

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 15 (2007) 2198-2205

Synthesis and evaluation as MRI probe of the trifluoromethylated *p*-boronophenylalanine and its alcohol derivative

Yoshihide Hattori,^a Hitoshi Yamamoto,^b Hideya Ando,^{c,d} Hirofumi Kondoh,^{c,d} Tomoyuki Asano,^{c,d} Mitsunori Kirihata,^{c,d} Yoshihiro Yamaguchi^a and Tateaki Wakamiya^{a,*}

^aFaculty of Science and Technology, Kinki University, Higashi-osaka, Osaka 577-8502, Japan ^bGraduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan ^cBio-Research Inc., Kobe, Hyogo 650-0047, Japan ^dGraduate School of Life & Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8231, Japan

> Received 31 October 2006; revised 6 December 2006; accepted 7 December 2006 Available online 10 January 2007

Abstract—Boron-neutron capture therapy (BNCT) and magnetic resonance imaging (MRI) are quite attractive techniques for treatment and diagnosis of cancer, respectively. In order to develop practical tools for BNCT and MRI, novel compounds containing both the trifluoromethyl group and ¹⁰B atom in a single molecule were designed. In the present study, *p*-boronophenylalanine and *p*-boronophenylalaninol with the trifluoromethyl group were synthesized, and ¹⁹F NMR measurements of these compounds were carried out.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetic resonance imaging (MRI) is commonly used as a technique for diagnosis of cancer.¹ The characteristics of MRI are its relatively high resolution, the use of probes (or contrast enhancers) that can be stored for a long term, and the circumvention of danger resulting from radiation exposure.

In particular, MRI based on the measurement of ¹⁹F atom is becoming a remarkable method for diagnosis of various diseases. For example, Higuchi et al. reported that the intravenously administered ¹⁹F-containing styrylbenzene derivative labels brain plaques and allows them to be visualized in living amyloid β precursor protein (APP) transgenic mice by ¹⁹F MRI.²

From the standpoint of treatment for brain cancer or melanoma, the boron neutron capture therapy (BNCT) based on the interaction between ¹⁰B isotope and neutron has been highly noted in recent years as a quite

useful technique for treatment of cancer.³ β -[4-(¹⁰B)Boronophenyl]alanine (¹⁰Bpa)⁴ (1) and β -[4-(¹⁰B)boronophenyl]alaninol (¹⁰Bpa-ol)⁵ (2), in which each boron atom is enriched with ¹⁰B isotope, had been created as novel ¹⁰B carriers for BNCT.

In order to create novel materials to use practically for diagnosis and treatment of cancer by means of MRI and BNCT, respectively, we had already synthesized the compounds containing both fluorine⁶ and ¹⁰B atoms in a single molecule such as $DL-\beta-[4-(^{10}B)$ borono-2,6-difluorophenyl]alanine $[DL-^{10}Bpa(2,6F_2)]$ (3) or $DL-3-[4-(^{10}B)$ borono-2,6-difluorophenyl]alaninol $[DL-^{10}Bpa(2,6F_2)-ol]$ (4).⁷ As far as we examined, the incorporated amounts of these compounds into C6 (rat glioma), KB (human melanoma), and HeLa (human ephithelioma) cells are almost the same as that of ¹⁰Bpa being clinically used for BNCT at present.

In the present study we newly designed and synthesized DL- β -[4-(¹⁰B)borono-2-trifluoromethylphenyl]alanine [DL-¹⁰Bpa(2CF₃)] (**5**) and DL-3-[4-(¹⁰B)borono-2-trifluoromethylphenyl]alaninol [DL-¹⁰Bpa(2CF₃)-ol] (**6**), in which the fluorine atoms are increased in number compared to difluoro derivatives **3** and **4** to raise the sensitivity of detection by ¹⁹F NMR (Fig. 1).

Keywords: Magnetic resonance imaging; Boron-neutron capture therapy; β -[4-(¹⁰B)borono-2,6-trifluoromethylphenyl]alanine; 3-[4-(¹⁰B)-borono-2,6-trifluoromethylphenyl]alaninol.

^{*} Corresponding author. E-mail: wakamiya@chem.kindai.ac.jp

^{0968-0896/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2006.12.043

Figure 1. ¹⁰Bpa (1) and the related compounds 2–6.

2. Chemistry

The synthesis of DL^{-10} Bpa(2CF₃) was carried out by the conventional method based on the reaction of alkyl halide with sodium diethyl acetamidomalonate⁸ as shown in Scheme 1.

2-Aminobenzotrifluoride (7) was brominated according to the method reported by Roche et al.,⁹ and the amino group was converted into 5-bromo-2-iodobenzotrifluoride (8) with *t*-BuNO₂ and I₂. The benzotrifluoride derivative 8 was reacted with *i*-PrMgCl and then CO₂ to give 4-bromo-2-trifluoromethylbenzoic acid (9). The benzoic acid derivative 9 was converted into the benzylalcohol derivative 10, and then the alcohol group was protected with the MOM^{10} group to give the methoxymethyl ether derivative 11.

In the next step, the phenylboric acid derivative **12** was first tried to prepare from the compound **11** by the halogen-metal exchange reaction with *i*-PrMgCl and subsequent addition of 10 B(OMe)₃ in a similar manner as reported previously for the preparation of DL- 10 Bpa(2,6F₂).⁷ Although, the bromo group was not reacted with *i*-PrMgCl in the present case, the desired boronation was successfully achieved via lithiation of **11** with *n*-BuLi.

Treatment of **12** with 3 M HCl to cleave the MOM group gave the benzyl alcohol derivative **13**. The hydroxyl group in the compound **13** was changed to bromide with PBr₃, and the brominated product was coupled with sodium diethyl acetamidomalonate.¹¹ The diester moiety of the compound **14** was hydrolyzed and decarboxylated to give N^{α} -Ac-DL-¹⁰Bpa(2CF₃)-OH (**15**) that was hydrolyzed with 3 M HCl to give DL-¹⁰Bpa(2CF₂) (**5**).

The α -amino group of **5** was first protected with the Boc group, and the carboxyl group of the product **16** was then reduced via methyl ester¹² to provide the alcohol derivative **17**. The Boc group of **17** was finally cleaved with 4 M HCl/AcOEt to give DL-¹⁰Bpa(2CF₃)-ol (**6**) as HCl salt.

Scheme 1. Reagents and conditions: (a) 1—KBr, (NH₄)₆Mo₇O₂₄·4H₂O, NaBO₃·4H₂O, AcOH, rt, 6 h; 2—*t*-BuNO₂, I₂, MeCN, rt, 16 h, 91.4%; (b) 1—*i*-PrMgCl, THF, $-20 \degree$ C, 2 h; 2—CO₂, $-20 \degree$ C, 1 h, 67.8%; (c) 1—ClCO₂CH(CH₃)₂, Et₃N, THF, 1.5 h, $-10 \degree$ C; 2—NaBH₄, H₂O, $0 \degree$ C, 8 h, 97.5%; (d) MOM–Cl, DIEA, CH₂Cl₂, reflux, 24 h, 86.2%; (e) 1—*n*-BuLi, THF, $-78 \degree$ C, 1 h; 2—¹⁰B(OMe)₃, $-78 \degree$ C then rt, 5 h, 71.3%; (f) 3 M HCl, THF, 60 °C, 8 h; 90.5%; (g) 1—PBr₃, Et₂O, $0 \degree$ C, 4 h; 2—sodium diethyl acetamidomalonate, THF, rt, 16 h, 79.9%; (h) 1—1 M NaOH, 80 °C, 8 h; 2—3 M HCl, 80 °C 5 h, 86.8%; (i) 1—3 M HCl, 80 °C, 24 h; 2—propylene oxide, *i*-PrOH, rt, 6 h, 83.8%; (j) (Boc)₂O, Na₂CO₃, acetone, H₂O, rt, 7 h, 90.8%; (k) 1—MeI, KHCO₃, rt, 24 h; 2—NaBH₄, LiCl, THF, MeOH, $0 \degree$ C then rt, 2 h, 91.1%; (l) 4 M HCl/AcOEt, rt, 30 min, 92.2%.

3. Results and discussion

In order to apply the compounds **5** and **6** to ¹⁹F MRI, we first examined detection-sensitivity in the measurement of ¹⁹F NMR of these fluorinated compounds in deuterium saline¹³ (2.4, 0.24, 0.024, and 0.0024 mM). As shown in Figures 2 and 3, ¹⁹F signals of the trifluoromethylated compounds **5** and **6** are detectable much more easily than those of difluorinated derivatives **3** and **4**.

From the standpoint of future MRI study, we next examined whether these fluorinated *p*-boronophenylalanine derivatives incorporated into cancer cells are detectable by ¹⁹F NMR measurement. For this purpose, Ihara cells (human melanoma)¹⁴ incorporating the compounds **3** and **5** were loaded into micro NMR tube and then subjected to the measurement of ¹⁹F NMR (Fig. 4).

In the measurement of compound **3** incorporated in Ihara cells, 19 F signal is detectable even by four integrated counts (ca. 1 min). When integrated counts were increased to 64 (ca. 10 min) (Fig. 4a), an extra small signal was observed beside a major one, though the reason is not clarified. In the case of the measurement of compound **5**, two major signals were detected even by four

integrated counts (Fig. 4b). However, detailed assignments of these two peaks are not achieved yet.

From the elucidations mentioned above, the following results were given, that is, (i) all fluorinated $DL^{-10}Bpa$ derivatives may be usable as ¹⁹F MRI probe, (ii) the carboxyl type compound is more sensitive than the corresponding alcohol derivative in ¹⁹F NMR measurement, and (iii) the trifluoromethylated compound **5** is better than the compound **3** as a ¹⁹F MRI probe.

Biological evaluation of the trifluoromethylated compounds 5 and 6 as boron carrier is currently being undertaken, and the results will be reported soon elsewhere. Furthermore, we are planning to apply these compounds to ¹⁹F MRI for diagnosis of melanoma.

4. Experimental

4.1. General

All of the melting points are uncorrected and were measured by Yanaco MP-J3 (Yanaco CO., Ltd, Kyoto,

Figure 2. ¹⁹F NMR spectra of compounds 3 and 4.

Figure 3. ¹⁹F NMR spectra of compounds 5 and 6.

Japan). Silica-gel column chromatography was carried out with silica gel PSQ100B (Fuji Silysia Chemical Ltd, Aichi, Japan). ¹H NMR spectra were measured on a Varian Mercury 300 [300 MHz, Varian CO., Ltd, USA] spectrometer. The chemical shifts in ¹H NMR are given in δ values from TMS used as the internal standard. ¹⁹F NMR spectra were measured on a Varian Inova 600 [564 MHz, Varian Co., Ltd, USA] spectrometer. Matrix-assisted laser desorption ionization time of flight mass spectra (MALDI-TOF MS) were obtained on a KRATOS KOMPACT MAL-DI IV mass spectrometer (Shimadzu Co. Ltd, Kyoto, Japan). Measurement of high resolution mass was carried out by fast-atom bombardment mass spectrometry (FAB-MS) using a JEOL JMS-700 TKM mass spectrometer (JEOL Co. Ltd, Tokyo, Japan). Elemental analyses were performed at the MICRO CORDER JM10 (J-Science Lab Co. Ltd, Kyoto, Japan). ¹⁰B(OMe)₃ was purchased from Stella Chemifa Corporation (Osaka, Japan).

Figure 4. ¹⁹F measurements of compounds 3 and 5 incorporated into Ihara cells.

4.2. Synthesis

4.2.1. 4-Bromo-2-iodobenzotrifluoride (8). To a solution of 2-aminobenzotrifluoride (1.37 g, 8.50 mmol) in AcOH (10 mL) were added KBr (1.20 g, 10.1 mmol), NaBO₃. 4H₂O (1.43 g, 9.30 mmol), and (NH₄)₆Mo₇O₂₄·4H₂O (18.7 mg, 0.08 mmol), and the mixture was stirred for 3 h at room temperature. The reaction mixture was basified with saturated Na₂CO₃ aq and extracted with AcOEt (3×50 mL). The combined extracts were washed with saturated NaHCO₃ aq $(3 \times 40 \text{ mL})$ and brine $(3 \times 40 \text{ mL})$, and dried over anhydrous MgSO₄. The dried extract was concentrated in vacuo, and the residue was dissolved in MeCN (5 mL). The solution was added to a solution of I₂ (6.47 g, 25.5 mmol) and 90% tert-butyl nitrite (1.47 g, 12.8 mmol) in MeCN (5 mL). After stirring for 16 h at room temperature, the reaction mixture was poured into 10% Na₂SO₃ aq (50 mL), and extracted with CH₂Cl₂ $(3 \times 30 \text{ mL})$. The combined extracts were washed with 10% Na₂SO₃ aq (3× 30 mL), H₂O (3× 30 mL) and brine $(3 \times 30 \text{ mL})$, and dried over anhydrous MgSO₄. The dried extract was concentrated in vacuo, and the residual solid was recrystallized from hexane to give 8 as yellow crystals (2.73 g, 91.4%): mp 125–129 °C. ¹H NMR (CDCl₃) δ 7.34 (dd, 1H, J = 2.4 Hz, 8.1 Hz), 7.77 (d, 1H, J = 2.4 Hz), 7.87 (d, 1H, J = 8.1 Hz); Anal. Calcd for C₇H₃BrF₃I: C, 23.96; H, 0.86. Found: C, 23.42; H, 1.04.

4.2.2. 4-Bromo-2-trifluoromethylbenzoic acid (9). To a solution of **8** (18.6 g, 53.0 mmol) in anhydrous THF

(50 mL) was added *i*-PrMgCl (2.0 M solution in THF, 26.5 mL, 53.0 mmol) dropwise at -20 °C under Ar atmosphere. After stirring for 2 h, CO₂ gas was bubbled into the reaction mixture for 1 h under cooling at -20 °C. To the reaction mixture was added saturated NH₄Cl aq (100 mL) and extracted with AcOEt (3× 60 mL). The combined extracts were dried over anhydrous MgSO₄ and concentrated in vacuo. The residual solid was recrystallized from AcOEt and hexane to give **9** as dark yellowish brown crystals (9.50 g, 66.4%): mp 113–117 °C. ¹H NMR (CDCl₃) δ 7.81 (d, 1H, J = 8.1 Hz), 7.89 (d, 1H, J = 8.1 Hz), 7.96 (s, 1H); Anal. Calcd for C₇H₃BrF₃I: C, 23.96; H, 0.86. Found: C, 23.42; H, 1.04.

4.2.3. 4-Bromo-2-trifluoromethylbenzyl alcohol (10). To a solution of **9** (3.47 g, 12.9 mmol) and Et₃N (1.96 g, 19.4 mmol) in anhydrous THF (50 mL) was added ClCOOCH(CH₃)₂ (2.38 g, 19.4 mmol) dropwise over a 10-min period at -20 °C. After stirring for 1.5 h at -10 °C, to the reaction mixture was added ice-cooled water (50 mL), followed by an addition of NaBH₄ (2.44 g, 64.5 mmol) in limited amounts at 0 °C. After stirring for 8 h at room temperature, the reaction mixture was acidified with citric acid and diluted with H₂O (50 mL) to dissolve precipitated inorganic materials. After evaporation of THF, the aqueous solution was extracted with AcOEt (3× 40 mL). The combined extracts were washed with saturated NaHCO₃ aq (3× 30 mL) and brine (3× 30 mL), and dried over anhydrous

2203

MgSO₄. The dried extract was concentrated in vacuo, and the residue was purified by silica-gel column chromatography (silica gel: 90 g, hexane/AcOEt = 3:1) to give **10** as colorless oil (3.21 g, 97.5%): ¹H NMR (CDCl₃) δ 1.97 (t, 1H, J = 5.7 Hz), 4.84 (d, 2H, J = 5.7 Hz), 7.62 (d, 1H, J = 8.4 Hz), 7.71 (d, 1H, J = 8.4 Hz), 7.77 (s, 1H).

4.2.4. 4-Bromo-2-trifluoromethylbenzyl methoxymethyl ether (11). To a solution of **10** (2.77 g, 10.9 mmol) in CH₂Cl₂ (50 mL) were added DIEA (3.53 g, 27.3 mmol) and MOM–Cl (1.76 g, 21.8 mmol), and the reaction mixture was refluxed for 24 h. After evaporation of the solvent, the residue was dissolved in AcOEt (50 mL). The solution was washed with 10% aqueous citric acid (3× 20 mL), saturated NaHCO₃ (3× 20 mL) and brine (3× 20 mL), and dried over anhydrous MgSO₄. The dried organic layer was concentrated in vacuo, and the residue was purified by silica-gel column chromatography (silica gel: 60 g, hexane/AcOEt = 9:1) to give **11** as colorless oil (2.81 g, 86.2%): ¹H NMR (CDCl₃) δ 3.42 (s, 3H), 4.72 (s, 2H), 4.75 (s, 2H), 7.58 (d, 2H, J = 8.4 Hz), 7.68 (d, 2H, J = 8.4 Hz), 7.78 (s, 1H).

4.2.5. 4-(¹⁰B)Borono-2-trifluoromethylbenzyl methoxymethyl ether (12). To a solution of 11 (2.54 g, 8.49 mmol) in anhydrous THF (30 mL) was added a solution of 1.6 M n-BuLi in hexane (5.57 mL, 8.91 mmol) at -78 °C under Ar atmosphere. After stirring for 1 h at -78 °C, to the reaction mixture was added ¹⁰B(OMe)₃ (1.31 g, 12.7 mmol), and the solution was stirred for 5 h at -78 °C. To the reaction mixture was added saturated NH₄Cl aq (30 mL) at room temperature, and the mixture was extracted with Et_2O (3× 60 mL). The combined extracts were washed with 10% aqueous citric acid (3× 60 mL) and brine (3×60 mL). The organic layer was dried over anhydrous MgSO₄ and concentrated in vacuo. The residue was purified by silica-gel column chromatography (silica gel: 60 g, hexane/AcOEt = 1:1) to give 12 as colorless oil (1.59 g, 71.3%): ¹H NMR (CD₃COCD₃) δ 3.36 (s, 3H), 4.74 (s, 2H), 4.77 (s, 2H), 7.49 (s, 2H), 7.75 (d, 1H, J = 7.8 Hz), 8.12 (d, 1H, J = 7.8 Hz), 8,18 (s, 1H).

4.2.6. 4-(¹⁰**B**)**Borono-2-trifluoromethylbenzyl alcohol (13).** The solution of 12 (1.57 g, 5.96 mmol) in THF (30 mL) and 3 M HCl (30 mL) was stirred for 8 h at 60 °C. The reaction mixture was extracted with Et₂O (3× 40 mL), and the combined extracts were washed with water (3× 50 mL) and brine (3× 50 mL). The organic layer was dried over MgSO₄, and the solution was concentrated in vacuo. The residue was purified by silica-gel column chromatography (silica gel: 50 g, CH₂Cl₂/MeOH = 9:1) to give **13** as colorless crystals (1.18 g, 90.5%): mp 289–294 °C. ¹H NMR (CD₃COCD₃) δ 4.77 (s, 2H), 7.58 (s, 2H), 7.71 (d, 1H, *J* = 7.8 Hz), 8.11 (d, 1H, *J* = 7.8 Hz), 8.18 (s, 1H). Anal. Calcd for C₈H₈¹⁰BF₃O₃: C, 43.84; H, 3.68. Found: C, 43.45; H, 3.93.

4.2.7. 2-Acetylamino-2-[4-(^{10}B)borono-2-trifluoromethylphenyl]methylmalonic acid diethyl ester (14). To a solution of **13** (1.00 g, 4.56 mmol) in Et₂O (50 mL) was added slowly PBr₃ (1.48 g, 5.47 mmol) at 0 °C, and the mixture was stirred for 4 h at 0 °C. To the reaction mixture was added ice-cooled water (50 mL), and Et₂O layer was once taken out. The aqueous layer was extracted with Et_2O (3× 40 mL). The combined Et_2O layer and extracts were washed with water $(3 \times 50 \text{ mL})$ and brine $(3 \times$ 50 mL). The organic layer was dried over anhydrous MgSO₄ and concentrated in vacuo. The residual solid was dissolved in anhydrous DMSO (5 mL), and the solution was added to a suspension of sodium diethyl acetamidomalonate⁸ (1.31 g, 5.47 mmol) in anhydrous DMSO (5 mL) under Ar atmosphere. After stirring for 6 h, the reaction mixture was acidified with 1 M HCl and extracted with AcOEt (3× 30 mL). The combined extracts were washed with saturated NaHCO3 (3× 20 mL) and brine $(3 \times 20 \text{ mL})$. The organic layer was dried over anhydrous MgSO₄ and concentrated in vacuo. The crystalline residue was recrystallized from AcOEt and hexane to give 14 as colorless crystals (1.52 g, 79.9%): mp 131–134 °C. ^{1}H NMR $(CD_3COCD_3) \delta 1.17$ (t, 6H, J = 7.4 Hz), 2.00 (s, 3H), 3.85 (s, 2H), 4.00–4.22 (m, 4H), 7.37 (d, 1H, J =7.8 Hz), 7.51 (s, 2H), 7.99 (d, 1H, J = 7.8 Hz), 8.14 (s, 1H). Anal. Calcd for $C_{17}H_{21}^{10}BF_3NO_7$: C, 48.81; H, 5.06; N, 3.35. Found: C, 48.43; H, 5.15; N, 3.14.

4.2.8. N^{α} -Acetyl-DL- β -[4-(¹⁰B)borono-2-trifluoromethylphenyllalanine (15). A mixture of 14 (1.00 g, 2.39 mmol) in 1 M NaOH (40 mL) was stirred for 8 h at 80 °C. To the cooled reaction mixture was added 3 M HCl (20 mL), and the solution was stirred for 4 h at 80 °C. The reaction mixture was extracted with AcOEt (3× 40 mL), and the combined extracts were washed with brine $(3 \times 30 \text{ mL})$. The organic layer was dried over anhydrous MgSO₄ and concentrated in vacuo. The crystalline residue was recrystallized from AcOEt and hexane to give 15 as colorless crystals (660 mg, 86.8%): mp 158–162 °C. ¹H NMR (CD_3COCD_3) δ 1.87 (s, 3H), 3.08-3.48 (m, 2H), 4.78-4.86 (m, 1H), 7.51-7.58 (m, 4H), 8.01 (d, 1H, J = 6.0 Hz), 8.18 (s, 1H); MAL-DI-TOF MS: found m/z 319.2 $[M+H]^+$ (calcd for $C_{12}H_{13}^{10}BF_3NO_5$ +H: 319.1); Anal. Calcd for $C_{12}H_{13}^{10}BF_3NO_5$: C, 45.29; H, 4.12. N, 4.40; Found: C, 45.64; H, 4.38; N. 4.09.

4.2.9. DL-β-[4-(¹⁰B)Borono-2-trifluoromethylphenyl]alanine (5). A mixture of 15 (588 mg, 1.85 mmol) in 3 M HCl was stirred for 12 h at 80 °C. The reaction mixture was washed with Et_2O (3× 30 mL) and concentrated in vacuo. The residue was dissolved in *i*-PrOH (10 mL), and to the solution was added propylene oxide (215 mg, 3.70 mmol). After stirring for 24 h, the reaction mixture was concentrated in vacuo. The crystalline residue was recrystallized from water to give 5 as colorless crystals (428 mg, 83.8%): mp 295–300 °C (dec). ¹H NMR (D₂O) δ 2.63–2.88 (m, 2H), 3.66 (t, 1H, J = 7.8 Hz), 6.81 (d, 1H, J = 7.4 Hz), 7.22 (d, 1H, J = 7.4 Hz), 7.35 (s, 1H); MALDI-TOF MS: found m/z 277.3 [M+H]⁺ (calcd for $C_{10}H_{11}^{10}BF_{3}NO_{4}$ +H: 277.1); Anal. Calcd for $C_{10}H_{11}^{10}B$ F₃NO₄+2H₂O: C, 38.47; H, 4.84; N, 4.49; Found: C, 38.23; H, 5.04; N. 4.40.

4.2.10. N^{α} -tert-Butoxycarbonyl-DL- β -[4-(¹⁰B)borono-2-trifluoromethylphenyl]alanine (16). To a solution of 5 (200 mg, 0.724 mmol) in water (10 mL) and acetone

(10 mL) were added Na₂CO₃(84.3 mg, 0.796 mmol) and Boc₂O (174 mg, 0.796 mmol), and the mixture was stirred for 12 h. The reaction mixture was acidified with 10% aqueous citric acid, and acetone was removed by evaporation in vacuo. The aqueous solution was extracted with AcOEt (3× 40 mL), and the combined extracts were washed with 10% aqueous citric acid (3× 30 mL) and brine (3× 30 mL). The organic layer was dried over anhydrous MgSO₄ and concentrated in vacuo. The crystalline residue was recrystallized from AcOEt and hexane to give **16** as colorless crystals (247 mg, 90.8%): mp 291–292 °C (dec). ¹H NMR (CD₃COCD₃) δ 1.32 (s, 9H), 3.08–3.51 (m, 2H), 4.44–4.53 (m, 1H), 6.49–6.51 (br, 1H), 7.44 (br, 2H), 7.55 (d, 1H, *J* = 7.8 Hz), 8.03 (d, 1H, *J* = 7.8 Hz) 8.17 (s, 1H); Anal. Calcd for C₁₅H₁₉¹⁰BF₃NO₆: C, 47.87; H, 5.09; N, 3.72. Found: C, 48.48; H, 5.37; N, 3.66.

4.2.11. N^{α} -tert-Butoxycarbonyl-DL-3-[4-(¹⁰B)borono-2trifluoromethylphenyllalaninol (17). To a solution of 16 (2.92 g, 7.76 mmol) in DMF (25 mL) were added KHCO₃ (1.55 g, 15.5 mmol) and MeI (2.20 g, 15.5 mmol), and the mixture was stirred for 24 h. The reaction mixture was concentrated in vacuo, and the residue was suspended in AcOEt (100 mL). The suspension was washed with 10%citric acid ($3 \times 30 \text{ mL}$), saturated NaHCO₃ aq ($3 \times$ 30 mL) and brine. The organic layer was dried over MgSO₄ and concentrated in vacuo. To the solution of the residue in THF (50 mL) were added LiCl (1.64 g, 38.8 mmol), NaBH₄ (2.94 g, 77.6 mmol), and MeOH (50 mL) at 0 °C. After stirring for 6 h, to the reaction mixture was added 10% citric acid (100 mL), and the aqueous solution was extracted with AcOEt (3×60 mL). The combined extracts were dried over MgSO₄ and concentrated in vacuo. The oily residue thus obtained was purified by silica-gel column chromatography (silica gel: 150 g, $CH_2Cl_2/MeOH = 19:1$) to give 17 as colorless amorphous solid (2.56 g, 91.1%): ¹H ŇMR (CD₃COCD₃) δ 1.30 (s, 9H), 2.88-2.99 (m, 2H), 3.15-3.35 (m, 2H), 3.55-3.66 (m, 1H), 7.40 (br, 2H), 7.41 (d, 1H, J = 7.8 Hz), 8.01 (d, 1H, J = 7.8 Hz) 8.16 (s, 1H).

4.2.12. DL-3-(4-(¹⁰B)Borono-2-trifluoromethylphenyl)alaninol (6) hydrochloride. The compound 17 (900 mg, 2.72 mmol) was dissolved in 4 M HCl/AcOEt (10 mL), and the solution was stirred for 10 min. The reaction mixture was concentrated in vacuo, and the residue was dissolved in H₂O (20 mL). The aqueous solution was washed with Et₂O (3× 10 mL) and concentrated in vacuo. The crystalline residue was recrystallized from MeOH and Et₂O to give **6** as colorless crystals (671 mg, 92.6 %): mp 211–218 °C (dec). ¹H NMR (D₂O) δ 2.87–2.91 (m, 2H), 3.37–3.42 (m, 2H), 3.49– 3.54 (m, 1H), 7.21 (d, 1H, J = 7.8 Hz), 7.64 (d, 1H, J = 7.8 Hz), 7.79 (s, 1H); MALDI-TOF MS: found m/z 263.2 [M+H]⁺ (calcd for C₁₀H₁₃¹⁰BF₃NO₃ +H: 263.1); Anal. Calcd for C₁₀H₁₄¹⁰BClF₃NO₃: C, 40.21; H, 4.72; N, 4.69. Found: C, 40.07; H, 4.96; N 4.55.

4.3. In vitro evaluation as ¹⁹F MRI probe

4.3.1. Cells and cell culture⁷. Ihara (human melanoma) cell line was used in ¹⁹F NMR study. Cells were cultured

in Dulbecco's Minimum Essential Medium (DMEM) supplemented with 10% fetal bovine serum, 2 mM glutamine, 24 mM sodium bicarbonate at 37 °C in a 5% CO_2 atmosphere.

Cells in mono-layer were harvested with 0.25% trypsin / 0.02% EDTA in Ca²⁺-free phosphate-buffered saline (PBS).

4.3.2. Boron incorporation into Ihara cells⁷. Cultures were inoculated with 4.0×10^7 cells/dish, and cells were grown for 24 h in DMEM. The medium was replaced with that containing DL-¹⁰Bpa(2,6F₂) (3) or DL-¹⁰Bpa(2CF₃) (5) (final concentration was 2.0 mM in each case), and then the cells were cultured for 24 h.

4.3.3. ¹⁹F NMR measurement of fluorinated $DL^{-10}Bpa$ incorporated into Ihara cell. The medium was removed by aspiration, and the cells were washed twice with PBS and deuterium saline. After centrifugation, the clear supernatant was removed by aspiration, and the residual cells (250 µL) are transferred into micro NMR tube. The ¹⁹F signals of fluorinated $DL^{-10}Bpa$ incorporated into the cells were measured by ¹⁹F NMR.

Acknowledgment

This work was supported in part by Grants-in-Aid for Scientific Research Nos. 11680953 and 11680678 from the Ministry of Education, Science, Sports, and Culture of Japan.

References and notes

- (a) Knopp, M.; von Tengg-Koblig, H.; Choyke, P. L. Mol. Cancer Ther. 2003, 2, 419–426; (b) Pathak, A. P.; Gimi, B.; glunde, K.; Ackerstaff, E.; Artemov, D.; Bhujwalla, Z. M. In Methods in Enzymology; Conn, P. M., Ed.; Elsevier: Amsterdam, 2004; Vol. 386, pp 1–58.
- (a) Sassa, T.; Suhara, T.; Ikehira, H.; Obata, T.; Griard, F.; Tanada, S.; Okubo, Y. *Psychiatry Clin. Neurosci.* 2002, 56, 637; (b) Higuchi, M.; Iwata, N.; Matsuba, Y.; Sato, K.; Sasamoto, K.; Saido, C. T. *Nat. Neurosci.* 2005, 8, 527.
- (a) Soloway, H. A.; Tjarks, W.; Barnum, A. B.; Rong, F.; Barth, F. R.; Codogni, M. I.; Wilson, J. G. *Chem. Rev.* **1998**, *98*, 1515; (b) Barth, R. F.; Yang, W.; Adams, D. M.; Rotaru, J. H.; Shukla, S.; Sekido, M.; Tjarks, W.; Frestermaker, R. A.; Ciesielski, M.; Nowrocky, M. M.; Coderre, J. A. *Cancer Res.* **2002**, *62*, 3159; (c) Kato, I.; Ono, K.; Sakurai, Y.; Ohmae, M.; Maruhashi, A.; Imahori, Y.; Kirihata, M.; Nakazawa, M.; Yura, Y. *Appl. Radiat. Isot.* **2004**, *61*, 1083.
- Snyder, H. R.; Reedy, A. J.; Lennarz, W. J. J. Am. Chem. Soc. 1958, 80, 835.
- Masunaga, S.; Ono, K.; Kirihata, M.; Takagaki, M.; Sakurai, Y.; Kinashi, Y.; Kobayashi, T.; Nagasawa, H.; Uto, Y.; Hori, H. *Jpn. J. Cancer Res.* 2001, *92*, 996.
 Naturally occurring stable isotope ¹⁹F is suitable for
- Naturally occurring stable isotope ¹²F is suitable for NMR measurement.
- Hattori, Y.; Asano, T.; Niki, Y.; Kondoh, H.; Kirihata, M.; Yamaguchi, Y.; Wakamiya, T. *Bioorg. Med. Chem.* 2006, 14, 3258.

- Bentin, T.; Hamzavi, R.; Salomonsson, J.; Roy, H.; Ibba, M.; Nielsen, E. P. J. Biol. Chem. 2004, 279, 19839.
- 9. Roche, D.; Prasad, K.; Repic, O.; Blacklock, T. J. *Tetrahedron Lett.* 2000, 41, 2083.
- Abbreviations according to IUPAC-IUB commission *Eur.* J. Biochem. 1984, 9, 138 are used. Ac, acetyl; AcOH, acetic acid; AcOEt, ethyl acetate; Boc, *tert*-butoxycarbonyl; *n*-BuLi, *n*-butyllithium; DIEA, diisopropylethylamine; DMF, *N*,*N*-dimethylformamide, DMSO, *N*,*N*-dimethylsufoxide; Et₂O, diethylether; MeCN, acetonitrile; MOM, methoxy methyl; THF, tetrahydrofuran; *i*-PrMgCl, *i*-propylmagnesium chloride; PBS, phosphate-buffered saline.
- Bentin, T.; Hamzavi, R.; Salomonsson, J.; Roy, H.; Ibba, M.; Nielsen, E. P. J. Biol. Chem. 2004, 19, 19839.
- Hamada, Y.; Shibata, M.; Sugiura, T.; Kato, S.; Shioiri, T. J. Org. Chem. 1987, 52, 1252.
- 13. Deuterium saline means PBS prepared with D_2O .
- 14. The best incorporation of **3** and **5** into several tumor cells was observed in Ihara cells.¹⁵
- Hattori, Y.; Kurihara, K.; Niki, Y.; Kondoh, H.; Asano, T.; Kirihata, M.; Takagaki, M.; Yamamoto, H.; Yamaguchi, Y.; Wakamiya, T. In *Pept. Sci 2005*; Wakamiya, T., Ed.; Japanese Peptide Society: Osaka, 2006; pp 337–340.