(2S, 3S)-2,3-Epoxy-3-trimethylsilylpropanal as a New Conjunctive Reagent

Hirokazu Urabe, Tetsuji Matsuka, and Fumie Sato*

Department of Biomolecular Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152 Japan

Summary: The title epoxy aldehyde (>98% ee) has been prepared. Its reactions with nucleophiles afforded the corresponding adducts with a diastereoselectivity up to 86:14. Synthetic versatility of the chiral epoxy silane moiety makes this aldehyde a useful conjunctive reagent.

Addition of nucleophiles to carbonyl compounds having other functional group(s) is a potential method in the synthesis of complex molecules, in which the functional group can play a dual role (i) to control the relative stereochemistry between itself and the incoming nucleophile and (ii) to enable further synthetic elaboration starting from this functionality.¹) Here we disclose a new entry to such compounds, that is, the title aldehyde²) which has an optically active epoxy silane molety.

We have reported a preparation of highly optically active (2S, 3S)-2,3-epoxy-3trimethylsilyl-1-propanol (1) by a catalytic version of the Sharpless asymmetric epoxidation (with L-(+)-diisopropyl tartrate) from 3-trimethylsilylallyl alcohol.³) Oxidation of this alcohol should afford the title compound, but it was not trivial due to the presence of a sensitive epoxy silane moiety. The Swern oxidation (DMSO-(COCl)₂/NEt₃)⁴) was of a low reproducibility to give a varying amount of a by-product which was frequently the only product recovered.⁵) However, after considerable experimentation, we found a Swern version using DMSO-SO₃·py/NEt₃⁶) afforded a satisfactory result: the desired aldehyde 2 could be obtained constantly in good yields after workup and simple distillation (eq 1).⁷) The ee of the aldehyde was verified to be >98%,

$$Me_{3}Si \underbrace{O}_{1 > 98\%ee} OH \qquad \frac{DMSO,}{SO_{3} - py} \qquad Me_{3}Si \underbrace{O}_{CHO} \qquad (1)$$

With the aldehyde 2 in hand, we proceeded to survey its reactivity with organometallic reagents. Since the nucleophilic additions to aldehydes having *trans*- α , β -epoxy group are known to show low diastereoselectivities⁸) except for a certain case where a technique of bouble asymmetric synthesis was applied,⁹) we revisited to see the *syn-/anti*-selectivity on this particular aldehyde 2 (eq 2). Chemoselectivity between aldehyde and epoxy silane, the

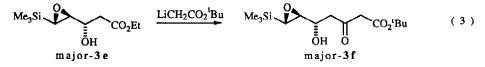
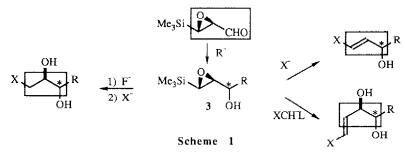
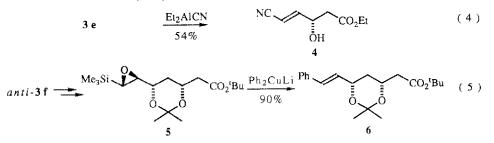

latter of which is also reactive towards nucleophiles, 10 is another problem. The results are summarized in Table 1.11)

Table 1. Reaction of 2 with organometallics

Me ₃ Si 、	$\begin{array}{c} 0\\ \hline \\ 2\\ \end{array} CHO \xrightarrow{"R-Metal"}_{(1.0-1.6 \text{ equiv})}$	$Me_{3}Si \underbrace{\downarrow}_{S y n}^{O} OH$	+ 3	Me ₃ Si <i>anti</i> OH	(2)
Entry	"R-Metal"	Conditions	3	syn/anti ^a	Yield (%) ^b
1	BuLi	Et ₂ O, -78°C	a	29 : 71	75
2	Ħ	THF, -78°C	a	39:61	
3	BuMgBr	Et ₂ O, -78°C	a	26:74	
4	17	THF, -78°C	a	36:64	72
5	CH2=CHCH2MgCl	Et ₂ O, -78°C	b	46 : 54	66
6	PhMgBr	THF, -78°C	с	65:35	69
7	BuLi/Ti(O ⁱ Pr) ₄ (1:1.1)	hexane, r.t.	а	30:70	low
8	$Et_2Zn/Ti(O^{i}Pr)_4$ (1:1.1)	hexane, -20°C	ď	14:86	81
9	BrZnCH ₂ CO ₂ Et ^d	CH ₂ (OMe) _{2,} 0°C	е	20:80	87
10	O' O' Na ⁺ Li ^{+d}	THF, -78°C	f ^e	40 : 60	43
11	" + $ZnCl_2$ (1:1)	THF, -78°C	f	39:61	
12	" + $ZnCl_2$ (1:2)	THF, -78°C	f	26:74	67
13	Me ₃ SiCN/KCN-18-c-6	toluene, -30°C	g ^f	80:20 or 20:80	89 ⁸


^aSyn/anti ratio determined by ¹H nmr analysis of a crude product. Assignments of syn-/anti-structures are described in text. ^bCombined, isolated yield. ^cR=Et. ^dPrepared according to ref 12. ^eR=CH₂COCH₂CO₂^tBu. ^fR=CN and the product is the silyl ether (ref 13). ^gYield of a crude sample essentially pure by ¹H nmr.

Alkyllithium and Grignard reagents showed moderate selectivities (1:1--1:3) (entries 1-6) which are consistent with our previous result.⁸ⁱ) In general, organozinc reagents showed higher *anti*-preferred selectivities (entries 8, 9, and 12).¹⁴) Et2Zn-Ti(O-*i*-Pr)4 is noteworthy to show the highest value of 14:86 (entry 8) which is also *the highest diastereoselectivity* recorded for reactions of *trans*- α , β -epoxy aldehydes with achiral reagents.^{8,15}) This selectivity would come from the zinc-titanium reagent itself rather than the *trans*-silyl group remote from the reaction center. The stereochemistries of the products **3a-d** were determined by their ¹H nmr spectra which had been reported previously.¹¹) The structure of (major-)**3e** was correlated with that of (major-)**3f** (eq 3)¹⁶) which was shown to be the depicted one (*anti*) based on a derivatization.¹⁷)



The formation of the cyanohydrin (entry 13) also proceeded with a good diastereoselectivity eventhough its mechanism must be quite different from that of organozine additions. It deserves a comment that, at our hands, some reagents such as BuZnI/CuI/BF3·OEt2,¹⁸) TiCl(O-*i*-Pr)3-BuLi or BuMgBr,¹⁹) and Me3SiCN/ZnI2¹³) could not be used, resulting in destruction of 2 due probably to the fragile epoxy silane moiety under these reaction conditions.

The adducts 3 should be useful intermediates as such or after stereochemical tune, if necessary.²⁰) Thus the second extention of a carbon chain and/or introduction of a functional group can be achieved based on the versatile epoxy silane moiety, broadening the utility of 2 as a conjunctive reagent. A few representative reactions are illustrated in Scheme 1.3.10,21,22)

For example, a reaction of 3e with Et2AlCN (1.3 equiv) afforded the α , β -unsaturated nitrile 4 without being affected by its hydroxy and ester groups (eq 4). The compound 5 prepared from pure *anti*-3f in 2 steps reacted with Ph2CuLi to give 6 in good yield, demonstrating an introduction of the optically active side chain of HMG-CoA reductase inhibitors to an aromatic ring (eq 5).¹⁷

In summary, reactions of the new, optically active aldehyde 2 prepared here demonstrate its synthetic utility as a conjunctive reagent. Further synthetic applications of 2 are now under active investigation.

References and Notes

 Review: Jurczak, J.; Golebiowski, A. Chem. Rev. 1989, 89, 149; Evans, D. A.; Nelson, J. V.; Taber, T. R. Top. Stereochem. 1983, 13, 1; Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press: New York, 1984; Vol. 3B, p 111; Reetz, M. T. Angew. Chem. Int. Ed. Engl. 1984, 23, 556; Schinzer, D., Ed. Selectivities in Lewis Acid Promoted Reactions; Kluwer Academic Publishers: Dordrecht, 1989.

- 2) This aldehyde is a new compound which has not appeared in Chem. Abstra.
- 3) Kobayashi, Y.; Ito, T.; Yamakawa, I.; Urabe, H.; Sato, F. Synlett 1991, 811.
- 4) Review: Tidwell, T. T. Synthesis 1990, 857.
- 5) The by-product is 3-chloro-3-trimethylsilyl-1,2-propanediol resulting from the addition of Cl⁻ to 1. Its formation could be avoided by the use of DMSO-SO₃·py. PCC did not afford the desired aldehyde in good yield, either.
- 6) Nicolaou, K. C.; Duggan, M. E.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 6676.
- 7) Preparation of 2: To a stirred mixture of the epoxy alcohol 1 (2.0 g, 13.7 mmol), DMSO (19.53 mL, 275 mmol), and NEt3 (19.6 mL, 142 mmol) in CH₂Cl₂ (18.4 mL) was added SO₃·py complex (13.1 g, 82.2 mmol) in two portions at 0°C. After the resulting homogeneous solution had been stirred for 30 min at the same temperature with TLC monitoring, it was diluted with 1:1-ether/pentane (90 mL). The organic layer was washed successively with water, 1 N-HCl, and NaHCO3 solution. After drying (Na₂SO₄) and removal of the solvent on a rotary evaporator, the residual oil was purified by Kugelrohr distillation (b.p. 50--60°C (bath temp)/7 mmHg) to give the pure title aldehyde (1.59 g, 80%). ¹H nmr (CDCl₃, TMS) δ ppm 0.10 (s, 9 H), 2.49 (d, J = 3.4 Hz, 1 H), 3.14 (d/d, J = 3.4, 6.6 Hz, 1 H), 8.79 (d, J = 6.6 Hz, 1 H). [a]D¹⁸ +89.4° (c 1.18, CHCl₃).
- 8) In general, nucleophilic additions to transsubstituted epoxy aldehydes are much less diastreoselective than those to cis- or gemsubstituted ones.

(a) Escudier, J.-M.; Baltas, M.; Gorrichon, L. Tetrahedron Lett. 1992, 33, 1439; (b) Escudier, J.-M.; Baltas, M.; Gorrichon, L. Tetrahedron Lett. 1991, 32, 5345; (c) Rosini, G.; Galarini, R.; Marotta, E.; Righi, P. J. Org. Chem. 1990, 55, 781; (d) Miyashita, M.; Hoshino, M.; Yoshikoshi, A. Chem. Lett. 1990, 791; (e) Barrett, A. G. M.; Barta, T. E.; Flygare, J. A. J. Org. Chem. 1989, 54, 4246; (f) Howe, G. P.; Wang, S.; Procter, G. Tetrahedron Lett. 1987, 28, 2629; (g) Iio, H.; Mizobuchi, T.; Tokoroyama, T. Tetrahedron Lett. 1987, 28, 2379; (h) Molander, G. A.; Shubert, D. C. J. Am. Chem. Soc. 1987, 109, 576; (i) Takeda, Y.; Matsumoto, T.; Sato, F. J. Org. Chem. 1986, 51, 4729; (j) Kitamura, M.; Isobe, M.; Ichikawa, Y.; Goto, T. J. Am. Chem. Soc. 1984, 106, 3252; (k) Wuts, P. G. M.; Thompson, P. A.; Callen, G. R. J. Org. Chem. 1983, 48, 5398; (l) Sugiyama, T.; Yamashita, K. Agric. Biol. Chem. 1980, 44, 1983.

- Roush, W. R.; Hoong, L. K.; Palmer, M. A. J.; Straub, J. A.; Palkowitz, A. D. J. Org. Chem. 1990, 55, 4117; Roush, W. R.; Straub, J. A.; VanNieuwenhze, M. S. J. Org. Chem. 1991, 56, 1636.
- 10) Review: Weber, W. P. Silicon Reagents for Organic Synthesis; Springer-Verlag: Berlin, 1983, p 73 and 84.
- 11) This method is an alternative one for the preparation of highly optically active (anti)-3 which we have routinely prepared by a kinetic resolution in the Sharpless epoxidation: Kitano, Y.; Matsumoto, T.; Sato, F. Tetrahedron 1988, 44, 4073.

$$Me_{3}Si \xrightarrow{O} CHO^{+} R^{-} \xleftarrow{addition} Me_{3}Si \xrightarrow{R} \xrightarrow{Kinetic} Me_{3}Si \xrightarrow{R} \xrightarrow{Kinetic} OH$$

The syn- and anti-isomers were often separable on silica gel.

- 12) BrZnCH₂CO₂Et: Rathke, M. W. Org. React. 1975, 22, 438. [CH₂=C(O⁻)CH=C(O⁻)O^tBu]Na⁺Li⁺: Huckin, S. N.; Weiler, L. J. Am. Chem. Soc. 1974, 96, 1082.
- 13) Evans, D. A.; Truesdale, L. K. Tetrahedron Lett. 1973, 4929.
- 14) For a rationale of the anti preference: see ref 8b.
- 15) Addition of nucleophiles to 2 under chiral conditions (cf. ref 9) will be described in our full account.
- 16) Lynch, J. E.; Volante, R. P.; Wattley, R. V.; Shinkai, I. Tetrahedron Lett. 1987, 28, 1385.
- 17) Urabe, H.; Matsuka, T.; Sato, F. the following paper.
- 18) Yeh, M. C. P.; Knochel, P.; Santa, L. E. Tetrahedron Lett. 1988, 29, 3887.
- 19) Seebach, D. In *Modern Synthetic Methods*, Scheffold, R., Ed.; Otto Salle Verlag: Frankfurt am Main, 1983; Vol. 3, p217.
- 20) The stereochemical tune has been effected by the Mitsunobu reaction (see Kobayashi, Y.; Shimazaki, T.; Sato, F. Tetrahedron Lett. 1987, 28, 5849) or by an oxidation/hydride reduction sequence (see ref 22).
- 21) Kobayashi, Y.; Ito, T.; Yamakawa, I.; Urabe, H.; Sato, F. Synlett 1991, 813.
- 22) Okamoto, S.; Yoshino, T.; Tsujiyama, H.; Sato, F. Tetrahedron Lett. 1991, 32, 5793.

(Received in Japan 23 March 1992)