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ABSTRACT: The gold(I) thiolate complex [Au(SC6H4-4-OMe)-
(PCy3)] reacts with an (aminosilyl)boronic ester, Et2N-SiPh2-
BO(CMe2)2O, to afford a complex with an (arylthio)silyl ligand,
[Au(SiPh2(SC6H4-4-OMe))(PCy3)]. In the solid state the
molecule shows almost linear Si−AuI−P coordination. DFT
studies revealed that the reaction pathway involves an intermediate
having an Au−S bond formed via initial association of the Si center
of the substrate with the thiolate ligand. Reaction of H2SiPh2 with
the thiolate complex also produces the silylgold complex in a lower
yield.

Silyl complexes of late transition metals1,2 have been studied
because of their relevance to the mechanism of synthetic

organic reactions catalyzed by the metal complexes.3 Oxidative
addition of organosilanes with Si−H bonds to low-valent late
transition metals4 provides common and useful routes for
formation of a metal−Si bond. The reaction is regarded as a
crucial step in the hydrosilylation of olefins catalyzed by late-
transition-metal complexes.5 (Aminosilyl)boronic esters Et2N-
SiR2-B(pin) (R = Me, Ph, B(pin) = B(O(CMe2)2O)) were
recently found to function as a source of a disubstituted
silylene group in catalytic and stoichiometric reactions using
group 10 transition-metal complexes. A Pd(0) phosphine
complex catalyzes [1 + 2 + 2] cycloaddition of the
(aminosilyl)boronic ester to alkynes to yield the corresponding
siloles with new regioselectivity, while a similar [1 + 4]
reaction using a diene produces the silacyclopentenes.6 These
reactions were proposed to involve an intermediate Pd
complex with the disubstituted silylene ligand. Stoichiometric
reactions of the (aminosilyl)boronic ester with Pd(0) and
Pt(0) complexes afforded the dinuclear complexes of these
metals with bridging diphenylsilylene ligands.7

The synthesis and properties of silylgold complexes have
attracted attention.8 The reactions of organosilanes with Au(I)
complexes are expected to form the corresponding silylgold-
(III) complexes,8c similar to the complexes of other d10 metals,
such as Pd(0) and Pt(0). Recently, we reported the reaction of
H2SiPh2 with [AuCl(PCy3)] to form [Au(SiPh2Cl)(PCy3)],
probably via oxidative addition of H2SiPh2 to form an Au(III)
intermediate followed by elimination of dihydrogen.9 This
paper presents the reaction of an (aminosilyl)boronic ester

with a thiolatogold(I) complex10 to form a complex with the
thio(silyl) ligand.
X-ray crystallography confirmed the molecular structure of

Et2N-SiPh2-B(pin) (1) having a tetrahedral Si center with
NEt2 and pinacolboryl substituents.11 The Si−N and Si−B
bond lengths (1.718(1) and 1.719(1) Å and 2.033(2) and
2.035(2) Å) are similar to those of Me3Si-NMe2 (1.719(1) Å)
and PhMe2Si−B(pin) (2.028(5) Å), respectively.12 A gold(I)
complex with an arenethiolate ligand, [Au(SC6H4-4-OMe)-
(PCy3)] (2), was newly prepared and subjected to the
reactions. Scheme 1 summarizes the reactions of an
(aminosilyl)boronic ester and of H2SiPh2 with the
thiolatogold(I) complex.
Heating a mixture of 1 and 2 in a 1:2 molar ratio at 74 °C

for 15 h produces [Au(SiPh2(SC6H4-4-OMe))(PCy3)] (3) in
57% isolated yield, as shown in Scheme 1i. A similar reaction of
H2SiPh2 also yields complex 3 (Scheme 1ii), and the NMR
yield (23%) after the reaction for 20 h at 74 °C is lower than
that of 1 (90%). Figure 1 compares the molecular structures of
2 and 3 determined by X-ray crystallography. Both complexes
have a two-coordinated linear structure around the Au(I)
center with an S1−Au1−P1 angle of 178.84(5)° and an Si1−
Au1−P1 angle of 177.98(8)°, respectively. The Au−Si bond
distance of complex 3 (2.345(2) Å) is similar to that of
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[Au(SiPh2Cl)(PCy3)] (2.343(4) Å)
9 and is within the range of

those of Au(I) complexes with silyl ligands (2.25−2.58 Å).8f

The Si−S bond of 3 (2.187(3) Å) is shorter than the
corresponding bond of fac-[RhH2(SiPh2(SPh))(PMe3)3]

(2.228(1) Å).13 The Au−P bond of complex 2 (2.274(2) Å)
is shorter than the bond of complex 3 (2.362(2) Å) because of
the larger trans influence of the silyl ligand in comparison to
the thiolate ligand. NMR spectra of the complexes agree with
the structures by X-ray crystallography. The 29Si{1H} NMR
signal of 3 is observed at 47.1 ppm (SiMe4 standard) with a
J(SiP) value of 186 Hz.
The 1H NMR spectra during the reaction of Scheme 1i

showed the clean formation of complex 3 and no intermediates
or byproducts in the reaction mixture. Plots of the reaction of
excess amounts of 1 (10−20 equiv with respect to 2) suggested
that the reaction rates do not increase linearly depending on
the initial concentration of 1. Figure 2 summarizes the
plausible pathway and the intermediates for the reaction in
Scheme 1i, as shown by DFT calculations. The initial step
involves approach of the Si atom to the coordinating sulfur
atom of the ligand and an accompanying structural change of
the substrate. The formed intermediate I contains an S-
coordinated silyl thioether ligand with an amino(pinacol)-
borate substituent at the Si atom. The intermediate has a Au−
S−Si−B−N linkage but no significant interaction between the
Si and Au atoms.
Details of the process were analyzed on the basis of nudged

elastic band (NEB) calculations (data are given in the
Supporting Information). The transition state (TS1) has the
Si and S atoms at close positions (2.85 Å), while the Si−S
bond distance of intermediate I is 2.42 Å. A three-membered
ring composed of Si, S, and B atoms is formed via attractive
interaction of the N and B atoms with an N···B distance of 1.95
Å (the sum of N and B atom radii being 1.58 Å) and an acute
N−Si−B angle (60.0°). The Si−N distance of TS1 (1.92 Å) is
longer than the corresponding bond length of 1 by X-ray
crystallography (1.718(1) and 1.719(1) Å), while the Si−B
distance of TS1 (1.97 Å) is similar to those of 1 (2.033(2) and
2.035(2) Å). The Si center of TS1 is bonded with boron,
nitrogen, sulfur, and two ipso carbon atoms with a distorted-
trigonal-bipyramidal geometry. The sum of the C−Si−C angle
(109.8°) and the B−Si−C angles (119.5 and 130.4°) is 359.7°,
while N−Si−S angle (153.4°) is the largest among the bond
angles around the Si center. Thus, TS1 is expected to undergo
a structural change caused by further bond formation between
the Si and S atoms and activation of the Si−N bond at the

Scheme 1. Reactions of (Aminosilyl)boronic Ester and of
Ph2SiH2 with an Au(I) Thiolate Complex

Figure 1. ORTEP drawings (30% level of probability). (a) Molecular
structure of 2. Bond distances (Å) and angles (deg): Au1−S1
2.310(2), Au1−P1 2.274(2), S1−C19 1.773(6), S1−Au1−P1
178.84(5), Au1−S1−C19 105.7(2). (b) Molecular structure of 3.
Bond distances (Å) and angles (deg): Au1−Si1 2.345(2), Au1−P1
2.362(2), Si1−S1 2.187(3), Si1−Au1−P1 177.98(8), Au1−Si1−S1
112.9(1), Si1−S1−C31 103.5(3). Hydrogen atoms are omitted for
clarity.

Figure 2. Pathway and intermediates of the reaction of 1 with 2, on the basis of the results of DFT calculations.
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apical sites of the trigonal-bipyramidal coordination. The sum
of the C−N−C angle and two Si−N−C angles of TS1
(353.3°) suggests minor pyramidalization of the nitrogen
atom.
Elimination of amino(pinacol)borane from intermediate I

occurs easily to form the complex with an S-coordinated silyl
sulfide anion as the ligand (intermediate II). Further migration
of the Au center from S-coordination to Si-coordination leads
to formation of the thermodynamically stable product with an
(arenethiolate)silyl ligand (3). These two reactions from
intermediate I to II and from intermediate II to the product
occur with much lower activation energies. Formation of
intermediate I occurs with an activation energy of 22.5 kcal
mol−1, which should be the rate-determining step of the total
reaction. The transition state (TS1), with a structure similar to
that of intermediate I, may account for the results of kinetic
measurement.
Another pathway via direct bond formation between the Si

and Au atoms can be also considered for formation of complex
3 from the reaction of 1 with 2. Scheme 2 shows a possible

early stage of the reaction on the basis of DFT calculations. An
approach of the Si atom of the substrate to the Au(I) center
accompanies the formation of an Si···N···B three-membered
ring (intermediate III). Further progress of the reaction would
form a Au−Si bond and Si−N and N−B bonds of the ligand,
accompanied by cleavage of the Si−B bond. The resulting
intermediate IV has a (pinacolboryl)amine-coordinated
diphenylsilylene ligand, with coordination similar to that of
the base-stabilized silylene complexes.2a−d Another pathway
involving a Au(I) intermediate with a bare diphenylsilylene
ligand is not plausible for this reaction. Intermediate III has
higher energy in comparison to the substrate by 25.4 kcal
mol−1. The real transition state was not determined for the
formation of III and IV, and the activation for the early stage
of the reaction is higher than that for the pathway in Figure 2.
Thus, the reaction in Scheme 1i prefers the pathway initiated
by S−Si bond formation (Figure 2) rather than the pathway
that includes the direct Au−Si bond forming process in
Scheme 2.
We already reported that the reaction of 1 with [AuCl-

(PCy3)] gave [Au(SiPh2Cl)(PCy3)] in 11% yield after heating
for 7 days.9 Attempted DFT calculations on the reaction
according to the pathway shown in Figure 2 were not
successful. The approach of 1 to [AuCl(PCy3)] did not
provide a possible intermediate or transition state, and Cl and
Si atoms are separated from each other (>3.61 Å). The
calculated bond order between Si and Cl atoms is lower than

0.103, while I in Figure 2 shows a bond order of 0.764 between
the Si and S atoms. This indicates that the reaction in Scheme
1ii proceeds via a pathway different from that of complex 2.
H2SiPh2 reacts with [AuCl(PCy3)] more smoothly than with
thiolate complex 2. The (aminosilyl)boronic ester and H2SiPh2
are used as complementary precursors for insertion of the
diphenylsilylene group into the Au−SAr and Au−Cl bonds.
In summary, we obtained Au complexes with a thiolatosilyl

ligand by using an (aminosilyl)boronic ester as the source of a
diphenylsilylene group. The reaction occurs via initial
formation of the Si−S bond rather than direct approach of
the Si atom to the Au center, as shown by theoretical
calculations. The resulting intermediate and proposed pathway
of the total reaction were unexpected but account for the
smooth formation of the gold complex with the thiolatosilyl
ligand.
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