 7.29–7.37 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 26.1 (CH₂), 26.3 (CH₂), 31.6 (CH₂), 33.0 (CH₂), 37.2 (CH), 79.7 (CH₂), 102.4 (CH), 128.6 (CH), 129.2 (CH), 129.9 (CH), 132.5 (CH), 134.1 (C), 135.4 (C). *m/z* (EI) 270 (2%), 253, 171, 91 (100%). HRMS *m/z* found: 271.1801 [M+H⁺]. Calcd for C₁₇H₂₃N₂O: 271.1810 [M+H⁺].

6.1.31. 1-Benzyloxy-5-phenylpyrazole (8h). 1-Benzyloxy-5-iodopyrazole (9) (305 mg, 1 mmol) was dissolved in DMF (2 mL) and purged with N_2 for 10 min. PhB(OH)₂ (244 mg, 2 mmol) and $PdCl_2(PPh_3)_2$ (35 mg, 0.05 mmol) were added. The reaction mixture was purged with $N_2 K_2 CO_3$ (aq) (3 M, 0.67 mL, 2 mmol) was added and the mixture was left refluxing at 80 °C overnight under N₂. The reaction mixture was cooled to rt and H₂O (20 mL) was added. The reaction mixture was extracted with Et_2O (3×) and the organic phases pooled and washed with 20 mL of 2 M NaOH (2×). The organic phase was further washed with H₂O, brine, dried using MgSO₄ and concentrated in vacuo. FC (petroleum ether/toluene 1:0-1:1) gave 8h as a clear oil (196 mg, 78%). TLC (petroleum ether/toluene/EtOAc 4:4:1) \tilde{R}_{f} 0.31. ¹H NMR (CDCl₃) δ 5.15 (s, CH₂, 2H), 6.26 (d, J = 2 Hz, H-4, 1H), 7.13–7.36 (m, 9H), 7.51–7.53 (m, 2H). ¹³C NMR (CDCl₃) & 80.5 (CH₂), 102.8 (CH), 127.7, 128.3, 128.4, 128.5, 129.1, 129.9, 133.0 (CH), 133.2 (C), 136.1 (C). LCMS m/z 251 (M+H⁺); $T_{\rm R}$ = 3.39; purity (UV, ELSD): 97%, 99%.

6.1.32. 5-Benzyl-1-benzyloxypyrazole (8i). The title compound was prepared according to the procedure described for **8b** starting with **7i** (400 mg, 1.43 mmol). FC (FP, petroleum ether/toluene/EtOAc 1:1:0–4:4:1) gave **8i** as a clear oil (290 mg, 77%). TLC (petroleum ether/toluene/EtOAc 4:4:1) $R_{\rm f}$ 0.17. ¹H NMR (CDCl₃) δ 3.55 (s, CH₂, 2H), 5.15 (s, CH₂, 2H), 5.74 (d,

J = 2 Hz, H-4, 1H), 7.00 (d, J = 7 Hz, phenyl, 2H), 7.15–7.35 (m, 9H). ¹³C NMR (CDCl₃) δ 30.3 (CH₂), 79.7 (CH₂), 102.8 (CH), 126.6 (CH), 128.5 (CH), 128.6 (CH), 128.6 (CH), 129.2 (CH), 130.0 (CH), 132.6 (CH), 133.8 (C), 135.4 (C), 137.5 (C).

6.1.33. 1-Benzyloxy-5-phenylethylpyrazole (8j). The title compound was prepared according to the procedure described for **8b** starting with **7j** (304 mg, 1.0 mmol). FC (petroleum ether/EtOAc 1:0–2:1) gave **8j** as a clear oil (204 mg, 71%). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.28. ¹H NMR (CDCl₃) δ 2.54 (t, J = 8 Hz, CH₂, 2H), 2.66 (t, J = 8 Hz, CH₂, 2H), 5.18 (s, CH₂, 2H), 5.81 (s, H-4, 1H), 7.03–7.04 (m, 2H), 7.16–7.33 (m, 9H). ¹³C NMR (CDCl₃) δ 25.8 (CH₂), 34.3 (CH₂), 79.7 (CH₂), 101.8 (CH), 126.2 (CH), 128.3 (CH), 128.4 (CH), 128.7 (CH), 129.3 (CH), 130.0 (CH), 132.6 (CH), 134.0 (C), 135.9 (C), 140.7 (C). *m/z* (EI) 278 (6%), 261, 105, 91 (100%). HRMS *m/z* found: 301.1328 [M+Na⁺]. Calcd for C₁₈H₁₈N₂ONa: 301.1317 [M+Na⁺].

6.1.34. 1-Benzyloxy-5-(3-phenylpropyl)pyrazole (8k). The title compound was prepared according to the procedure described for **8b** starting with **7k** (1.12 g, 3.6 mmol). FC (F, petroleum ether/EtOAc) gave **8k** as a clear oil (682 mg, 65%). TLC (petroleum ether/EtOAc 9:1) $R_{\rm f}$ (0.19. ¹H NMR (CDCl₃) δ 1.73 (quintet, J = 8 Hz, CH₂CH₂CH₂CH₂, 2H), 2.25 (t, J = 8 Hz, CH₂, 2H), 2.51 (t, J = 8 Hz, CH₂, 2H), 5.22 (s, CH₂, 2H), 5.85 (br s, H-4, 1H), 7.10 (d, J = 8 Hz, 2H), 7.16–7.24 (m, 9H). ¹³C NMR (CDCl₃) δ 23.5 (CH₂), 29.6 (CH₂), 35.3 (CH₂), 79.8 (CH₂), 101.6 (CH), 126.0 (CH), 128.4 (CH), 128.5 (CH), 128.6 (CH), 129.3 (CH), 130.0 (CH), 132.7 (CH), 133.9 (C), 136.5 (C), 141.6 (C). *m/z* (EI) 292 (1%), 188, 171, 91 (100%). HRMS *m/z* found: 315.1486 [M+Na⁺]. Calcd for C₁₉H₂₀N₂ONa: 315.1473 [M+Na⁺].

6.1.35. 5-Benzhydryl-1-benzyloxypyrazole (81). The title compound was prepared according to the procedure described for **8b** starting with **7l** (1.56 g, 4.4 mmol). FC (F, petroleum ether/EtOAc) gave **8l** as a clear oil (680 mg, 46%). TLC (petroleum ether/EtOAc 4:1) $R_{\rm f}$ 0.44. ¹H NMR (CDCl₃) δ 5.00 (s, CH₂, 2H), 5.20 (s, CH, 1H), 5.66 (d, J = 2 Hz, H-4, 1H), 6.98–7.00 (m, 4H), 7.13–7.14 (m, 2H), 7.20–7.28 (m, 7H), 7.31–7.39 (m, 3H). ¹³C NMR (CDCl₃) δ 47.1 (CH), 79.7 (CH₂), 104.3 (CH), 127.0 (CH), 128.6 (CH), 128.8 (CH), 129.4 (CH), 130.2 (CH), 132.5 (CH), 133.8 (C), 138.6 (C), 141.4 (C).

6.1.36. 1-Benzyloxy-5-iodopyrazole (9). 1-Benzyloxypyrazole (1.16 g, 6.7 mmol) in THF (35 ml) was cooled to -78 °C. *n*-BuLi in hexanes (2 M, 4.3 mL, 8.6 mmol) was added to the solution. The mixture was left stirring at -78 °C for 10 min followed by the addition of solid I₂ under positive flow of N₂. The mixture was left stirring at -78 °C for 45 min, whereupon 5% Na₂S₂O₃ (aq) (25 mL) was added. The mixture was extracted using EtOAc (3×). The organic phases were pooled, washed with brine, dried using MgSO₄ and concentrated in vacuo. FC (FP, toluene/petroleum ether 1:1) yielded the compound as a clear oil (1.77 g, 89%). TLC (toluene/ petroleum ether 1:1) R_f 0.4. The NMR data were consistent with the literature data.¹⁰ 6.1.37. 1-Benzyloxy-5-bromo-4-iodopyrazole (10a). Compound 8a (500 mg, 2 mmol) was dissolved in CHCl₃ (6 mL) and K₂CO₃ (312 mg, 2.2 mmol) was added followed by the addition of ICl (385 mg, 2.4 mmol) in CHCl₃ (2 mL). The reaction mixture was left stirring overnight at rt. The reaction mixture was quenched with 1 M Na₂SO₃ (aq) followed by extraction with CH_2Cl_2 (3×). The organic phases were combined, washed with brine, dried with MgSO4 and concentrated in vacuo. FC (toluene/petroleum ether 1:1) yielded 10a (156 mg, 21%). TLC (toluene/petroleum ether 1:1) $R_f 0.33$. ^TH NMR (CDCl₃) δ 5.27 (s, CH₂, 2H), 7.35-7.40 (m, phenyl, H-3, 6H). ¹³C NMR (CDCl₃) δ 60.9 (C), 81.4 (CH₂), 113.3 (C), 128.8 (CH), 129.7 (CH), 130.1 (CH), 132.7 (C), 139.1 (CH). Other method: LDA (1.3 mmol) in THF (5 mL) was freshly prepared from *n*-BuLi (2 M, 2.65 mL, 1.3 mmol) and *i*-Pr₂NH (127 mg, 1.3 mmol) in THF (5 mL) at -78 °C under N₂ and left stirring at rt for 30 min. LDA (1.3 mmol) in THF (5 mL) was added to 1-benzyloxy-4-iodopyrazole¹³ (300 mg, 1 mmol) in THF (5 mL) over 1 min at -78 °C. The mixture was left stirring at -78 °C for 5 min. CBr₄ (408 mg, 1.2 mmol) in THF (1 mL) was added over 1 min and the mixture was left at -78 °C for 1 h. The reaction mixture was quenched with satd NH₄Cl (aq) at -78 °C, warmed to rt and worked-up according to the procedure described for 7b, although with Et₂O as organic solvent. FC (FP, cyclohexane/toluene 1:0-18:1) yielded 10a (107 mg, 28%). TLC (cyclohexane/toluene 1:1) $R_{\rm f}$ 0.30. The NMR data were consistent with the above-mentioned data.

6.1.38. 1-Benzyloxy-5-ethyl-4-iodopyrazole (10b). Compound **8b** (400 mg, 2 mmol) was dissolved in CHCl₃ (6 mL). Addition of K₂CO₃ (400 mg, 2.8 mmol) was followed by the addition of ICl (480 mg, 3 mmol) in CHCl₃ (2 mL). The reaction mixture was left stirring overnight at rt. The reaction mixture was quenched with 1 M Na₂SO₃ (aq) followed by extraction with CH₂Cl₂ (3×). The organic phases were combined, washed with brine, dried with MgSO₄ and concentrated in vacuo yielding crude **10b** as a clear oil (634 mg). TLC (petroleum ether/EtOAc 9:1) *R*_f 0.38. ¹H NMR (CDCl₃) δ 0.96 (t, *J* = 8 Hz, CH₃, 3H), 2.36 (q, *J* = 8 Hz, CH₂, 2H), 5.26 (s, CH₂, 2H), 7.28–7.36 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 12.5 (CH₃), 17.8 (CH₂), 54.8 (C), 80.1 (CH₂), 128.7 (CH), 129.4 (CH), 129.9 (CH), 133.4 (C), 137.4 (CH), 138.6 (C).

6.1.39. 1-Benzyloxy-4-iodo-5-propylpyrazole (10c). The title compound was prepared according to the procedure described for **10b** starting with **8c** (322 mg, 1.5 mmol) and gave crude **10c** (493 mg). TLC (toluene/petroleum ether/EtOAc 4:4:1) R_f 0.45. ¹H NMR (CDCl₃) δ 0.84 (t, J = 7 Hz, CH₃, 3H), 1.40–1.47 (m, CH₂, 2H), 2.32 (t, J = 8 Hz, CH₂Ar, 2H), 5.25 (s, CH₂, 2H), 7.28–7.36 (m, phenyl, H-3, 6H). ¹³C NMR (CDCl₃) δ 13.7 (CH₃), 21.4 (CH₂), 26.1 (CH₂), 55.6 (C), 79.6 (CH₂), 128.7 (CH), 129.4 (CH), 129.8 (CH), 133.6 (C), 137.5 (CH). C-5 is missing, but must be covered under the signal of 137.5.

6.1.40. 1-Benzyloxy-5-butyl-4-iodopyrazole (10d). The title compound was prepared according to the procedure described for 10b starting with **8d** (541 mg, 2.4 mmol) and gave crude 10d (835 mg). TLC (toluene/petroleum ether/EtOAc 4:4:1) $R_{\rm f}$ 0.47. ¹H NMR (CDCl₃) δ 0.85 (t, J = 8 Hz, CH₃, 3H), 1.24 (sextet, J = 7 Hz, CH₂CH₂CH₃, 2H), 1.35 (quintet, J = 8 Hz, CH₂CH₂CH₂, 2H), 2.33 (t, J = 8 Hz, ArCH₂, 2H), 5.25 (s, CH₂, 2H), 7.27–7.37 (m, 5H). ¹³C NMR (CDCl₃) δ 13.7 (CH₃), 22.3 (CH₂), 24.0 (CH₂), 30.0 (CH₂), 55.5 (C), 80.0 (CH₂), 128.7 (CH), 129.4 (CH), 129.9 (CH), 133.6 (C), 137.5 (CH), 137.7 (C). *m/z* (EI) 356 (3%), 339, 297, 212, 91 (100%). HRMS *m/z* found: 379.0305 [M+Na⁺]. Calcd for C₁₄H₁₇IN₂O-Na: 379.0283 [M+Na⁺].

61.41. 1-Benzyloxy-4-iodo-5-pentylpyrazole (10e). The title compound was prepared according to the procedure described for **10b** starting with **8e** (642 mg, 2.6 mmol) and gave crude **10e** (977 mg). TLC (toluene/petroleum ether/EtOAc 4:4:1) R_f 0.5. ¹H NMR (CDCl₃) δ 0.85 (t, J = 7 Hz, CH₃, 3H), 1.20–1.28 (m, 2× CH₂, 4H), 1.38 (quintet, J = 8 Hz, ArCH₂CH₂CH₂, 2H), 2.32 (t, J = 8 Hz, ArCH₂, 2H), 5.25 (s, CH₂, 2H), 7.24–7.35 (m, phenyl, H-3, 6H). ¹³C NMR (CDCl₃) δ 14.0 (CH₃), 22.2 (CH₂), 24.1 (CH₂), 27.5 (CH₂), 31.2 (CH₂), 55.4 (C), 80.0 (CH₂), 128.7 (CH), 129.4 (CH), 129.8 (CH), 133.5 (C), 137.4 (CH), 137.7 (C). *m*/*z* (EI) 370 (1%), 353, 297, 226, 91 (100%). HRMS *m*/*z* found: 371.0609 [M+H⁺]. Calcd for C₁₅H₂₀IN₂O: 371.0620 [M+H⁺].

6.1.42. 1-Benzyloxy-5-cyclopropylmethyl-4-iodopyrazole (10f). The title compound was prepared according to the procedure described for 10b starting with **8f** (338 mg, 1.5 mmol) and gave crude **10f** (532 mg). TLC (toluene/petroleum ether/EtOAc 4:4:1) $R_{\rm f}$ 0.4. ¹H NMR (CDCl₃) δ 0.19 (q, J = 5 Hz, CH₂, 2H) 0.39–0.42 (m, CH₂, 2H), 0.97–0.93 (m, CH, 1H), 2.28 (d, J = 7 Hz, CH₂CH, 2H), 5.28 (s, CH₂, 2H), 7.25–7.34 (m, phenyl, H-3, 6H). ¹³C NMR (CDCl₃) δ 4.8 (CH₂), 9.8 (CH), 28.7 (CH₂), 55.6 (C), 80.2 (CH₂), 128.8 (CH), 129.4 (CH), 129.8 (CH), 133.5 (C), 137.5 (C), 137.6 (CH).

6.1.43. 1-Benzyloxy-5-cyclohexylmethyl-4-iodopyrazole (10g). The title compound was prepared according to the procedure described for 10b starting with 8g (374 mg, 1.4 mmol) and gave crude 10g (555 mg). TLC (toluene/petroleum ether/EtOAc 4:4:1) $R_{\rm f}$ 0.5. ¹H NMR (CDCl₃) δ 0.89–0.96 (m, 2H), 1.09–1.18 (m, 3H), 1.54–1.66 (m, 6H), 2.21 (d, J = 7 Hz, ArCH₂, 2H), 5.26 (s, CH₂, 2H), 7.25–7.39 (m, phenyl, H-3, 6H). ¹³C NMR (CDCl₃) δ 26.1 (CH₂), 26.3 (CH₂), 31.7 (CH₂), 33.1 (CH₂), 37.4 (CH), 56.6 (C), 80.1 (CH₂), 128.8 (CH), 129.5 (CH), 129.9 (CH), 133.7 (C), 136.8 (C), 137.6 (CH).

6.1.44. 1-Benzyloxy-4-iodo-5-phenylpyrazole (10h). The title compound was prepared according to the procedure described for **10b** starting with **8h** (373 mg, 1.5 mmol) and gave crude **10h** (543 mg). TLC (toluene/petroleum ether/EtOAc 4:4:1) $R_{\rm f}$ 0.5. ¹H NMR (CDCl₃) δ 5.07 (s, CH₂, 2H), 6.97–6.98 (m, 2H), 7.16–7.19 (m, 2H), 7.25–7.28 (m, 1H), 7.35–7.38 (m, 5H), 7.42 (s, H-3, 1H). ¹³C

NMR (CDCl₃) δ 56.2 (C), 80.8 (CH₂), 127.1 (C), 128.3 (CH), 128.5 (CH), 129.1 (CH), 129.3 (CH), 129.8 (CH), 129.9 (CH), 132.9 (C), 136.9 (C), 138.6 (CH). LCMS *m*/*z* 377 (M+H⁺); *T*_R = 3.66; purity (UV, ELSD): 90%, 99%.

6.1.45. 5-Benzyl-1-benzyloxy-4-iodopyrazole (10i). The title compound was prepared according to the procedure described for **10b** starting with **8i** (265 mg, 1 mmol) and gave crude **10i** (379 mg). TLC (toluene/petroleum ether/ EtOAc 4:4:1) $R_{\rm f}$ 0.5. ¹H NMR (CDCl₃) δ 3.74 (s, CH₂, 2H), 5.02 (s, CH₂, 2H), 7.10–7.34 (m, 11H). ¹³C NMR (CDCl₃) δ 30.1 (CH₂), 56.9 (C), 80.2 (CH₂), 126.8 (CH), 128.4 (CH), 128.7 (CH), 128.7 (CH), 129.4 (CH), 129.8 (CH), 133.3 (C), 136.2 (C), 136.8 (C), 137.6 (CH). *m*/*z* (EI) 390 (11%), 373, 91 (100%). HRMS *m*/*z* found: 391.0298 [M+H⁺]. Calcd for C₁₇H₁₆IN₂O: 391.0307 [M+H⁺].

6.1.46. 1-Benzyloxy-4-iodo-5-phenylethylpyrazole (10j). The title compound was prepared according to the procedure described for 10b starting with **8**j (209 mg, 0.75 mmol) and gave crude 10j (293 mg). TLC (toluene/petroleum ether/EtOAc 4:4:1) $R_{\rm f}$ 0.4. ¹H NMR (CDCl₃) δ 2.62–2.69 (m, 2× CH₂, 4H), 5.10 (s, CH₂, 2H), 7.07–7.08 (m, 2H), 7.16–7.36 (m, 9H). ¹³C NMR (CDCl₃) δ 26.5 (CH₂), 33.9 (CH₂), 55.8 (C), 80.1 (CH₂), 126.4 (CH), 128.5 (CH), 128.6 (CH), 128.8 (CH), 129.5 (CH), 129.9 (CH), 133.6 (C), 136.5 (C), 137.6 (CH), 140.5 (C).

6.1.47. 1-Benzyloxy-4-iodo-5-(3-phenyl-propyl)pyrazole (**10k**). The title compound was prepared according to the procedure described for **10b** starting with **8k** (663 mg, 2.3 mmol) and gave crude **10e** (939 mg). TLC (toluene/petroleum ether/EtOAc 4:4:1) $R_{\rm f}$ 0.4. ¹H NMR (CDCl₃) δ 1.63 (quintet, J = 8 Hz, CH₂CH₂CH₂, 2H), 2.25 (t, J = 8 Hz, CH₂, 2H), 2.44 (t, J = 8 Hz, CH₂, 2H), 5.10 (s, CH₂, 2H), 7.05 (d, J = 7 Hz, 2H), 7.08–7.09 (m, 3H), 7.14–7.22 (m, 6H). ¹³C NMR (CDCl₃) δ 23.8 (CH₂), 29.2 (CH₂), 35.3 (CH₂), 55.5 (C), 80.1 (CH₂), 126.0 (CH), 128.4 (CH), 128.5 (CH), 128.7 (CH), 129.4 (CH), 129.9 (CH), 133.4 (C), 137.3 (C), 137.5 (CH), 141.3 (C). *m/z* (EI) 418 (2%), 314, 297, 105, 91 (100%). HRMS *m/z* found: 441.0440 [M+Na⁺]. Calcd for C₁₉H₁₉IN₂ONa: 441.0440 [M+Na⁺].

6.1.48. 5-Benzhydryl-1-benzyloxy-4-iodopyrazole (10). The title compound was prepared according to the procedure described for 10b starting with **8**I (628 mg, 1.8 mmol) and gave crude 10I (832 mg). TLC (toluene/ petroleum ether/EtOAc 4:4:1) $R_{\rm f}$ 0.47. ¹H NMR (CDCl₃) δ 4.80 (s, CH₂, 2H), 5.73 (CH), 7.06–7.34 (m, 16H). ¹³C NMR (CDCl₃) δ 47.1 (CH), 56.9 (C), 79.6 (CH₂), 127.1 (CH), 128.6 (CH), 128.7 (CH), 129.2 (CH), 129.4 (CH), 129.7 (CH), 133.3 (C), 137.1 (C), 138.6 (CH), 139.3 (C).

6.1.49. 2-(*N***-tert-Butoxycarbonylimino)acetic acid methyl ester (11).** The title compound was prepared according to Nakamura et al.¹⁷ with modifications. Morpholinom-ethyl-polystyrene (1.25 g, 3.6 mmol/g, 4.5 mmol) was placed in a 20 mL syringe with filter and washed with

CH₂Cl₂ (2×) and THF (2×). The resin was dried under vacuum at rt. A freshly prepared solution of 2-bromo-2-(*N*-tert-butoxycarbonylamino)acetic acid methyl ester³¹ (800 mg, 3.0 mmol) in THF (10 mL) under argon was sucked into the syringe containing M-PS. The slurry was shaken for 30 min at rt. The solution was pressed out in a dry flask flushed with argon. The syringe was washed with dry THF (2 mL) leading to a total volume of 12.5 mL.

The concentration of the solution was determined by taking out 1 mL of the solution and adding this to a dry flask containing MeOH (1 mL). Concentration of the mixture gave the α -methoxy compound, 2-(*N*-tert-butoxycarbonylamino)-2-methoxyacetic acid methyl ester (37 mg), leading to a calculated concentration of the solution (0.17 M, overall yield 71%). The yields of subsequent reactions were in the range of 69–79%.

6.1.50. (RS)-2-(1-Benzyloxy-4-pyrazolyl)-2-(N-tert-butoxycarbonylamino)acetic acid methyl ester (12). 1-Benzyloxy-4-iodo-pyrazole (9) (582 mg, 1.94 mmol) was dissolved in THF and cooled to 0 °C. i-PrMgCl (1.2 mL, 2.4 mmol, 1.24, 2 M) was added over 1 min. The mixture was left stirring for 30 min at 0 °C and then cooled to -78 °C. The imine 11 (11.5 mL, 0.17 M, 1.96 mmol) in THF was added slowly. The mixture turned from turbid to clear yellow. The mixture was slowly warmed from -78 °C to rt over several hours. Satd NH₄Cl (aq) was added followed by extraction using EtOAc (3×). The pooled organic phases were washed with brine and dried using MgSO₄. FC (F, petroleum ether/EtOAc) gave 12 (291 mg, 42%). TLC (petroleum ether/EtOAc 3:1) $R_{\rm f}$ 0.25. ¹H NMR (CDCl₃) δ 1.43 (s, t-bu, 9H), 3.69 (s, CH₃, 3H), 5.22–5.24 (m, CH₂, α -CH, 3H), 5.45 (br d, J = 8 Hz, NH, 1H), 7.03 (s, H-5 or H-3, 1H), 7.26-7.36 (m, H-3 or H-5, phenyl, 6H). ¹³C NMR (CDCl₃) δ 25.4 (CH₃), 49.6 (CH), 52.8 (CH₃), 80.4 (C), 80.8 (CH₂), 115.1 (C), 121.7 (CH), 128.8 (CH), 129.4 (CH), 129.8 (CH), 131.8 (CH), 133.6 (C), 155.0 (C), 171.3 (C).

6.1.51. (*RS*)-2-(1-Benzyloxy-5-bromo-4-pyrazolyl)-2-(*N*tert-butoxycarbonylamino)acetic acid methyl ester (13a). The title compound was prepared according to the procedure described for 12 starting with 10a (242 mg, 0.64 mmol). FC (F, petroleum ether/EtOAc) and recrystallization (petroleum ether/EtOAc) gave white crystalline 13a (92 mg, 33%, recovered 42 mg of a mixture of 8a and 10a). Mp 137.5–137.5 °C. TLC (petroleum ether/EtOAc 2:1) R_f 0.4. ¹H NMR (CDCl₃) δ 1.44 (s, *t*-bu, 9H), 3.73 (s, CH₃, 3H), 5.22–5.39 (m, α-CH, CH₂, NH, 4H), 7.34 (s, H-3, 1H), 7.37–7.40 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 28.4 (C), 49.5 (CH), 52.9 (CH₃), 80.5 (C), 81.3 (CH₂), 107.2 (C), 115.5 (C), 128.7 (CH), 129.7 (CH), 130.1 (CH), 132.8 (C.), 132.9 (CH), 154.8 (C), 170.6 (C).

6.1.52. (*RS*)-2-(1-Benzyloxy-5-ethyl-4-pyrazolyl)-2-(*Ntert*-butoxycarbonylamino)acetic acid methyl ester (13b). The title compound was prepared according to the procedure described for 12 starting with 10b (194 mg, 0.59 mmol). FC (F, petroleum ether/EtOAc) gave 13b (147 mg, 64%, recovered 24 mg of **8b**). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.19. ¹H NMR (CDCl₃) δ 1.04 (t, J = 8 Hz, CH₃, 3H), 1.44 (s, *t*-bu, 9H), 2.42 (q, J = 7 Hz, CH₂, 2H), 3.72 (s, CH₃, 3H), 5.15–5.30 (m, α -CH, NH, CH₂, 4H), 7.18 (br s, H-3), 7.28–7.38 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 13.2 (CH₃), 16.4 (CH₂), 28.4 (CH₃), 49.2 (CH), 52.7 (CH₃), 80.1 (CH₂), 80.3 (C), 111.7 (C), 128.7 (CH), 129.4 (CH), 129.9 (CH), 130.8 (CH), 133.7 (C), 136.6 (C), 154.9 (C), 171.6 (C).

61.53. (*RS*)-2-(1-Benzyloxy-5-propyl-4-pyrazolyl)-2-(*Ntert*-butoxycarbonylamino)acetic acid methyl ester (13c). The title compound was prepared according to the procedure described for 12 starting with 10c (493 mg, 1.44 mmol). FC (F, petroleum ether/EtOAc) gave 13c (258 mg, 44%, recovered 153 mg of 8c). TLC (petroleum ether/EtOAc 2:1) *R*_f 0.4. ¹H NMR (CDCl₃) δ 0.87 (t, *J* = 8 Hz, CH₃, 3H), 1.43–1.47 (m and br s, *t*-bu and CH₂, 11H), 2.36 (t, *J* = 7 Hz, CH₂, 2H), 3.71 (s, CH₃, 3H), 5.14–5.32 (m, α-CH, NH, CH₂, 4H), 7.19 (br s, H-3, 1H), 7.28–7.37 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 13.8 (CH₃), 21.9 (CH₂), 24.7 (CH₂), 28.3 (CH₃), 49.2 (CH), 52.5 (CH₃), 79.9 (CH₂), 80.1 (C), 112.0 (C), 128.7 (CH), 129.3 (CH), 129.8 (CH), 130.8 (CH), 133.7 (C), 135.2 (C), 154.9 (C), 171.6 (C).

61.54. (*RS*)-2-(1-Benzyloxy-5-butyl-4-pyrazolyl)-2-(*Ntert*-butoxycarbonylamino)acetic acid methyl ester (13d). The title compound was prepared according to the procedure described for 12 starting with 10d (358 mg, 1.01 mmol). FC (F, petroleum ether/EtOAc) gave 13c (201 mg, 48%, recovered 114 mg of 8d). TLC (petroleum ether/EtOAc 2:1) *R*_f 0.4. ¹H NMR (CDCl₃) δ 0.86 (t, J = 9 Hz, CH₃, 3H), 1.25–1.29 (m, CH₂, 2H), 1.38–1.43 (m, CH₂, 2H), 1.43 (s, *t*-bu, 9H), 2.34–3.38 (m, CH₂, 2H), 3.71 (s, CH₃, 3H), 5.14–5.32 (m, α-CH, NH, CH₂, 4H), 7.19 (br s, H-3, 1H), 7.28–7.37 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 13.7 (CH₃), 22.4 (CH₂), 28.3, 28.3, 30.6, 49.2 (CH), 52.5 (CH₃), 79.9 (CH₂), 79.9 (C), 111.8 (C), 128.6 (CH), 129.3 (CH), 129.8 (CH), 130.8 (CH), 133.7 (C), 135.4 (C), 154.8 (C), 171.6 (C).

6.1.55. (RS)-2-(1-Benzyloxy-5-pentyl-4-pyrazolyl)-2-(Ntert-butoxycarbonylamino)acetic acid methyl ester (13e). The title compound was prepared according to the procedure described for 12 starting with 10e (301 mg, 0.81 mmol). FC (F, petroleum ether/EtOAc) gave 13c (163 mg, 46%, recovered 106 mg of 8e). TLC (petroleum ether/EtOAc 2:1) R_f 0.27. ¹H NMR (CDCl₃) δ 0.85 (t, J = 7 Hz, CH₃, 3H), 1.21–1.28 (m, 2× CH₂, 4H), 1.43 (br s, t-bu and CH₂, 11H), 2.36 (t, J = 8 Hz, ArCH₂, 2H), 3.69 (s, CH₃, 3H), 5.16 (br d, J = 7 Hz, NH or α -CH), 5.25 (s, CH₂, 2H), 5.48 (br d, J = 7 Hz, NH or α-CH), 7.19–7.35 (m, phenyl and H-3, 6H). ¹³C NMR (CDCl₃) δ 13.7 (CH₃), 22.1 (CH₂), 22.6 (CH₂), 28.0 (CH₂ or CH₃), 28.1 (CH₂ or CH₃), 31.3 (CH₂), 49.0 (CH), 52.3 (CH₃), 79.7 (CH₂), 79.7 (C), 111.7 (C), 128.5 (CH), 129.1 (CH), 129.6 (CH), 130.7 (C), 133.5 (CH), 135.2 (C), 154.7 (C), 171.4 (C).

6.1.56. (*RS*)-2-(1-Benzyloxy-5-cyclopropylmethyl-4-pyrazolyl)-2-(*N*-tert-butoxycarbonylamino)acetic acid methyl ester (13f). The title compound was prepared according to the procedure described for **12** starting with **10f** (508 mg, 1.43 mmol). FC (F, petroleum ether/EtOAc) gave **13f** (289 mg, 48%, recovered 151 mg of **8f**). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.37. ¹H NMR (CDCl₃) δ 0.17 (br t, J = 6 Hz, CH₂, 2H), 0.43 (br d, J = 9 Hz, CH₂, 2H), 0.87–0.89 (m, CH, 1H), 1.43 (s, *t*-bu, 9H), 2.31 (br d, J = 8 Hz, CH₂, 2H), 3.71 (s, CH₃, 3H), 5.18–5.42 (m, CH₂, α -CH and NH, 4H), 7.21 (s, H-3, 1H), 7.27–7.32 (m, phenyl, 5H). ¹³C NMR (CDCl₃) δ 4.8 (CH₂), 9.7 (CH), 27.3 (CH₂), 28.2 (CH₃), 49.1 (CH), 52.4 (CH₃), 79.9 (CH₂ and C), 111.9 (C), 128.5 (CH), 129.2 (CH), 129.6 (CH), 130.8 (CH), 133.5 (C), 134.7 (C), 154.8 (C), 171.5 (C).

6.1.57. (RS)-2-(1-Benzyloxy-5-cyclohexylmethyl-4-pyrazolyl)-2-(N-tert-butoxycarbonylamino)acetic acid methyl ester (13g). The title compound was prepared according to the procedure described for 12 starting with 10g (562 mg, 1.42 mmol). FC (F, petroleum ether/EtOAc) gave 13g (333 mg, 51%, recovered 173 mg of 8g). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.39. ¹H NMR (CDCl₃) δ 0.83-0.91 (m, 2H), 1.09-1.15 (m, 3H), 1.43 (s, t-bu, 9H), 1.50-1.63 (m, 6H), 2.24 (d, J = 7 Hz, CH₂, 2H), 3.70 (s, CH₃, 3H), 5.13–5.39 (m, α-CH, NH, CH₂, 4H), 7.20 (s, H-3, 1H), 7.27–7.35 (m, 5H). ¹³C NMR (CDCl₃) δ 26.0 (CH₂), 26.1 (CH₂), 28.2 (CH₃), 30.1 (CH₂), 32.7 (CH₂), 32.9 (CH₂), 37.2 (CH), 49.0 (CH), 52.3 (CH₃), 79.7 (CH₂), 79.8 (C), 112.3 (C), 128.5 (CH), 129.2 (CH), 129.6 (CH), 130.6 (CH), 133.6 (C), 134.1 (C), 154.7 (C), 171.5 (C).

61.58. (*RS*)-2-(1-Benzyloxy-5-phenyl-4-pyrazolyl)-2-(*Ntert*-butoxycarbonylamino)acetic acid methyl ester (13h). The title compound was prepared according to the procedure described for 12 starting with 10h (266 mg, 0.71 mmol). FC (F, petroleum ether/EtOAc) gave 13h (229 mg, 74%, recovered 45 mg of 8h). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.22. ¹H NMR (CDCl₃) δ 1.42 (s, *t*bu, 9H), 3.66 (s, CH₃, 3H), 5.07–5.27 (m, α-CH, NH, CH₂, 4H), 6.97 (d, J = 7 Hz, 2H), 7.17 (t, J = 8Hz, 2H), 7.25–7.40 (m, 7H). ¹³C NMR (CDCl₃) δ 28.3 (CH₃), 49.3 (CH), 52.6 (CH₃), 80.2 (C), 80.6 (CH₂), 112.9 (C), 126.7, 128.4, 128.5, 129.0, 129.2, 129.7, 129.9, 131.4 (CH), 133.0, 135.2, 154.8 (C), 171.6 (C).

61.59. (*RS*)-2-(5-Benzyl-1-benzyloxy-4-pyrazolyl)-2-(*N*tert-butoxycarbonylamino)acetic acid methyl ester (13i). The title compound was prepared according to the procedure described for 12 starting with 10i (379 mg, 0.97 mmol). FC (F, petroleum ether/EtOAc) gave 13i (264 mg, 60%, recovered 64 mg of 8i). TLC (petroleum ether/EtOAc 2:1) R_f 0.21. ¹H NMR (CDCl₃) δ 1.41 (s, *t*-bu, 9H), 3.63 (s, CH₃, 3H), 3.80 (s, CH₂, 2H), 5.02-5.22 (m, α-CH, NH, CH₂, 4H), 7.07–7.36 (m, 11H). ¹³C NMR (CDCl₃) δ 28.3 (CH₃), 28.7 (CH₂), 49.3 (CH), 52.6 (CH₃), 80.1 (CH₂), 80.2 (C), 112.8 (C), 126.8 (CH), 128.4 (CH), 128.7 (CH), 129.4 (CH), 129.9 (CH), 131.3 (CH), 133.4 (C), 133.5 (C), 137.3 (C), 154.8 (C), 171.4 (C).

6.1.60. (*RS*)-2-(1-Benzyloxy-5-phenylethyl-4-pyrazolyl)-2-(*N*-tert-butoxycarbonylamino)acetic acid methyl ester (13j). The title compound was prepared according to the procedure described for **12** starting with **10** (274 mg, 0.68 mmol). FC (F, petroleum ether/EtOAc) gave **13** (155 mg, 49%, recovered 89 mg of **8**). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.3. ¹H NMR (CDCl₃) δ 1.43 (s, *t*-bu, 9H), 2.67–2.73 (m, 2× CH₂, 4H), 3.71 (s, CH₃, 3H), 5.09–5.18 (m, α -CH, NH, CH₂, 4H), 7.07–7.36 (m, 11H). ¹³C NMR (CDCl₃) δ 25.2 (CH₂), 28.4 (CH₃), 34.5 (CH₂), 49.3 (CH), 52.6 (CH₃), 80.0 (CH₂), 80.2 (C), 112.2 (C), 126.4 (CH), 128.5 (CH), 128.6 (CH), 128.8 (CH), 129.4 (CH), 129.8 (CH), 131.1 (CH), 133.7 (C), 134.4 (C), 140.6 (C), 154.9 (C), 171.5 (C).

6.1.61. (RS)-[1-Benzyloxy-5-(3-phenylpropyl)-4-pyrazolyl]-tert-butoxycarbonylamino)acetic acid methyl ester (13k). The title compound was prepared according to the procedure described for 12 starting with 10k (447 mg, 1.07 mmol). FC (F, petroleum ether/EtOAc) gave 13k (219 mg, 43%, recovered 150 mg of 8k). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.34. ¹H NMR (CDCl₃) δ 1.43 (s, *t*-bu, 9H), 1.77 (br quintet, J = 8 Hz, $CH_2CH_2CH_2$, 2H), 2.38 (br t, J = 7 Hz, CH_2 , 2H), 2.44 (t, J = 8 Hz, CH₂, 2H), 3.69 (s, CH₃, 3H), 5.13– 5.29 (m, α-CH, NH and CH₂, 4H), 7.12–7.26 (m, 11H). ¹³C NMR (CDCl₃) δ 22.4 (CH₂), 28.3 (CH₃), 29.9 (CH₂), 35.5 (CH₂), 49.2 (CH), 52.6 (CH₃), 80.0 (CH₂), 80.2 (C), 112.1 (C), 126.0 (CH), 128.4 (CH, 128.3989), 128.4 (CH, 128.4496), 128.7 (CH), 129.3 (CH), 129.8 (CH), 130.9 (CH), 133.5 (C), 135.0 (C), 141.4 (C), 154.9 (C), 171.5 (C).

6.1.62. (*RS*)-2-(5-Benzhydryl-1-benzyloxy-4-pyrazolyl)-2-(*N*-tert-butoxycarbonylamino)acetic acid methyl ester (13)). The title compound was prepared according to the procedure described for 12 starting with 13l (470 mg, 1.01 mmol). FC (F, petroleum ether/EtOAc) gave 13l (246 mg, 46%). TLC (petroleum ether/EtOAc 2:1) $R_{\rm f}$ 0.26. ¹H NMR (CDCl₃) δ 1.38 (s, *t*-bu, 9H), 3.59 (s, CH₃, 3H), 4.71–4.92 (m, NH, CH₂, α-CH, 4H), 5.80 (s, CHPh₂, 1H), 7.04–7.28 (m, 16H). ¹³C NMR (CDCl₃) δ 28.3 (CH₃), 46.3 (CH), 49.0 (CH), 52.4 (CH₃), 79.5 (CH₂), 80.0 (C), 112.9 (C), 127.2 (CH), 128.6 (CH), 128.7 (CH), 129.0 (CH), 129.1 (CH), 129.3 (CH), 129.7 (CH), 131.7 (CH), 133.4 (C), 135.6 (C), 139.4 (C), 139.7 (C), 154.5 (C), 171.6 (C).

6.2. Pharmacology

6.2.1. iGluR receptor binding. Rat brain membrane preparations used in the receptor binding experiments for iGluRs were prepared according to the method described by Ransom and Stec.³² Affinities for native AMPA, KA and NMDA receptors were determined using 5 nM [³H]AMPA³³, 5 nM [³H]KA³⁴ and 2 nM [³H]CGP39653³⁵, respectively, with some modifications.²⁴

6.2.2. mGluR activity. Chinese hamster ovary (CHO) cell lines stably expressing rat mGluR1a, mGluR2 and mGluR4a were prepared as previously described.^{9,36–38} Measurement of intracellular Ca²⁺ levels and cyclic AMP formation: pharmacological activity at mGluR1a was assessed by measurement of intracellular Ca²⁺ levels as previously described.³⁹ Pharmacological activity at

mGluR2 and mGluR4a was assessed by measuring intracellular cAMP levels as previously described.^{9,40}

Acknowledgments

The authors wish to acknowledge Erling B. Jørgensen, H. Lundbeck A/S, for determining the pK_a values. This work was supported by the Danish Medical Research Council and the Novo Nordisk Foundation.

References and notes

- 1. Mayer, M. L. Curr. Opin. Neurobiol. 2005, 15, 282-288.
- 2. Kew, J. N. C.; Kemp, J. A. Psychopharmacology 2005, 179, 4–29.
- 3. Pin, J. P.; Galvez, T.; Prezeau, L. Pharmacol. Ther. 2003, 98, 325–354.
- Bräuner-Osborne, H.; Egebjerg, J.; Nielsen, E. Ø.; Madsen, U.; Krogsgaard-Larsen, P. J. Med. Chem. 2000, 43, 2609–2645.
- Eugster, C. H.; Müller, G. F. R.; Good, R. Tetrahedron Lett. 1965, 23, 1813–1815.
- Michelot, D.; Melendez-Howell, L. M. Mycol. Res. 2003, 107, 131–146.
- 7. Li, C.; Oberlies, N. H. Life Sci. 2005, 78, 532-538.
- Stensbøl, T. B.; Uhlmann, P.; Morel, S.; Eriksen, B. L.; Felding, J.; Kromann, H.; Hermit, M. B.; Greenwood, J. R.; Bräuner-Osborne, H.; Madsen, U.; Junager, F.; Krogsgaard-Larsen, P.; Begtrup, M.; Vedsø, P. J. Med. Chem. 2002, 45, 19–31.
- Clausen, R. P.; Hansen, K. B.; Cali, P.; Nielsen, B.; Greenwood, J. R.; Begtrup, M.; Egebjerg, J.; Bräuner-Osborne, H. *Eur. J. Pharmacol.* 2004, 499, 35–44.
- 10. Vedsø, P.; Begtrup, M. J. Org. Chem. 1995, 60, 4995-4998.
- 11. Carey, F. A.; Tremper, H. S. J. Am. Chem. Soc. 1968, 90, 2578–2586.
- Kursanov, D. N.; Parnes, Z. N.; Loim, N. M. Synthesis 1974, 633–651.
- Felding, J.; Kristensen, J.; Bjerregaard, T.; Sander, L.; Vedsø, P.; Begtrup, M. J. Org. Chem. 1999, 64, 4196–4198.
- Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed. 2003, 42, 4302–4320.
- 15. Cali, P.; Begtrup, M. Synthesis 2002, 63-66.
- 16. Cali, P.; Begtrup, M. Tetrahedron 2002, 58, 1595-1605.
- Nakamura, Y.; Matsubara, R.; Kiyohara, H.; Kobayashi, S. Org. Lett. 2003, 5, 2481–2484.
- Frydenvang, K.; Matzen, L.; Norrby, P.; Sløk, F. A.; Liljefors, T.; Krogsgaard-Larsen, P.; Jaroszewski, J. W. J. Chem. Soc., Perkin Trans. 2 1997, 2, 1783–1791.
- 19. Eugster, C. H. Prog. Chem. Org. Nat. Prod. 1969, 27, 261–321.
- 20. Reuther, W.; Baus, U. Liebigs Ann. 1995, 1563-1566.
- Matzen, L.; Engesgaard, A.; Ebert, B.; Didriksen, M.; Frølund, B.; Krogsgaard-Larsen, P.; Jaroszewski, J. W. J. Med. Chem. 1997, 40, 520–527.
- Johansen, T. N.; Janin, Y. L.; Nielsen, B.; Frydenvang, K.; Bräuner-Osborne, H.; Stensbøl, T. B.; Vogensen, S. B.; Madsen, U.; Krogsgaard-Larsen, P. *Bioorg. Med. Chem.* 2002, 10, 2259–2266.
- 23. Bräuner-Osborne, H.; Nielsen, B.; Krogsgaard-Larsen, P. *Eur. J. Pharmacol.* **1998**, *350*, 311–316.
- Hermit, M. B.; Greenwood, J. R.; Nielsen, B.; Bunch, L.; Jørgensen, C. G.; Vestergaard, H. T.; Stensbøl, T. B.; Sanchez, C.; Krogsgaard-Larsen, P.; Madsen, U.; Bräuner-Osborne, H. *Eur. J. Pharmacol.* 2004, 486, 241–250.

- 25. Albert, A. Ionization constants. In *Physical Methods in Heterocyclic Chemistry*; Katritzky, A. R., Ed.; Academic Press: New York, 1963; Vol. 1, pp 17–18.
- 26. Lin, H.; Paquette, L. A. Synth. Commun. 1994, 24, 2503-2506.
- 27. Suffert, J. J. Org. Chem. 1989, 54, 509-510.
- Shedlovsky, T.; Kay, R. L. J. Phys. Chem. 1956, 60, 151– 155.
- Ruiz, R.; Ràfols, C.; Rosés, M.; Bosch, E. J. Pharm. Sci. 2003, 92, 1473–1481.
- 30. De Luca, L.; Giacomelli, G.; Porcheddu, A. *Org. Lett.* **2001**, *3*, 3041–3043.
- 31. Biagini, S. C. G.; Gibson, S. E.; Keen, S. P. J. Chem. Soc., Perkin Trans. 1 1998, 2485–2499.
- Ransom, R. W.; Stec, N. L. J. Neurochem. 1988, 51, 830– 836.
- 33. Honoré, T.; Nielsen, M. Neurosci. Lett. 1985, 54, 27-32.

- 34. Braitman, D. J.; Coyle, J. T. *Neuropharmacology* **1987**, *26*, 1247–1251.
- Sills, M. A.; Fagg, G.; Pozza, M.; Angst, C.; Brundish, D. E.; Hurt, S. D.; Wilusz, E. J.; Williams, M. *Eur. J. Pharmacol.* **1991**, *192*, 19–24.
- 36. Aramori, I.; Nakanishi, S. Neuron 1992, 8, 757-765.
- Tanabe, Y.; Masu, M.; Ishii, T.; Shigemoto, R.; Nakanishi, S. *Neuron* **1992**, *8*, 169–179.
- Tanabe, Y.; Nomura, A.; Masu, M.; Shigemoto, R.; Mizuno, N.; Nakanishi, S. J. Neurosci. 1993, 13, 1372– 1378.
- Bjerrum, E. J.; Kristensen, A. S.; Pickering, D. S.; Greenwood, J. R.; Nielsen, B.; Liljefors, T.; Schousboe, A.; Bräuner-Osborne, H.; Madsen, U. J. Med. Chem. 2003, 46, 2246–2249.
- 40. Bräuner-Osborne, H.; Krogsgaard-Larsen, P. Br. J. Pharmacol. 1998, 123, 269–274.