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Nickel-Catalyzed Synthesis of N-Aryl-1,2-dihydropyridines by
[2+2+2] Cycloaddition of Imines with Alkynes through T-Shaped
14-Electron Aza-Nickelacycle Key Intermediates

Yoichi Hoshimoto,[a, b] Tomoya Ohata,[a] Masato Ohashi,[a] and Sensuke Ogoshi*[a, c]

Abstract: Despite there being a straightforward approach
for the synthesis of 1,2-dihydropyridines, the transition-
metal-catalyzed [2+2+2] cycloaddition reaction of imines
with alkynes has been achieved only with imines containing
an N-sulfonyl or -pyridyl group. Considering the importance
of 1,2-dihydropyridines as useful intermediates in the prepa-
ration of a wide range of valuable organic molecules, it
would be very worthwhile to provide novel strategies to
expand the scope of imines. Herein we report a successful
expansion of the scope of imines in nickel-catalyzed
[2+2+2] cycloaddition reactions with alkynes. In the pres-

ence of a nickel(0)/PCy3 catalyst, a reaction with N-benzyli-
dene-P,P-diphenylphosphinic amide was developed. More-
over, an application of N-aryl imines to the reaction was also
achieved by adopting N-heterocyclic carbene ligands. The
isolation of an (h2-N-aryl imine)nickel(0) complex containing
a 14-electron nickel(0) center and a T-shaped 14-electron
five-membered aza-nickelacycle is shown. These would be
considered as key intermediates of the reaction. The struc-
ture of these complexes was unambiguously determined by
NMR spectroscopy and X-ray analyses.

Introduction

The formation of metalacycles by the reaction of unsaturated
compounds with low valent transition metals is a key reaction
in transition-metal-catalyzed cycloaddition reactions.[1] The de-
velopment of efficient methods to generate a variety of met-
alacycles would provide us more opportunities to access cyclic
organic compounds. Nickel is a highly promising candidate as
a catalyst for cycloaddition reactions since a number of oxida-
tive cyclization reactions of two unsaturated compounds with
nickel(0) giving nickelacycles have been reported.[2] During the
course of studying hetero-nickelacycles,[2b, 3] we reported that
the reaction of N-benzylidene benzenesulfonamide (N-BBSA)
and alkynes with [Ni(cod)2] (cod = 1,5-cyclooctadiene) and PCy3

gave aza-nickelacycle compounds, which we proposed as
a key intermediates in the [2+2+2] cycloaddition of an imine
(1) with two alkynes (2) to yield a 1,2-dihydropyridine (3)
(Scheme 1a).[3b,c] Similar [2+2+2] cycloaddition reactions giving
dihydropyridines have been reported by Yoshikai[4a] and

Gandon and Aubert;[4b] thus far, however, the substituent
groups on imine nitrogen atom have been limited to sulfonyl
and pyridyl groups. This result indicates that the chelate coor-
dination of the heteroatom on the N-substituent group to the
metal center is key to success in the catalytic reaction. In the
nickel catalysis, electron-withdrawing substituents would be re-
quired for oxidative cyclization by promoting back donation
from nickel(0) to imines. The coordination of a heteroatom to
the nickel(II) center would stabilize the aza-nickelacycle inter-
mediate through the occupation of a vacant coordination
site.[2b, 3, 4a] Based on these points of view, we propose two strat-
egies. Considering the importance of 1,2-dihydropyridines as
useful intermediates in the preparation of a wide range of val-
uable organic molecules, it would be very worthwhile to pro-
vide novel strategies to expand the scope of imines. One is the
development of a substituent group on nitrogen, such as sul-
fonyl and pyridyl groups, which can decrease the electron den-

Scheme 1. Formation of 1,2-dihydropyridines by [2+2+2] cycloaddition of
imines with alkynes in the presence of nickel(0).
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sity on the imine and act as an intramolecular coordination
group. The other is employing N-heterocyclic carbenes (NHCs)
instead of tertiary phosphines since a stronger electron-donat-
ing and more steric-demanding ligand might allow us to con-
struct a catalytic reaction with N-aryl imines by stabilizing a T-
shaped 14-electron aza-nickelacycle intermediate by covering
a vacant site. In fact, we reported the preparation of T-shaped
14-electron hetero-nickelacycles with NHCs.[3d,f] Here we report
the formation of a T-shaped 14-electron five-membered aza-
nickelacycle by the oxidative cyclization of an N-aryl imine and
an alkyne with nickel(0)/NHC. Moreover, a successful expansion
of the imine scope to include N-aryl imines in transition-metal-
catalyzed [2+2+2] cycloaddition with alkynes is also shown for
the first time, which would proceed through the five-mem-
bered aza-nickelacycle intermediate (Scheme 1b).

Results and Discussion

First, N-benzylidene-P,P-diphenylphosphinic amide (1 a) was
employed in the reaction with 2-butyne (2 a) (1 equiv),
[Ni(cod)2] (1 equiv), and PCy3 (1 equiv) (Scheme 2). The reaction
was completed in 24 h to afford aza-nickelacycle 4 in 87 %
yield with the concomitant formation of complex 5 in 13 %

yield. An analogous aza-nickelacycle complex 4’ was prepared
from 1 a and diphenylacetylene, with a molecular structure of
4’ that was unambiguously determined by X-ray crystallogra-
phy (Figure 1a).[5] Complex 4’ has a planar tetracoordinate nick-
el(II) center with an intramolecular coordination of oxygen to
nickel. In addition, the formation of g-lactam derivative 6 by
the carbonylation of 4 would support the five-membered nick-
elacycle skeleton of complex 4. Complex 5 existed as a mixture
of syn/anti isomers in solution. In the solid state, only an anti
isomer was observed, as shown in Figure 1b (please see the
Supporting Information for details of syn/anti isomers). No re-
action took place when an excess amount of 2 a was added at
room temperature to 5, which was prepared by the reaction of
1 a with one equivalent of [Ni(cod)2] and PCy3 in C6D6. These
results suggest that 5 would be highly stabilized through the
intramolecular coordination of oxygen to nickel, and thus the
simultaneous coordination of 1 a and 2 a might be inhibited.

In the presence of [Ni(cod)2] (10 mol %) and PCy3 (20 mol %),
the treatment of 1 a with 2 a (2 equiv) at 100 8C resulted in the
formation of 1,2-dihydropyridine 3 aa in 64 % yield (Scheme 3).

Next, we turned our attention to utilizing NHCs as a ligand
to test our hypothesis that NHCs can help the formation of
aza-nickelacycle compounds by the oxidative cyclization of al-
kynes and imines without a chelation group.

We examined the reaction of N-benzylidene-4-trifluorometh-
yl aniline (1 b) or N-benzylidene-2-aminopyridine (1 c) with
a stoichiometric amount of [Ni(cod)2] and IPr (IPr = 1,3-bis(2,6-
diisopropylphenyl)imidazole-2-ylidene) (Scheme 4). Both reac-

Scheme 2. The stoichiometric reactions with 1 a. Yields of products deter-
mined by 1H NMR spectroscopy are given in parenthesis. [a] the ratio of syn/
anti is 42:58. [b] The ratio of syn/anti is 18:82.

Figure 1. Molecular structures of a) 4’ and b) 5 with thermal ellipsoids at the
30 % probability level. H atoms are omitted for clarity. Selected bond lengths
[�] and angles [8]: a) Ni�N 1.893(4), Ni�C3 1.894(5), Ni�P2 2.198(1), Ni�O
2.094(4) ; N-Ni-O 75.2(1), O-Ni-P2 100.6, P2-Ni-C3 104.3(1), C3-Ni-N 84.0(1) ;
b) Ni�N 1.903(5), Ni�C1 1.904(5), C1�N 1.40(1).

Scheme 3. Nickel(0)-catalyzed [2+2+2] cycloaddition of 1 a with 2 a. Yield of
3 aa was determined by 1H NMR spectroscopy.
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tions were completed within 10 min to give [Ni(IPr)(h2-imine)]
complexes in 95 (7) and 92 % (8) yields, respectively. The mo-
lecular structure of 7 was confirmed by X-ray crystallography
(Figure 2a). The C1�N bond length is 1.37(1) �, which is clearly
elongated compared with a typical C=N bond length (ca. 1.27–
1.30 �)[6] due to the back donation from the nickel(0) center.
Moreover, 7 was found to have a 14-electron nickel(0) center
while the previously reported [Ni(PCy3)2(h2-PhCH=NSO2Ph)] had
a 16-electron center.[3b] This structural difference might be
caused by the steric bulkiness of IPr, that is, a more bulky IPr
would stabilize the highly reactive 14-electron nickel(0) com-
plex by covering its vacant coordination sites. The reaction of
N-BBSA with [Ni(cod)2] and IPr did not afford the correspond-
ing [Ni(IPr)(h2-PhCH=NSO2Ph)] complex at all, and unidentified
white precipitates were observed.[7]

Treatment of 7 with 2 a or 4-octyne (2 b) in C6D6 at room
temperature gave five-membered aza-nickelacycles 9 a (56 %
isolated yield) or 9 b (96 % NMR spectroscopic yield). The mo-
lecular structure of 9 a was determined by X-ray crystallogra-
phy, showing its T-shaped 14-electron nickel(II) center (Fig-
ure 2b). The sum of the bond angles around Ni along the C3,
N, and C4 is 359.08. Thus, Ni and these three atoms are on the
same plane. A space-filling model of 9 a clearly indicates that
such a geometry is due mostly to the bulkiness caused by the
aryl group on the imine nitrogen atom together with the
bulky IPr ligand.[5] On the other hand, the structure of aza-nick-
elacycles 10 a and 10 b, which were prepared by the reaction
of 8 with either 2 a or 2 b, would have a planar tetracoordinate
nickel(II) center with an intramolecular coordination of the N-
pyridine ring.[4a] The crystal structure of 10 a is shown in Fig-
ure 2c.

We reported that the reaction of the planar tetracoordinate
five-membered aza-nickelacycle prepared from N-BBSA, diphe-
nylacetylene, [Ni(cod)2] , and PCy3, with another equivalent of
the alkyne, afforded a seven-membered aza-nickelacycle;[3b,c]

however, 9 b reacted with the second 2 b at room temperature

to yield 1,2-dihydropyridines 3 bb in 94 % yield. The formation
of the corresponding seven-membered aza-nickelacycle was
not observed at all by 1H NMR spectroscopy. This result might
indicate that the rate of reductive elimination from the seven-
membered aza-nickelacycle to give 1,2-dihydropyridine is
faster than that of the insertion of the second alkyne into the

Scheme 4. The stoichiometric reactions using N-aryl imines and alkynes with
Ni0 and IPr. Yields were determined by 1H NMR spectroscopy. [a] The reaction
was carried out in toluene. Isolated yields after recrystallization are shown.

Figure 2. Molecular structures for a) 7, b) 9 a, and c) 10 a with thermal ellip-
soids at the 30 % probability level. Hydrogen atoms are omitted for clarity.
Selected bond lengths [�] and angles [8]: a) Ni�N 1.85(1), Ni�C1 1.94(1), Ni�
C2 1.84(1), C1�N 1.37(1), N-Ni-C2 172.8(6) ; b) Ni�N 1.859(6), Ni�C3 1.861(7),
Ni�C4 1.877(8), N-Ni-C3 85.7(3), C3-Ni-C4 101.3(3), N-Ni-C4 172.0(3) ; c) Ni�N1
1.872(9), Ni�N2 2.116(8), Ni�C3 1.906(9), Ni�C4 1.876(7), N1-Ni-N2 63.6(4),
N1-Ni-C3 84.9(5), C3-Ni-C4 105.5(4), N2-Ni-C4 106.5(3).
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five-membered complex. In sharp contrast, complex 10 b did
not react with 2 b at room temperature. This might be due to
the suppression of the coordination of 2 b by the intramolecu-
lar coordination of the N-pyridine.

Catalytic [2+2+2] cycloaddition reactions of N-aryl imines
with alkynes were carried out (Scheme 5). The reaction of 1 b
with 2 b proceeded efficiently with 5 mol % of [Ni(cod)2] and
IPr to give 3 bb in 91 % yield. Moreover, the catalyst loading
can be decreased to 2 mol % without loss of efficiency by em-
ploying 1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene (IMes)
as a ligand (3 bb ; 92 % NMR yield, 83 % isolated yield). A sub-
strate with an N-3-CF3C6H4 group (1 d) gave the corresponding
1,2-dihydropyridines 3 da (from 2 a) or 3 db (from 2 b) in 76
and 86 % yields, respectively, by using 2 mol % of [Ni(cod)2]
and IMes; however, an imine with an N-2-CF3C6H4 (1 e) did not
afford the product at all under the same reaction conditions. It
is noteworthy that the present reaction conditions were suc-
cessfully applied to a simple N-phenyl imine 1 f and gave 3 fb
in 43 % yield in the presence of [Ni(cod)2] and IPr (5 mol %). In
addition, 1 g containing a 4-fluorophenyl group also reacted
with 2 b to afford 3 gb in a moderate yield. While the reaction
time had to be extended to 48 h, imine 1 h was successfully
converted into 3 hb in 88 % yield in the presence of 2 mol %
[Ni(cod)2] and IPr. Employing an unsymmetrical alkyne 2 c af-
forded a mixture of four 1,2-dihydropyridines with a ratio of
30:29:21:20 and a total product yield of 79 %. On the other

hand, the reaction of 1 b with 2-methyl-1-hexen-3-yne (2 d) at
100 8C for 72 h gave a mixture of two products (3 bd and
3 bd’) in a total yield of 58 %. The ratio of 3 bd/3 bd’ was 83:17.
This result can be rationalized by the following results shown
in Scheme 6. The stoichiometric treatment of 1 b with 2 d,
[Ni(cod)2] , and IPr at room temperature resulted in the forma-
tion of aza-nickelacycle 11 in 97 % NMR spectroscopic yield,
which was isolated in 77 % yield. The crystal structure of 11 is
also shown in Scheme 6. Because an h3-butadienyl coordina-
tion can highly stabilize nickelacycles,[3 h, 8] the oxidative cycliza-
tion of 1 b with 2 d, which was found to be reversible, would
take place regioselectively.[9] The transition state of the inser-
tion of the second 2 d into 11, which can proceed at 100 8C,
might also be stabilized by the assistance of h3-butadienyl co-
ordination. Thus, 3 bd was formed as a major product while
the regioselectivity of the insertion of the second 2 d was not
perfectly controlled at 100 8C. Employing terminal alkynes such
as phenyl- and trimethylsilylacetylene gave a complicated mix-
ture, and the formation of the corresponding dihydropyridines
was not observed at all by GC analysis.

Nickel(0)-catalyzed [2+2+2] cycloaddition of imines with al-
kynes would proceed through the steps proposed in
Scheme 1: 1) oxidative cyclization of an imine and an alkyne
giving a five-membered aza-nickelacycle, 2) formation of
a seven-membered aza-nickelacycle by the insertion of
a second alkyne, and 3) reductive elimination. In our previous
report using N-BBSA, the formation of the seven-membered
aza-nickelacycle was observed at room temperature, and re-

Scheme 5. Nickel(0)/NHC-catalyzed [2+2+2] cycloaddition reaction of N-aryl
imines with alkynes. General conditions: imines (1.00 mmol), alkynes
(2.00 mmol) and [Ni(cod)2/IMes] (2 mol %) were reacted in THF (1.0 mL) at
40 8C for 24 h. Yields of isolated products are given. [a] 5 mol % of [Ni(cod)2]
and IPr was used. [b] 2 mol % of [Ni(cod)2] and IPr was used (48 h). [c] Total
yield of the four products after isolation. [d] 10 mol % of [Ni(cod)2] and IPr
was used in 1,4-dioxane at 100 8C (72 h). Total yield of 3 bd and 3 bd’ is
given.

Scheme 6. The stoichiometric reaction of 1 b and 2 d with [Ni(cod)2] and IPr.
Isolated yield of 11 is given. Molecular structure of 11 (thermal ellipsoids at
the 30 % probability level) is also shown. Hydrogen atoms are omitted for
clarity. Selected bond lengths [�]: Ni�N 1.965(6), Ni�C3 1.932(7), Ni�C4
2.045(8), Ni�C5 2.024(8), Ni�C6 1.936(6).
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ductive elimination to give 1,2-dihydropyridine took place at
100 8C, which indicates that reductive elimination significantly
influenced the reaction rate. In addition, Yoshikai also pro-
posed that, based on DFT calculations, reductive elimination
would be the rate-limiting step of the reaction with N-pyridyl
imines.[4a] On the other hand, the reaction rate of the [2+2+2]
cycloaddition of N-aryl imines with alkynes in the presence of
a nickel(0)/NHC catalyst might be determined by the insertion
of the second alkyne into the five-membered aza-nickelacycle,
as mentioned above.

Conclusion

In summary, an expansion of the scope of N-substituents of
imines in the nickel(0)-catalyzed [2+2+2] cycloaddition with al-
kynes giving 1,2-dihydropyridines was successfully achieved. In
the presence of a catalytic amount of nickel(0) and PCy3, the
[2+2+2] cycloaddition reaction of N-benzylidene-P,P-diphenyl-
phosphinic amide with alkynes was developed, and the isola-
tion of a planar tetracoordinate five-membered aza-nickelacy-
cle complex was achieved. In addition, an application of N-ary-
limines to the reaction was demonstrated by adopting NHCs
as a ligand. The isolation of an (h2-N-aryl imine)nickel complex
containing a 14-electron nickel(0) center and a T-shaped 14-
electron five-membered aza-nickelacycle complex was present-
ed. Based on the results of stoichiometric reactions, the inser-
tion of a second alkyne into the five-membered aza-nickelacy-
cle might control the rate of this catalytic reaction.

Experimental Section

Isolation of 9 a

Compound 2 a (15.7 mL, 0.20 mmol) was added to a solution of
complex 7 (139.3 mg, 0.20 mmol) in toluene (5 mL) at room tem-
perature. The solution changed from dark green to dark brown.
After stirring for 10 min, the reaction mixture was concentrated in
vacuo. The resulting brown solid was reprecipitated from toluene/
pentane to give 9 a as a brown solid in 56 % yield (84.07 mg,
0.11 mmol). An analytical sample and a single crystal for X-ray dif-
fraction analysis were prepared by recrystallization from toluene/
hexane at �30 8C. 1H NMR (400 MHz, C6D6): d= 0.65 (s, 3 H; CH3),
0.91–0.94 (m, 12 H; IPr), 1.16 (d, J = 6.6 Hz, 6 H; IPr), 1.29 (s, 3 H;
CH3), 1.31 (d, J = 6.6 Hz, 6 H; IPr), 2.59 (sept, J = 6.6 Hz, 2 H; IPr), 3.13
(sept, J = 6.6 Hz, 2 H; IPr), 4.38 (s, 1 H; CHPh), 5.66 (d, J = 8.8 Hz, 2 H;
2-(4-C6H4CF3)), 6.53 (s, 2 H; IPr), 7.00–7.24 (m, 9 H), 7.36 (t, J = 7.8 Hz,
2 H; Ar-H), 7.47 ppm (d, J = 6.4 Hz, 2 H; Ar-H) ; 13C{1H} NMR
(100 MHz, C6D6): d 12.1 (NiC(CH3)), 22.6, 23.3, 23.7 (NiC(CH3)=
C(CH3)), 25.6, 26.2, 29.4, 29.8, 75.0 (CHPh), 109.4 (2-(4-C6H4CF3)),
110.4 (NiC(CH3)=C(CH3)), 111.7 (q, JCF = 32.0 Hz; CCF3), 124.9, 125.0,
125.1, 125.7, 126.2, 126.3 (q, JCF = 3.0 Hz; 3-(4-C6H4CF3)), 127.5 (q,
JCF = 266.3 Hz; CF3), 129.3, 130.7, 136.0, 145.6, 145.7, 145.7, 146.8
(NiC(CH3)), 159.5 (ipso-Ph), 183.9 ppm (NCN); elemental analysis
calcd (%)for C45H52F3N3Ni: C 72.01, H 6.98, N 5.60; found: C 71.89, H
6.93, N 5.57; X-ray data for 9 a : M = 750.62, brown, triclinic, P1̄ (#2),
a = 11.244(1), b = 11.9223(9), c = 16.212(2) �, a= 73.459(2), b=
73.333(8), g= 81.203(3)8, V = 1989.8(3) �3, Z = 2, 1calcd =
1.253 g cm�3, T =�150 8C, R1 (wR2) = 0.0859 (0.2735).

General procedure for catalytic reactions (Scheme 5)

The reaction was conducted in a pyrex test tube equipped with
a magnetic stirrer bar. An imine (1.0 mmol) was added to a solution
of [Ni(cod)2] (5.5 mg, 0.02 mmol, 2 mol %) and IMes (6.1 mg,
0.02 mmol, 2 mol %) in THF (1 mL). The solution was stirred for
5 min, and then an alkyne (2.0 mmol, 2 equiv) was added. The re-
action mixture was heated at 40 8C and stirred for the indicated
time. After cooling to room temperature, the resulting mixture was
filtered through a silica gel short column (eluted with AcOEt). Then
all volatiles were removed under reduced pressure, and the residue
was purified by silica gel column chromatography. Further purifica-
tion was carried out by Kugelrohr distillation or recycle HPLC.
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