NATURAL PRODUCTS

Determination of the Absolute Configurations of Microtermolides A and B

Zhantao Yang,[†] Meiyan Ma,[†] Chun-Hua Yang, Yuan Gao, Quan Zhang, and Yue Chen*

The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China

Supporting Information

ABSTRACT: Absolute configurations of the three consecutive chiral centers in the cyclic depsipeptide microtermolide A have been tentatively assigned as 2''R, 3'''R, and 4'''R. However, on the basis of a structural comparison with vinylamycin, another depsipeptide with a unique 4-amino-2,4-pentadieno-late structure, the chiral centers could also be assigned as 2'''R, 3'''R, and 4'''S. Here, the first total synthesis of microtermolide A is reported and the configurations of the three consecutive chiral centers were confirmed to be 2'''R, 3'''R, and 4'''S. A similar approach was used to determine the analogous centers in mic

approach was used to determine the analogous centers in microtermolide B as 2"R, 3"R, and 4"S.

epsipeptides with unique 4-amino-2,4-pentadienolate structures include rakicidins,¹⁻³ BE-43547A1,⁴ and vinylamycin,⁵ and these compounds have exhibited cytotoxic or antibiotic activities (Figure 1). However, the absolute configurations of most of the chiral centers in these depsipeptides have remained unknown. Recently, total syntheses and degradation of these depsipeptides were used to determine their absolute configurations. $^{6-11}$ Microtermolides A and B are also depsipeptides with 4-amino-2,4-pentadienolate moieties, isolated from *Streptomyces* sp.¹² When assayed, neither compound exhibited cytotoxicity or antimicrobial activity. In addition, NMR spectroscopy was used to predict the absolute configurations of the three consecutive chiral centers in each compound. As a result, the three chiral centers in both microtermolides A and B were tentatively assigned as 2^{*m*}R, 3^{*m*}R, and 4'''R (compounds 1a and 2a, respectively),¹² thereby representing an anti-anti relationship among the chiral centers. However, vinvlamvcin, an antimicrobial natural product that appears to differ from microtermolide A only by the length of its side chain, had the configurations of its three consecutive chiral centers determined as 2^{*m*}R, 3^{*m*}R, and 4^{*m*}S, thereby representing an anti-syn relative relationship.⁸ Therefore, it was also possible that microtermolides A and B could have an anti-syn relative stereochemistry for their three consecutive chiral centers (compounds 1b and 2b, respectively). In order to unambiguously assign the absolute configurations of microtermolides A and B, compounds 1a, 1b, 2a, and 2b were synthesized.

Briefly, target compounds 1a and 1b were prepared according to a synthetic sequence that was previously reported for the total synthesis of vinylamycin (Scheme 1).⁸ To achieve adducts 4a/4b with the desired configurations, these compounds were synthesized with high diastereoselectivity (dr >10:1) via the Mukaiyama aldol reaction.⁸ Hydrolysis of 4a/4b was followed by treatment with cesium carbonate (Cs₂CO₃) and allyl bromide to achieve allyl esters 5a/5b. Esterification of

Figure 1. Various proposed structures for microtermolides A $(1a,\,1b)$ and B $(2a,\,2b).$

Sa/Sb with Fmoc-D-valine 12 produced compounds 6a and 6b. Deprotection of the Fmoc group in 6a/6b then allowed the resulting amines to be coupled with Fmoc-L-alanine 13 to provide compounds 7a/7b. After deprotection of the allyl groups was completed, the resulting acids were coupled with the D-serine derivative 11, followed by cleavage of the allyl ester and Fmoc protecting groups, and then the resulting intermediates were allowed to undergo a lactamization step based on previously optimized conditions⁶ to produce lactams 9a/9b

Received: December 23, 2015

Scheme 1. Total Syntheses of Microtermolide A and C4^{'''} -epi-Microtermolide A

with 29% yield in five steps. Exposure of cyclic compounds 9a and 9b to hydrofluoric acid (HF) provided free alcohols 10a/10b. Finally, a mesylation step was followed by deprotection of 4-methoxybenzyl ether (PMB) with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) and elimination of the methanesulfonyl (Ms) group with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to produce compounds 1a and 1b, respectively.

To determine the absolute configuration of microtermolide B, the total synthesis of microtermolide B commenced with the known compound 14.⁸ A Mukaiyama aldol condensation of 14 and 18a/18b produced 15a/15b with high diastereoselectivity (dr > 10:1).⁸ The benzyl group of 15a/15b was then removed with a palladium on carbon catalyst and hydrogen at atmospheric pressure (Pd-C/H₂). The resulting alcohol was rapidly converted to cyclic products 16a/16b with silica/MeOH (Scheme 2).

Scheme 3. Synthesis of Unsaturated Acid 22

Known compound 22^{13} was prepared using our concise sequence (Scheme 3). Briefly, compound 20 was treated with oxalyl chloride, followed by an aqueous ammonia solution, to provide amide 21 in 33% yield. The methyl ester was then hydrolyzed to generate the corresponding unsaturated acid 22 in 42% yield.

Esterification of alcohols 16a/16b with Fmoc-D-valine 12 produced compounds 23a/23b (Scheme 4). The Fmoc pro-

tecting group was subsequently removed to generate free amines 24a/24b. After 24a/24b were coupled with Fmoc-Ala-OH 13, followed by removal of the Fmoc group, amines 25a/25b were achieved. In the final step, the secondary amines of 25a/25b were coupled with unsaturated acid 22 to provide compounds 2a/2b.

Following the preparation of target molecules 1a/2a and 1b/2b, the four compounds were subjected to ¹H and ¹³C NMR analyses. These data were compared with previously reported data for natural microtermolides A and B.¹² The data for compound 1b and microtermolide A matched perfectly, while the ¹³C NMR data for compound 1a and microtermolide A clearly differed at C-3^{*m*}, C-4^{*m*}, C-5^{*m*}, C-7^{*m*}, and C-10^{*m*} (refer to Supporting Information). Thus, the absolute configurations of the three consecutive chiral centers in microtermolide A were unambiguously assigned as $2^{$ *m* $}R$, $3^{$ *m* $}R$, and $4^{$ *m* $}S$, thereby representing an *anti–syn* relationship. Similarly, NMR data for compound 2b and microtermolide B matched. In contrast, the ¹³C NMR data for compound 2a and microtermolide B clearly differed at C-3^{*m*}, C-4^{*m*}, C-5^{*m*}, and C-10^{*m*}. Thus, the

	lit. microtermolide A		synthetic microtermolide 1a				synthetic microtermolide 1b			
assignment	¹³ C ppm	¹ H ppm [mult, J (Hz)]	¹³ C ppm	Δppm	¹ H ppm [mult, J (Hz)]	Δ	¹³ C ppm	Δ	¹ H ppm [mult, J (Hz)]	Δ
C1, CO	170.4		170.6	0.2			170.3	-0.1		
C2, CH	59.2	4.42 (m)	59.0	-0.2	4.48 (d, 6.6)	0.06	59.2	0	4.43 (d, 7.3)	0.01
С3, СН	33.4	2.07 (dq, 13.7, 6.8)	33.4	0	2.17-2.09 (m)	0.06	33.4	0	2.07 (dq, 14.1, 7.1)	0
C4, CH ₃	19.7	0.96 (d, 6.5)	19.9	0.2	0.96 (d, 5.7)	0	19.9	0.2	0.96 (d, 6.6)	0
C5, CH ₃	18.5	0.96 (d, 7.0)	18.4	-0.1	0.99 (d, 5.6)	0.03	18.5	0	0.95 (d, 6.6)	-0.01
C1′, CO	175.2		175.0	-0.2			174.9	-0.3		
C2′, CH	52.6	4.40 (m)	52.7	0.1	4.41-4.35 (m)	-0.02	52.8	0.2	4.36 (dd, 10, 6.9)	-0.04
C3′,CH ₃	18.5	1.44 (d, 7.0)	18.6	0.1	1.45 (d, 7.0)	0.01	18.6	0.1	1.45 (d, 6.9)	0.01
C1″, CO	169.2		169.2	0			169.2	0		
C2″, CH	118.2	6.24 (d, 15.3)	118.3	0.1	6.20 (d 15.1)	-0.04	118.3	0.1	6.20 (d, 15.1)	-0.04
C3″, CH	141.6	7.11 (d, 14.7)	141.7	0.1	7.14 (d 15.1)	0.03	141.6	0	7.13 (d, 15.2)	0.02
C4″, C	138.6		138.7	0.1			138.6	0		
C5", CH ₂	119.3	5.59 (s)	119.6	0.3	5.60 (s)	0.01	119.6	0.3	5.59 (s)	0
		5.52 (s)			5.54 (s)	0.02			5.54 (s)	0
C1‴, CO	174.3		174.1	-0.2			174.1	-0.2		
С2‴, СН	46.9	3.00 (td, 10.3, 4.1)	46.7	-0.2	3.02 (td, 10.3, 4.7)	0.02	47.0	0.1	2.97 (td, 10.6, 4.9)	-0.03
С3‴, СН	78.0	5.48 (dd, 10.3, 2.1)	80.1	2.1	5.42 (d, 9.9)	-0.06	78.1	0.1	5.49 (d, 10.3)	0.01
C4‴, CH	34.9	1.88 (m)	33.4	-1.5	1.96–1.89 (m)	0.05	34.9	0	1.92-1.85 (m)	0
C5‴, CH ₂	37.3	1.34 (m)	35.3	-2.0	1.37-1.29 (m)	-0.01	37.3	0	1.36-1.32(m)	0
		1.16 (m)							1.20-1.11(m)	-0.01
C6‴, CH ₂	21.2	1.42 (m)	21.3	0.1	1.37–1.29 (m)		21.3	0.1	1.44–1.36 (m)	-0.02
C7‴, CH ₃	14.2	0.90 (t, 7.0)	16.7	2.5	0.95, t (5.6)	0.05	14.2	0	0.90 (t, 7.0)	0
C8‴, CH ₂	33.4	1.80 (m)	33.4	0	1.86–1.77 (m)	0.01	33.4	0	1.84–1.76 (m)	0
C9‴, CH ₂	59.9	3.66 (m)	59.9	0	3.70-3.64(m)	0.01	59.9	0	3.66 (td, 10.2, 4.5)	0
		3.56 (m)			3.61-3.54 (m)	0.01			3.58-3.55 (m)	0
C10"'', CH ₃	13.4	1.06 (d, 7.0)	14.3	0.9	1.80–1.77 (m)		13.4	0	1.06 (d, 6.7)	0

absolute configurations of the three consecutive chiral centers in microtermolide B were unambiguously assigned as 2'''R, 3'''R, and 4'''S, which also represents an *anti*—*syn* relationship. Taken together, these results indicate that the structures of compounds **1b** and **2b** represent the structures of the natural microtermolides A and B, respectively, and assignments of the three chiral centers of each compound have been determined.

Depsipeptides with 4-amino-2,4-pentadienolate structures exhibited important biological activities^{1-5,11,12,14,15} and are suitable for further investigation of structure activity relationships (SAR).¹⁶ The determination of the absolute configuration of microtermolides supplied not only two more examples of an *anti–syn* relative stereochemistry in depsipeptides with 4-amino-2,4-pentadienolate moieties but also valuable information for further SAR study of this type of depsipeptides.

EXPERIMENTAL SECTION

General Methods and Materials. Thin-layer chromatography (TLC) was performed on 0.25 mm silica gel plates (60-F254). Proton and carbon magnetic resonance spectra (¹H and ¹³C NMR) were recorded on a 400 MHz spectrometer, as specified. Spectra were acquired in CDCl₃ and referenced to the solvent peak at 7.26 ppm (¹H) and 77.16 ppm (¹³C) for CDCl₃. ¹H NMR data are reported as follows: chemical shift, multiplicity (abbreviations: d = doublet,

dd = doublet of doublets, t = triplet, td = triplet of doublets, m = multiplet), coupling constant (Hz), and integration. High-resolution mass spectrometry (HRMS) was performed on a QTOF ESI or MALDI spectrometer. Commercially available dry solvents were used for DMF, CH_2Cl_2 , THF, and MeOH. The starting materials 12 and 13 were purchased from Energy Chemical Co.Ltd.

(3R,6S,14R,15R,E)-14-(2-Hydroxyethyl)-3-isopropyl-6-methyl-11-methylene-15-((R)-pentan-2-yl)-1-oxa-4,7,12-triazacyclopentadec-9-ene-2,5,8,13-tetraone (1a). To a solution of 10a (10 mg, 0.017 mmol) in CH₂Cl₂ (1 mL) were added triethylamine (2.6 mg, 0.025 mmol) and MsCl (2.3 mg, 0.02 mmol) at 0 °C. After being stirred for 0.5 h, the reaction solution was quenched by addition of water (1 mL). The aqueous phase was extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄, filtrated, and concentrated under reduced pressure. The crude mixture was further purified through column chromatography (ethyl acetate/CH₃OH, 10:1) to afford the compound as a solid.

To a solution of the compound above (9 mg, 0.013 mmol) in CH_2Cl_2 (1.4 mL) and PBS (0.1 mL, pH 7.0) was added DDQ (4.4 mg, 0.02 mmol) at 20 °C. After 2 h, the mixture was quenched with saturated NaHCO₃ solution and extracted with EtOAc. The organic phase was washed by brine and then dried over Na₂SO₄, filtrated, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (ethyl acetate/methanol, 1:0 to 10:1) to give the primary alcohol.

Table 2. ¹H and ¹³C NMR Data Comparison (MeOD- d_A)

	lit. microtermolide B		synthetic microtermolide 2a				synthetic microtermolide 2b			
assignment	¹³ C ppm	¹ H ppm [mult, J (Hz)]	¹³ C ppm	Δppm	¹ H ppm [mult, J (Hz)]	Δ	¹³ C ppm	Δ	¹ H ppm [mult, J (Hz)]	Δ
C1, CO	168.7		168.2	-0.5			168.7	0		
C2, CH	134	6.90 (d 15.3)	133.8	-0.2	6.90 (d, 15.3)	0	134.0	0	6.90 (d, 15.3)	0
C3, CH	134.3	6.94 (d 15.3)	134.1	-0.2	6.96 (d, 15.3)	0.02	134.3	0	6.96 (d, 15.3)	0.02
C4, CO	166.2		166.0	-0.2			166.2	0		
C1′, CO	174.5		174.4	-0.1			174.5	0		
C2', CH	50.5	4.56 (q, 7.0)	50.3	-0.2	4.55 (q, 7.0)	-0.01	50.5	0	4.56 (q, 7.1)	0
C3′, CH ₃	18.2	1.39 (d, 7.0)	18.1	-0.1	1.39 (d, 7.1)	0	18.2	0	1.39 (d, 7.0)	0
C1″, CO	172.2		172.2	0			172.3	0.1		
C2″, CH	59.5	4.35 (d, 6.5)	59.5	0	4.34–4.28 (d, 6.1)	-0.04	59.4	-0.1	4.35 (d, 6.1)	0
C3″, CH	31.0	2.21 (m)	31.1	0.1	2.24-2.16 (m)	-0.01	31.3	0.3	2.25-2.17 (m)	0
C4", CH ₃	20.0	0.99 (d, 7.0)	19.7	-0.3	0.99 (d, 6.8)	0	20.0	0	0.98 (d, 6.8)	-0.01
C5", CH ₃	18.3	0.95 (d, 7.0)	18.3	0	0.96 (d, 6.8)	0.01	18.3	0	0.95 (d, 6.8)	0
C1‴,CO	178.6		178.2	-0.4			178.6	0		
C2‴, CH	41.7	3.03 (ddd, 10.7, 9.0, 6.7)	41.5	-0.2	3.08 (ddd, 10.3, 9.1, 6.7)	0.05	41.6	-0.1	3.03 (ddd, 10.7, 9.1, 6.9)	0
С3‴, СН	77.1	5.08 (dd, 7.0, 5.3)	78.2	1.1	5.01 (dd, 7.3, 5.1)	-0.07	77.1	0	5.08 (dd, 6.8, 5.2)	0
C4‴, CH	35.8	1.94 (m)	34.6	-1.2	2.12-2.01 (m)	0.12	35.8	0	1.98–1.89 (m)	0
C5‴, CH ₂	36.6	1.32 (m)	35.2	-1.4	1.31–1.27 (m)		36.6	0	1.33-1.29 (m)	0
		1.13 (m)			1.15-1.06 (m)	-0.02			1.17–1.09 (m)	0
C6‴, CH ₂	21.0	1.34 (m)	20.5	-0.5	1.31–1.27 (m)		21.0	0	1.37-1.32 (m)	0
C7‴, CH ₃	14.5	0.88 (t, 7.3)	14.4	-0.1	0.88 (t, 6.7)	0	14.5	0	0.87 (t, 7.1)	-0.01
C8‴, CH ₂	27.0	2.33 (m)	26.4	-0.6	2.36-2.28 (m)	-0.01	27.0	0	2.37-2.29 (m)	0
		2.04 (m)			2.12-2.01 (m)	0.02			2.09-1.99 (m)	0
C9‴, CH ₂	67.6	4.31 (td, 8.7, 2.6)	67.6	0	4.34-4.28 (m)	0	67.6	0	4.31 (td, 8.8, 2.7)	0
		4.18 (td, 9.1, 7.0)			4.18 (td, 9.2, 7.0)	0			4.17 (td, 9.3, 6.8)	-0.01
C10‴, CH ₃	14.5	0.92 (d 7.0)	16.0	1.5	0.92 (d, 6.9)	0	14.5	0	0.91 (d, 6.8)	-0.01

To a solution of the primary alcohol above in CH₂Cl₂ (0.5 mL) was added DBU (14 mg, 0.09 mmol) at 25 °C. After being stirred for 2 h at this temperature, 1% HCl was added to quench the reaction. The aqueous phase was extracted with EtOAc. The combined organic phases were washed with brine, dried over Na2SO4, filtrated, and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (MeOH/CH₂Cl₂, 1:50) to obtain the title 1a (3 mg, 41% for three steps) as a solid: 1 H NMR (400 MHz, MeOD) δ 7.14 (d, J = 15.1 Hz, 1H), 6.20 (d, J = 15.1 Hz, 1H), 5.60 (s, 1H), 5.54 (s, 1H), 5.42 (d, J = 9.9 Hz, 1H), 4.58 (brs, 1H), 4.48 (d, J = 6.6 Hz, 1H), 4.41-4.35 (m, 1H), 3.70-3.64 (m, 1H), 3.61–3.54 (m, 1H), 3.02 (td, J = 10.3, 4.7 Hz, 1H), 2.17–2.09 (m, 1H), 1.96-1.89 (m, 1H), 1.86-1.77 (m, 2H), 1.61-1.52 (m, 1H), 1.45 (d, J = 7.0 Hz, 3H), 1.37–1.29 (m, 3H), 1.01 (d, J = 6.7 Hz, 3H), 0.99 (d, J = 5.6 Hz, 3H), 0.96 (d, J = 5.7 Hz, 3H), 0.95 (t, J = 5.6 Hz, 3H)3H); ¹³C NMR (100 MHz, MeOD) δ 175.0, 174.1, 170.6, 169.2, 141.7, 138.7, 119.6, 118.3, 80.1, 59.9, 59.0, 52.7, 46.7, 35.3, 33.4, 33.4, 33.2, 21.3, 19.9, 18.6, 18.4, 16.7, 14.3; [M + Na]⁺ calcd for C₂₃H₃₇N₃O₆Na⁺, 474.2580; found, 474.2578.

1b: $[\alpha]_{D}^{19}$ = +83.6 (*c* 0.28, MeOH); IR (KBr, cm⁻¹) ν_{max} 3245, 2960, 2873, 1733, 1671, 1520, 1244, 1038, 982; ¹H NMR (400 MHz, MeOD) δ 7.13 (d, J = 15.2 Hz, 1H), 6.20 (d, J = 15.1 Hz, 1H), 5.59 (s, 1H), 5.54 (s, 1H), 5.49 (d, J = 10.3 Hz, 1H), 4.43 (d, J = 7.3 Hz, 1H), 4.36 (q, J = 6.8 Hz, 1H), 3.66 (td, J = 10.2, 4.5 Hz, 1H), 3.57 (dd, J = 16.4, 8.7 Hz, 1H), 2.97 (td, J = 10.6, 4.9 Hz, 1H), 2.07 (dq, J = 14.1, 7.1 Hz, 1H), 1.92–1.85 (m, 1H), 1.84–1.76 (m, 2H), 1.45 (d, J = 6.9 Hz, 3H), 1.44–1.36 (m, 3H), 1.20–1.11 (m, 1H), 1.06 (d, J = 6.7 Hz, 3H), 0.96 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.90 (t, J = 7.0 Hz, 3H); 13 C NMR (100 MHz, MeOD) δ 174.9, 174.1, 170.3, 169.2, 141.6, 138.6, 119.6, 118.3, 78.1, 59.9, 59.2, 52.8, 47.0, 37.3, 34.9, 33.4, 21.3, 19.9, 18.6, 18.5, 14.2, 13.3; [M + Na]⁺ calcd for C23H37N3O6Na+, 474.2580; found, 474.2576.

(1R,2R)-2-Methyl-1-((R)-2-oxotetrahydrofuran-3-yl)pentyl ((E)-4-amino-4-oxobut-2-enoyl)-L-alanyl-D-valinate (2a). To a solution of the amine (20 mg, 0.056 mmol) and the unsaturated acid (10 mg, 0.087 mmol) in DMF/CH₂Cl₂ (0.3 mL/1.2 mL) was added DIPEA (56 mg, 0.435 mmol), followed by HATU (66 mg, 0.174 mmol). After 1 h at room temperature, 1% HCl was added to quench the reaction, which was washed with saturated NaHCO₃ and brine and evaporated in vacuo. The residue was further purified through chromatography (CH₂Cl₂/CH₃OH, 5%) to give the title product 2a (15 mg, 60%) as a solid: $[\alpha]_{D}^{29} = -10.3$ (c 0.6, CHCl₃); IR (KBr, cm⁻¹) $\nu_{\rm max}$ 3350, 2959, 2872, 1772, 1726, 1517, 1260, 1100, 872; ¹H NMR (400 MHz, MeOD) δ 6.96 (d, J = 15.3 Hz, 1H), 6.90 (d, J = 15.3 Hz, 1H), 5.01 (dd, J = 7.3, 5.1 Hz, 1H), 4.55 (q, J = 10.3 Hz)7.0 Hz, 1H), 4.34–4.28 (m, 2H), 4.18 (td, J = 9.2, 7.0 Hz, 1H), 3.12– 3.05 (m, 1H), 2.36-2.28 (m, 1H), 2.19 (dt, J = 12.8, 6.6 Hz, 1H), 2.12–2.01 (m, 2H), 1.39 (d, J = 7.1 Hz, 3H), 1.31–1.27 (m, J =3.4 Hz, 2H), 1.25-1.18 (m, 1H), 1.15-1.06 (m, 1H), 0.99 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H), 0.88 (t, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, MeOD) δ 178.2, 174.4, 172.2, 168.6, 166.0, 134.1, 133.8, 78.2, 67.6, 59.5, 50.3, 41.5, 35.2, 34.6, 31.1, 26.4, 20.5, 19.7, 18.3, 18.1, 16.0, 14.4; HRMS-MALDI (m/z) $[M + Na]^+$ calcd for $C_{22}H_{35}N_3O_7Na^+$, 476.2373; found, 476.2369.

2b: $[\alpha]_{D}^{29} = -4.2(c \ 0.7, \text{ CHCl}_{3})$; IR (KBr, cm⁻¹) ν_{max} 3294, 2963, 2875, 1771, 1623, 1538, 1166, 1028, 844; ¹H NMR (400 MHz, MeOD) δ 6.96 (d, J = 15.3 Hz, 1H), 6.90 (d, J = 15.3 Hz, 1H), 5.08 (dd, J = 6.8, 5.2 Hz, 1H), 4.56 (q, J = 7.1 Hz, 1H), 4.35 (d, J = 6.1 Hz, 1H), 4.31 (td, J = 8.8, 2.7 Hz, 1H), 4.17 (td, J = 9.3, 6.8 Hz, 1H), 3.03 (ddd, J = 10.7, 9.1, 6.9 Hz, 1H), 2.37-2.29 (m, 1H), 2.25-2.17 (m, 1H), 2.09-1.99 (m, 1H), 1.98-1.89 (m, 1H), 1.39 (d, I = 7.1 Hz, 3H), 1.37-1.32 (m, 2H), 1.33-1.29 (m, 1H), 1.17-1.09 (m, 1H), 0.98 (d, J = 6.8 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H), 0.87 (t, J = 7.1 Hz, 3H); ¹³C NMR (400 MHz, MeOD) δ 178.6, 174.5, 172.3, 168.7, 166.2, 134.3, 134.0, 77.1, 67.6, 59.4, 50.5,

D

Journal of Natural Products

41.6, 36.6, 35.8, 31.3, 27.0, 21.0 20.0, 18.3, 18.2, 14.5, 14.5; HRMS–MALDI (m/z) $[M + Na]^+$ calcd for $C_{22}H_{35}N_3O_7Na^+$, 476.2373; found, 476.2369.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jnatprod.5b01143.

¹H and ¹³C NMR, HRMS–MALDI, and NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*Tel/Fax: +86 2285358386. E-mail: yuechen@nankai.edu.cn.

Author Contributions

[†]Z. Yang and M. Ma contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21372129 and 81573282 to Y.C. and Nos. 81370086 and 81573308 to Q.Z.), Program for New Century Excellent Talents in University to Y.C., and Hundred Young Academic Leaders Program of Nankai University to Y.C.

REFERENCES

(1) McBrien, K. D.; Berry, R. L.; Lowe, S. E.; Neddermann, K. M.; Bursuker, I.; Huang, S.; Klohr, S. E.; Leet, J. E. J. Antibiot. **1995**, 48, 1446–1452.

(2) Hu, J. F.; Wunderlich, D.; Sattler, I.; Feng, X. Z.; Grabley, S.; Thiericke, R. *Eur. J. Org. Chem.* **2000**, 2000, 3353–3356.

(3) Igarashi, Y.; Shimasaki, R.; Miyanaga, S.; Oku, N.; Onaka, H.; Sakurai, H.; Saiki, I.; Kitani, S.; Nihira, T.; Wimonsiravude, W.; Panbangred, W. J. Antibiot. **2010**, *63*, 563–565.

(4) Nishioka, H.; Nakajima, S.; Nagashima, M.; Ojiri, K.; Suda, H. Patent JP10147594-A, 1998.

(5) Igarashi, M.; Shida, T.; Sasaki, Y.; Kinoshita, N.; Naganawa, H.; Hamada, M.; Takeuchi, T. *J. Antibiot.* **1999**, *52*, 873–879.

(6) Sang, F.; Li, D. M.; Sun, X. L.; Cao, X. Q.; Wang, L.; Sun, J. L.; Sun, B. X.; Wu, L. L.; Yang, G.; Chu, X. Q.; Wang, J. H.; Dong, C. M.; Geng, Y.; Jiang, H.; Long, H. B.; Chen, S. J.; Wang, G. Y.; Zhang, S. Z.; Zhang, Q.; Chen, Y. J. Am. Chem. Soc. **2014**, *136*, 15787–15791.

(7) Oku, N.; Matoba, S.; Yamazaki, Y. M.; Shimasaki, R.; Miyanaga, S.; Igarashi, Y. J. Nat. Prod. **2014**, 77, 2561–2565; J. Nat. Prod. **2015**, 78, 969.

(8) Yang, Z.; Yang, G.; Ma, M.; Li, J.; Liu, J.; Wang, J.; Jiang, S.; Zhang, Q.; Chen, Y. Org. Lett. **2015**, *17*, 5725–5727.

(9) Clement, L. L.; Tsakos, M.; Schaffert, E. S.; Scavenius, C.; Enghild, J. J.; Poulsen, T. B. Chem. Commun. 2015, 51, 12427–12430.
(10) Poulsen, T. B. Chem. Commun. 2011, 47, 12837–12839.

(11) Tsakos, M.; Clement, L. L.; Schaffert, E. S.; Olsen, F. N.; Rupiani, S.; Djurhuus, R.; Yu, W. W.; Jacobsen, K. M.; Villadsen, N. L.; Poulsen, T. B. Angew. Chem., Int. Ed. **2016**, 55, 1030.

(12) Carr, G.; Poulsen, M.; Klassen, J. L.; Hou, Y.; Wyche, T. P.; Bugni, T. S.; Currie, C. R.; Clardy, J. Org. Lett. **2012**, *14*, 2822–2825.

(13) Talley, E. A.; Fitzpatrick, T. J.; Porter, W. L. J. Am. Chem. Soc. 1959, 81, 174.

(14) Yamazaki, Y.; Kunimoto, S.; Ikeda, D. Biol. Pharm. Bull. 2007, 30, 261.

(15) Takeuchi, M.; Ashihara, E.; Yamazaki, Y.; Kimura, S.; Nakagawa, Y.; Tanaka, R.; Yao, H.; Nagao, R.; Hayashi, Y.; Hirai, H.; Maekawa, T. *Cancer Sci.* **2011**, *102*, 591–596.

(16) Sang, F.; Ding, Y. H.; Wang, J. H.; Sun, B. X.; Sun, J. L.; Geng, Y.; Zhang, Z.; Ding, K.; Wu, L. L.; Liu, J. W.; Ba, C. G.; Yang, G.; Zhang, Q.; Li, L. Y.; Chen, Y. J. Med. Chem. **2016**, *59*, 1184.